

COLLEGE OF ENGINEERING

REPORT NO. 108

A REPRESENTATION OF POSITIVE-REAL CPERATORS
ON A HILBERT SPACE

bу

E. J. Beltrami

APRIL 1968

A REPRESENTATION OF POSITIVE-REAL OPERATORS

ON A HILBERT SPACE

E. J. Beltrami
Department of Applied Analysis
State University of New York at Stony Brook

April, 1968

This report is a revised and more detailed version of a paper by the same title which appeared as a letter to the editor in IEEE-PGCT Vol. CT-14, Number 3, September, 1967.

A function $f(\lambda)$ of a complex variable λ is half plane positive or simply positive whenever it is analytic and satisfies Re $f(\lambda)$ > 0 in the half plane Re λ > 0. If, in addition, $f(\overline{\lambda}) = \overline{f(\lambda)}$ we say the function is positive real. By virtue of Schwarz's reflection principle the last condition is equivalent to asserting that $f(\lambda)$ is real for real λ in the half plane. A theorem of Nevanlinna [1] which is based on an earlier result of Herglotz [2] tells us that a necessary and sufficient condition for $f(\lambda)$ to be a positive function is that it can be represented by the Stieltjes integral

$$f(\lambda) = a\lambda + iq + \int_{-\infty}^{\infty} \frac{i\zeta\lambda - 1}{i\zeta - \lambda} d\mu (\zeta)^{\frac{1}{2}}$$
(1)

where $a \geq 0$ and q are real scalars and μ is a non-decreasing and bounded function which we normalize by $\mu(-\infty) = 0$. Moreover, as shown by Cauer [3], $f(\lambda)$ is positive real if and only if q = 0 and $\mu(-\zeta) = -\mu(\zeta)$.

We wish to extend (1) to a class of operator valued functions R on a Hilbert space which are, in a sense to be made precise below, positive real. Such functions occur in the study of passive Hilbert systems and the notation R refers to the fact that the operators often arise as the <u>resolvents</u> of certain unbounded operators (c.f. [4], [10]).

H will denote an arbitrary complex Hilbert space and H_0 is to consist of all elements in H which satisfy the symmetry condition (u,v)=(v,u), where parenthesis denotes inner product in H. It is clear that H_0 forms a Hilbert space over the real numbers. We now define a one parameter family of operators R_{λ} on H to be positive if $f(\lambda)=(R_{\lambda}-u,u)$ is positive in λ for all u in the domain of R_{λ} . In order to define positive real operators we take our clue from the fact that on E^{n} the matrix valued operator $R(\lambda)$ satisfies $R(\overline{\lambda})u,u=R(\overline{\lambda})u,u$ for all real u whenever

 $R(\bar{\lambda}) = \overline{R(\lambda)}$. Hence we say that a positive family R_{λ} is positive real whenever $f(\bar{\lambda}) = \overline{f(\lambda)}$ for all $u_{\epsilon} H_{\delta}$.

The next theorem was first established on E^{n} in a different way by Youla [5]. Before proving it we need a lemma.

Lemma 1 Let $f_{\lambda}(u,v) = a(u,v) \lambda + q(u,v) + \int_{-\infty}^{\infty} \frac{i\zeta\lambda - 1}{i\zeta - \lambda} d\mu_{\zeta}(u,v)$ for $\Re \lambda > 0$ where a,q,μ

are complex valued function on H \oplus H and where μ is of bounded variation in ζ on the real axis, normalized so that $\mu_{-\infty} = 0$. The quantities a, q, μ are uniquely determined by f_{λ} and if f_{λ} is a bilinear functional then so are a, q, μ .

Proof: Let F_{λ} $(u_1, u_2, v) = f_{\lambda}$ $(u_1 + u_2, v) - f_{\lambda}$ $(u_1, v) - f_{\lambda}$ (u_2, v) for any u_1, u_2, v . By assumption $F_{\lambda} = 0$ for $\text{Re } \lambda > 0$ and it suffices to show the linearity of a, q, μ in this, the first argument, u. Now $F_{\lambda} = \alpha(u_1, u_2, v)$ $\lambda + \beta(u_1, u_2, v) + \int \frac{i\zeta\lambda - 1}{i\zeta - \lambda} dN_{\zeta}$ (u_1, u_2, v) where $\alpha(u_1, u_2, v) = a(u_1, +u_2, v) - a(u_1, v) - a(u_2, v)$, etc. Since f_{λ} is defined for $\text{Re } \lambda > 0$ then $F_{\lambda} = 0$ also so that

 $F_{\lambda} - F_{\overline{\lambda}} = \alpha + \int \frac{1-\zeta^2}{\lambda\overline{\lambda} - i\zeta(\lambda-\overline{\lambda}) - \zeta^2} \quad d\Omega = o. \quad \text{If } \lambda = 1 \text{ we obtain } \alpha + \int d\Omega = o.$ Hence $F_1 = \beta = 0$ or q is bilinear. Now from $\alpha + \int d\Omega = 0$ we obtain $F_{\lambda} = (1-\lambda^2) \cdot \int \frac{d\Omega}{i\zeta-\lambda} = o$ or $\int \frac{d\Omega}{i\zeta-\lambda} = o$ for $Re \lambda > o$. Hence $L_{\lambda}(u,v) = \int \frac{d\mu}{i\zeta-\lambda} \zeta(u,v)$ is also bilinear. By the Stieltjes inversion formula (see, for example, [6], pg 357), $\mu_{\zeta}(u,u) - \mu_{\zeta o}(u,u) = \lim_{\zeta \to 0} \int_{0}^{\zeta} Re \ L_{\lambda}(u,u) \ dw \ \text{where } \lambda = \sigma + i\omega. \quad \text{But } \mu_{-\infty} = o \text{ so that } \sigma + o \zeta o$ $\mu_{\zeta}(u,u) = \lim_{\zeta \to \infty} \int_{-\infty}^{\zeta} Re \ L_{\lambda}(u,u) \ dw. \ \text{Now polarize } \mu \text{ to obtain } \sigma + \omega = 0$ $\lim_{\zeta \to \infty} \int_{-\infty}^{\zeta} Re \ L_{\lambda}(u,v) \ d\zeta \quad \text{since } L_{\lambda}, \text{ being bilinear, is uniquely determined by its } \sigma + \omega = 0$

quadratic form. This formula exhibits the fact that $\mu_{\zeta}(u, \nu)$ is also bilinear. Hence $\zeta(u_1, u_2, \nu) = 0$ and so $F_{\lambda} = \alpha(u_1, u_2, \nu) = 0$ which shows that a is bilinear.*

If f can be represented by different a, q, μ then by taking differences essentially the same argument as above shows that the difference in q's are zero and that the differences in a and μ 's satisfy $\alpha + \int d\eta = 0$ or $\int \frac{d\eta}{i\zeta - \lambda} = 0$. The Stieltjes formula applied to this last expression shows that the difference in μ values is also zero. This shows that f_{λ} uniquely determines a, q, μ . An alternate argument can be based on the fact that a is determined by $\lim_{\sigma \to \infty} f(\sigma)/\sigma$ where $\sigma = \text{Re } \lambda$ (see [7], pg. 2h). Since $f(\sigma) = 0$ for $\sigma > 0$ then so is a.

*It is worth remarking here on a similar result which is also quite useful. If we know $L_t(u,v) = \int_{-\infty}^{\infty} e^{it\zeta} d\eta_{\zeta}(u,v)$ is bilinear then so is η whenever η is of bounded variation in ζ . The proof can be found, for example, in [9], pp. 35-6 and is equivalent to showing that if $\int e^{it\zeta} d\eta_{\zeta} = 0$ then $\eta_{\zeta} = 0$.

Theorem: Let R_{λ} be a one-parameter family of bounded linear operators on the Hilbert Space H. Then a necessary and sufficient condition in order that R_{λ} be positive is that it admit the spectral representation

$$R_{\lambda} = A\lambda + Q + \int_{-\infty}^{\infty} \frac{i\zeta\lambda - 1}{i\zeta - \lambda} d\psi_{\zeta}.$$
 (2)

for all Re $\lambda > 0$, where A is a bounded self adjoint and positive operator on H and Q is skew self adjoint (i.e., Q = Q*) and where ψ_{ζ} is a one-parameter family of bounded self adjoint operators on H which satisfy $\psi_{\zeta} \geq \psi_{\zeta}'$ for $\zeta > \zeta'$, i.e., $(\psi_{\zeta} u, u) \geq (\psi_{\zeta}' u, u)$ for all $u, \psi_{\zeta} = 0$ and $(\psi_{\zeta} u, u)$ bounded in ζ . In addition R_{λ} is positive real if and only if (Qu, u) = 0 for $u \in H_{0}$ and $\psi_{-\zeta} = -\psi_{\zeta}$.

<u>Proof:</u> If (2) holds then $f(\lambda) = (R_{\lambda} \cdot u, u) = (Au, v) \lambda + (Qu, u) + \int \frac{i\zeta\lambda - 1}{i\zeta - \lambda} d(\psi_{\zeta}u, u)$ is clearly positive in Re $\lambda > 0$ since $(Au, u) \geq 0$, Re (Qu, u) = 0, and $(\psi_{\zeta}u, u)$ is non-decreasing, bounded in ζ and non-negative. If $f(\lambda)$ is positive real then (Qu, u) = 0 for $u \in H_0$ and $\int \frac{i\zeta\lambda - 1}{i\zeta - \lambda} d(\psi_{\zeta}u, u) = \int \frac{i\zeta\lambda - 1}{i\zeta - \lambda} d(\psi_{\zeta}u, u)$ so that $f(\overline{\lambda}) = \overline{f(\lambda)}$ for $u \in H_0$.

To establish the converse let R_{λ} be positive and polarize $(R_{\lambda}u,v)$ by writing $4(R_{\lambda}u+v, u+v) - (R_{\lambda}u-v, u-v) + i (R_{\lambda}u+iv, u+iv) - i (R_{\lambda}u-iv, u-iv)$. Each term on the right is a scalar positive function in $Re \lambda > 0$ and so (1) holds for each of these terms. If we combine the terms in a, q, Π for each expression we obtain another representation like (1) except that now q no longer will be real, nor a positive, nor Π monotone increasing. In fact one obtains $4(R_{\lambda}u,v) = a(u,v) + \frac{1}{2} \frac{i(\lambda-1)}{i(\lambda-1)} d\Pi_{\zeta}(u,v)$ (3) where a, q, Π are complex valued and Π is simply of bounded variation in ζ . Since $(R_{\lambda}u,v)$ is bilinear in u,v so are a, q, Π by lemma 1. Also, by lemma 1, the representation (1) determines a, q, Π uniquely so that if we let v = u (3) then, since $(R_{\lambda}u,u)$ is positive in λ , we see from (1) that $a(u,u) \geq 0$, a(u,u) is imaginary, and $a(u,u) \geq 0$. Thus the quadratic forms associated with a(u,v), is imaginary, and $a(u,u) \geq 0$. Thus the quadratic forms associated with a(u,v),

, $q(u,\nu)$, $\eta_{\zeta}(u,\nu)$ are non-negative and zero if and only if u = o. Hence, by Schwarz's inequality $\|(a(u,v))\| \|a(u,u)\| \|a(v,v)\|$ and $|\eta_{\zeta}(u,v)| \leq ||\eta_{\zeta}(u,u)|| \ ||\eta_{\zeta}(v,v)||$. Since R_{λ} is bounded for each $Re \ \lambda > 0$ then $|R_{\lambda}(u,u)| \leq constant (u,u)$ where the constant depends on λ . For λ = 1 we obtain from (3) that $a(u,u) + \int d\eta_{\zeta}(u,u) \leq constant(u,u)$. But $o \leq a$, $0 \leq \text{$\eta_{\zeta} \leq \eta_{\omega} \leq \int\limits_{-\infty} d\eta_{\zeta}$ (since $\eta_{-\omega} = 0$) and so $a(u,u) \leq constant (u,u), $\eta_{\zeta}(u,u) \leq t$ (a.b.) }$ constant (u,u) for all $u\varepsilon$ H. By virtue of (h) this shows that a(u,v) and $\eta_{r}(u,v)$ are bounded bilinear forms on H, for each ζ . By a theorem of Riesz (see, for example, Riesz and Nagy [8], pg. 202) there exist bounded operators A, ψ_{ζ} such that a(u,v) = (Au,v) and $\eta_{\zeta}(u,v) = (\psi_{\zeta}u,v)$. Since a, η are both non-negative then A, ψ_{ζ} are self adjoint positive operators for each ζ (Reisz-Nagy [8], pg. 229). Also, since η_{ζ} is bounded and non-decreasing so is the family ψ_{ζ} . From equation (3) we now see that q(u,v) is also bounded and bilinear (the sum of bounded functionals is bounded) and so there exists, as above, a bounded operator Q on H for which q(u,v) = (Qu,v). Since q(u,u) is imaginary we have (Qu,u) = (Q*u,u) = -(u,Qu) or Q is skew self adjoint. Finally, if R_{λ} is positive real then q(u,u) = 0 for all $u \in H_0$ since q = 0 in (1) for positive real functions. For the same reason $(\psi_{\underline{\ }}u,u)=-(\psi_{\underline{\ }}u,u)$ when ue Ho. Thus

$$R_{\lambda}(u,v) = (Au,v)\lambda + (Qu,v) + \int_{-\infty}^{\infty} \frac{i\zeta\lambda - 1}{i\zeta - \lambda} d(\psi_{\zeta}u,v)$$

where A, Q, ψ_{ζ} have the desired properties from which the theorem follows.

REFERENCES

- 1. Nevanlinna, R.: "Findentige analytische funktionen," Berlin (1936).
- 2. Herglotz, G.: "Uber potenzreinhen mit positiven reellens teil in einheitskreis," Leibsizer Berichte, vol. 63 (1911).
- 3. Cauer, W.: "The Poisson integral for functions with positive real part," Bull. A,S, vol. 38 (1932), 713-715.
- 4. Beltrami, E. J.: "Dissipative operators, positive real resolvents, and the theory of distributions," SIAM Journal, vol. 15 (1967), 1011-1017.
- 5. Youla, D. C.: "Representation theory of linear passive networks," M.R.I. Report (R-655-58 (1958).
- 6. Greenstein, D. S.: "On the analytic continuation of functions which map the upper half plane into itself," J. Math. Anal. & Applic., vol. 1 (1960), 355-362.
- 7. Shohat, J. A. and J. D. Tamarkin: "The problem of moments," Math. Surveys, A M.S. 1943.
- 8. Reisz, F. and B. S. Nagy: "Functional analysis," F. Ungar (New York) 1955.
- 9. Lukacs, E.: "Characteristic Functions," Hafner Publishing Co. (New York)
 1960.
- 10. Dolph, D. L.: "Non-self-adjoint problems in mathematical physics," Bull.
 A.M S., vol. 67 (1961), 1-69.

The following is a corrected version of Lemma 1 on page 2 of Report. No. 108 by E. J. Beltrami.

Lemma 1 Let $f_{\lambda}(u,v) = a(u,v) \lambda + q(u,v) + \int_{-\infty}^{\infty} \frac{i\zeta\lambda-1}{i\zeta-\lambda} d\mu_{\zeta}(u,v)$ for Re $\lambda > 0$ where a,q, μ are complex valued functions on H \oplus H and where μ is of bounded variation in ζ on the real axis, normalized so that $\mu_{-\infty} = 0$. Moreover, suppose that $a(u,u) \geq 0$, q(u,u) is imaginary, and $\mu_{\zeta}(u,u)$ is non-decreasing in ζ . Then the quantities a, q, μ are uniquely determined by f_{λ} and if f_{λ} is a bilinear functional then so are a, q, μ .

Proof: Let F_{λ} $(u_1, u_2, v) = f_{\lambda}$ $(u_1 + u_2, v) - f_{\lambda}$ $(u_1, v) - f_{\lambda}$ (u_2, v) for any u_1 , u_2 , $v \in H$. By assumption $F_{\lambda} = 0$ for $Re \lambda > 0$ and it suffices to show the linearity of a, q, μ in this, the first argument, u. Now $F_{\lambda} = \alpha(u_1, u_2, v) \lambda + \beta(u_1, u_2, v) + \int \frac{i\zeta\lambda - 1}{i\zeta - \lambda} d\eta_{\zeta}(u_1, u_2, v)$ where $\alpha(u_1, u_2, v) = a(u_1 + u_2, v) - a(u_1, v) - a(u_2, v)$ etc.

By the Stieltjes inversion formula (see, for example, [6], pg. 357), $Y_{\zeta}(u,u) - Y_{\zeta o}(u,u) = \lim_{\sigma \to 0} \frac{1}{\pi} \int_{\pi}^{\zeta} \operatorname{Re} f_{\lambda}(u,u) \, d\omega \text{, where } \lambda = \sigma + i\omega \text{ and } \zeta o$ $Y_{\zeta}(u,u) = \int_{\sigma}^{\zeta} (1+\omega^2) \, d\mu_{\omega}(u,u). \quad \operatorname{But} Y_{o} = o \text{ and so } Y_{\zeta}(u,u) = \lim_{\sigma \to 0} \frac{1}{\pi} \int_{\sigma}^{\zeta} \operatorname{Re} f_{\lambda}(u,u) \, d\omega.$ Now polarize $Y_{\zeta}(u,u) = \lim_{\sigma \to 0} \frac{1}{\pi} \int_{\sigma}^{\zeta} \operatorname{Re} f_{\lambda}(u,u) + i \left[\mu_{\zeta}(u+i\nu,u+i\nu) - \mu_{\zeta}(u-i\nu,u-i\nu) \right] = \lim_{\sigma \to 0} \frac{1}{\pi} \int_{\sigma}^{\zeta} \operatorname{Re} f_{\lambda}(u,\nu) \, d\omega \text{ since } f_{\lambda}, \text{ being bilinear, is uniquely determined by its quadratic form. This formula exhibits the fact that <math display="block"> Y_{\zeta}(u,\nu) \text{ is bilinear. Moreover, since } \mu_{-\infty} = o \text{ them } \mu_{\zeta}(u,u) = \int_{-\infty}^{\zeta} \frac{d\gamma_{\omega}(u,u)}{1+\omega^2} \, d\gamma_{\omega}(u,u) + i \int_{-\infty}^{\zeta} \frac{d\gamma_{$

 $(\lambda - \lambda)$ $\alpha = 0$ which shows that a is bilinear. But then $F_{\lambda} = \beta = 0$ and so q is also bilinear.*

If f_{λ} can be represented by a different a, q, μ then by taking differences essentially the same argument as above shows that f_{λ} uniquely determines a, q, μ . An alternate argument can be based on the fact that a is determined by $\lim_{\sigma \to \infty} f(\sigma)/\sigma$ where σ = Re λ (see [7], pg. 24). Since $f(\sigma)$ = o for σ > o then so is a.

*It is worth remarking here on a similar result which is also quite useful. If we know $L_t(u,v) = \int_{\infty} e^{it\zeta} d\eta_{\zeta}(u,v)$ is bilinear then so is η whenever η is of bounded variation in ζ . The proof can be found, for example, in [9], pp. 35-6 and is equivalent to showing that if $\int e^{it\zeta} d\eta_{\zeta} = 0$ then $\eta_{\zeta} = 0$.