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A function £(A) of a complex variable A is half plane positive or simply
positive whenever it is analytic and satisfies Re f(A) > o in the half plane
Re ) > 0. If, in addition, £(X) = t0) we say the functién is positive real.
By virtue of Schwarz's reflection principle the last condition is equivalent to
asserting that £(1) is real for real \ in the half plane. A theorem of Nevanlinna
[1] vhich i1s based on an earlier result of Hérigldtz [2] tellé us that a necessary

and sufficient condition for £(\) to be a positive function is that it can be re-
presented by the Stieltjes integral |

®

f(l)'al+iq+_[‘§:§c)‘_:%dp(g) i (1)

7

where a > 0 and q are real scalars and p-is a non-decreasing and bounded function
which we normalize by p(~e) = o. Moreover, as shown by Cauer [3], £(A) is positive
real if and only if g = o and w(-) = - u(C).
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We wish to extend (1) to a class of operator valued functions R, on a Hilbert
space which are, in a sense to be made precise below, posithe real. Such functions
occur in the study of passivé Hilbert systems and the notation F). refers to the fact
that the operators often arise as the resolvents of certain unbounded operators (c.f.

T4l [10]).

H will denote an ai-bitfary complex Hilbert 5pace and K, is to consist of all
elements in H which satisfy the symmetry condition (u,v) = (v,u), vhere parenthesis
denotes inner product in H. It is clear that Ho forms a‘Hilbert space over the real
nﬁﬁbers. We now define a one parameter family of operators R)\ on H to be positive

! main of R . In order to de-
1t £Q0) = (BX u,u) is positive inA for all u in the do N

' t on E* the matrix
fine positive real operators we take our clue from the fact tha

. - — - _ — all real u whene'mr
. Valued operator R(A) satisfies (R(E)u,u) = (R()u,u) for

.—1— . \
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R())
£(X)

R()\). Hence we say that a positive family ES\ is positive real whenever

L}

£(n) for all ue K, .

The next theorem was first established on E™ in a different way by Youla [5].

Be‘fore Proving it we need a lemma.

(-~
Lema 1 Let £ (w,y) = a(u,y) A + q(u,9) + [ icz—l d“'c(“,v) for Re X > o where asa
¢ - 3

are complex valued function on H @ H and where p 1s of bounded variation in { oh
the real axis, normalized so that By = o. The quantities a, g, w are uniqﬁely

. % :
determined by f). and if f)\ is a bilinear functional then so are a, q, p.

Proof: Let F (W, w, 3) = £ (g +w, v) - £, (v ,v) - f (u, V) for amy
%W, %, ve H, By assumption Fl = o0 for Re A > o and it suffices to show the
'linea.rity of a, q, u in this, the first argument, u. Now FX =a(w, w, v) A

By, w, v) +J‘ iCde,q (o, w, v) where o(w, w, v) = aly ,*u, v) -

ig- A
a(‘h: v) - a(y, v), etc. S:ane f)\ is defined for Re A > o then Ff = 0 also so
that -
2
F - F = @ + l-c _ _ . . _
di =o0. IfX =1 we obtain g + =

Hence F; =B = 0 or q is bilinear. Now from o + ~[' dl} = o we obtain F = (1-2%) *

J‘% "= 0 or j'fgu)\ = o for Re A > o. Hence L}\(u,\,) = j' icﬁg(u, v) is also

Pilineaz". By the Stielt;;es inversion formula (see, for exa.mple, [6], g 357),

U'C(u:u) - p. (u,u) = lim fCRe L (u,u) dw where A=c+iw., But W_, = 0 so that

=
Py
=1
-
o
~
1]

lim J{Re L (w,u) dw. Now polarize p to obtain
40 -~

L be(u, v) = u-c(u*“v, uty) - (u—v, u-v) +1 [p. (utiv, wtiv) - e (u-iv, w-dv)]

= C
clr_i;rcr; J’ Re L (u, v) df since I)‘, being bilinear, is uniquely determined by its
-0 .




quadratic form. This formula exhibits the fact that C(u, v) is also bilinear.

- Hence {(%, %, v) = o0 and s0 K, =a(w, w, v) = o which shows that a is bi-
14 near.* ' '

If i‘): can be represented by different a, q, u then by taking differences

g.ésentia]ly the same argument as above shows that the difference in q's are zero

and that the differences in a and w's satisfy o + j' dl = o or I fg)‘ = 0. The
Stieltjes formula applied to this last expression shows that the difference in

values 1s also zero. This shows that fl uniquely determines a, q, pe A4n alternate

argutent can be based on the fact that a is determined by 1im £(o)/o where o = Re
' oo
(see [7], pPg. 2L). Since f(c)_ = o for ¢ > o then so is a.

>

*I4 1g worth remarking here on a similar result which is also quite

-]
it bilinear then so is 7|
useful. If we know Lt(u,v) = Ie C dﬂc(u, v) is ne
-0

’ £
whenever 1 is of bounded variation in . The proof can befound, for

example, in [9], pp. 35-6 and is equivalent to showing that if

felte an, = o them7, = o-




'l'he() TS | p

1
the Hilbert Space H. Then a necessary and sufficient condition in order

that B be positive is that it admit the spectral representation
w ’

= i - )
R?\ A+ Q +_£ 18:11 dy .

(2)

- for all Re A > O, where A is a bounded self adjoint and positive operator on
H and Q is skew self adjoint (i.e., Q = Q*) and where V{fc is a one-parameter
family of bounded self adjoint operators on H which satisfy b > ¥4 for

(>¢’, i.e., H’Q u, u) > (v{:c'u,u) for all u, ¥ =0 and (éc u,u) bounded in

-0
¢ . In addition R, is positive real if and only if (Qu,u) = O for ue H_ and

7

*-C = —¢C .
Proof: If (2) holds then 'i‘(k) - (RX u,u) = (Aw,v) A + (Qu,u) + f‘}‘%’:‘%‘ d("gu’“)

is clearly positive in Re X > O since (Au,u) >0, Re (Qu,u) = 0, and (*Cu:“)

is non-decreasing, bounded in ¢ and non-negative. If f(1) is positive real then

101
ig-a

(Qu,u) = O for ue H_ and ‘I' d(wycu,u) = f ii’;-}; d(\hgu,u) so that £(%) = £(0)

for ue H,.

To establish the converse let R, be positive and polarize (Ru,v) by writ-
ing h(Rx u+v, utv) - (R, u-v, u-v) +1i (B utlv, uriv) - 1 (B u-iv, u-4v).
Each term on the right is a scalar positive function in Re A >0 and 80 (1)
holds for each of these terms. If we combine the temms in a, q, T for each
expression we obtain another rebresentation like (1) except that now q no long-

nor T monotone increasing. In fact one ob-

tains L(Ryu,v) = a(u,v) X +qu,v) + ‘f—:%%:—i‘ d'ﬂc(u,\’) (3)

er will be real, nor a positive,

where a, q, T are complex valued and T is simply of bounded variation in §.

Since (R)\u,v) is bilinear in u,v so are &, 4 7 by lemma 1. Also, by lemma 1,
; let v = u (3)

the represéentation (1) determines 2, Q, 7 uniquely so that if we

. > 0, q(u,u)
then, since (R, ,u) is positive in A, we see from (1) that a(w,u) 20, alv

u) > 0. Thus the quadratic forms &

Sgociated with 8(\1»"} [
is imaginary, and 'ﬂg(‘l;

L-

N




. qlu,v), 'nc(u,v) are non-negative and zero if
and only if u=o. Hence, by‘Schwa.rz's inequality |(a(u,v)|lau,u)| |la(v,v)]]
and |T]€(u,\)) < “'ﬂc(u,u)ll HT\Q(\),V)“. Since R, is bounded for each Re A >0
then [R}:(u,u)[ < constant (u,u) where the constant depends on A. For A =1
we obtain from (3) that a(u,u) + ‘f d’ng(u,u) < c’onstan"c (ﬁ,u) . But o < a,

o 5 ﬂg <7, _<__z d'ﬂg (since l; = 0) and so a(u,u) < czonstant (u,u), Tlg(u,u) <
éépstant (u,u) for all ue H. By virtue of (L) this‘shows that a(u,v) and
'ﬂg(u,v) are bounded bilinear forms on H, for each {. By a theorem of Riesz
(see, for example, Riész and Nagy (8], pg. 202) there exist bounded ’operatctnrs
A, i]g such that a(u,v) = (Au,v) and T]g(u,v) = (quu,v).' Since a, T are both
non-negative then A, ‘l’g are self adjoint positive operators for each (
(Reisz-Nagy [8], pg. 229). Also, ’since 'l']C is bounded and non-decreasing so is
.‘lrshe family q}g. From equation (3) we now see that q(u,v) is also bounded and
bilinear (the sum of bounded functionals is boundéd) and so there exists, as
above, a bounded operator Q on H for which q(u,v) = (Qu,v). Since q(u,u) is
» ‘i‘maginary we have (éu,u) = (Q®u,u) = -(u,Qu) or Q is skéw self adjoint. Fin-
ally, if R, is positive real then q(u,u) = 0 for al:l ue H, since g = 0 in (1)
for positive real functions. For the same reason (d,r_cu,u) = -(ircu,u) when

ue Hj. Thus

Rk(u;\’ = (A-u_:\)))\ + (Qu,v) + I % d(‘l(gu,\))

where A, Q, ‘l’c have the desired properties from which the theorem follows.
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The following is a corrected version of Lemma 1 on page 2 of Report. No. 108

by E. J. Beltrami.

[--2
: igy-1
Lemma 1 Let f (uyv) = a(u,v) A + q(u,v) *’I iz d;_;.C (u,v) for Re A > o where
-0 -

a,q,u are complex valned functlons on H ® H and where p is oi‘ bounded variation in’
€ on the real axis, normalized so that M_, = 0. Moreover, suppose that a(u,u)
> 0, q(uw,u) is -imagi'n’ary, and 'p.c (u,u)_ is non-decreasing in {. Then the quanti-

ties a, q, p are uniquely determined by f)& and if f)‘ is a bilinear functional

then so are a, Qs e

Proof: Let Fy (w, w, v) = £ (o + v, \’)-f (w,v) - £ (v, v) for any

%W, U, ve H. By assumption Fk = 0 for Re A > o a.nd it suffices tc show the

linearity of a, q, p in this, the first argument, u. Now F, = oy, up, v) A

8 (n, w, V) ¢ [ 202
ig-A

a(w , v) - a(y, v) ete.

aly + u, v) -

cITlC (u, w, v) where a(w , uw, v)

By the Stieltjes inversion formula (see, for example, [6], pg. 357),

. C
' YC (w,u) - Yeo (u,u) = liglﬂ'f Re f (u, u) dw , where A = o+iw and
{o

e f)\(u,u) dw.

ot—
=y

Yc(u,u) = .r (1+e®) du (u,u). But Yo = © and so ,YC(u,u) - g—ilg%‘

Now pola.rize y to obtain 4 Yg(u, v) = Y (u+v, uty) - p. (u-v, u-y) +1 [U' (u+dv,
S

utly) - e (u-iv, u-iv)] = Lim L J‘ Re i‘ (u, v) do since £, being bilinear, is
o0 T

uniquely determlned by its quadratic form. This formula exhibits the fact that
dvy (w,w)

' and
1R

the same argument shows that p.§<u, v) is also bilinear. Hence F, = oy, wm,v) A

g(u, v) is bilinear. Moreover, since B = ‘o then uc(ugu) = f

B(w, v, v). Since £, is defined for Re \ > o then Fy = o also and - F{ =




(A-\) @ = o which shows that a is bilinear. But then F, =f=oamisoq
1s also bilinear.™ ‘

If fh can be represented by a different a, g, p then by taking differences

.egsentially the same argument as above shows that i‘)\ uniquely determines a, q, u.

In alternate argument can be based on the fact that a is determined by lim (o) /o

o4
vhere 0 = Re & (see [7], pg. 24). Since £(o) = o for o > o then s0 is a.

¥4 i worth remarking here on a similar result which is also quite
[--
: is
useful. If we know Ly{(u,v) =_ieitC d‘qg(u, v) is bilinear then so is 1]
" d, for
whenever T is of bounded variation in {. .The proof can be found,

if
example, in [9], pp. 35-6 and is equivalent to showing that

Ieitc dT]C = o then 'ﬂc = O»




