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Introduction

One way to approach constrained minimization problems on E and, in
particular, nonlinear programs is to append increasingly large cost or
penalty terms to the objective function in such a way that the minima of
the é.ugmented but unconstrained functions converge to the constrained minimum
in the limit. In this paper we discuss the validity of this penalty concept,

. due to R. Courant [1], and then apply it to obtain constructive proofs of the

Kuhn-Tucker and Lagrange multiplier rules.

In section 2 we establish the penalty argumegt and show by several ex-
:anmies that this approach allows one to obtain the minima of constrained pro-
blems even when the multiplier rules are invalid. This is followed, in section
3«, by a proof of the appealing fact that rank is lower semi-continuous on the
space of m by n matrices. We use this result in section L to establish that if
the rank of the Jacobian matrix G of constraints is invariant in some ball about
the minimum then the Lagrange mﬁltiplier rule is applicable. We then show that
this statement _includes the classical cases where G is of maximal rank or the
constraints are linear. The proof depends on the penalty argument and avoids the
use of the implicit function theorem. In section 5 the Kuhn-Tucker rule i;
established by passihg to the limit with th;e necessary cénditions for unconstrained
problems. The limiting argument is shown to hold under a suitable regularity
assufrxption without appealing torthe usual procedure involving Farkas lemma. One
virtue .of this constructive proof is that the multipliers are explicitly obtained
as limits of certain quantities in a natural way. If we let G denote the Jacobian
matrix of active constraints at the minimum then the regularity assumption is
satisfied if G is of maxlﬁal rank, or if the constraints are linear, or if the feas-

ible set is non-empty and the constraints convex. The proof of this is given in
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" section 6.

This paper extends the argument; used in an earlier note [2] where we
- simply gave some numerical examples of how the multiplier rule can ‘Qe veri-
fied computationally or vindica.fced in practice by using the penalty approach.
_ This constructive approach suggests a computationally feasible algorithm for
solving nonlinear progi'ams and, in fact, an iterative procedure for doing this

was devised by Kelley, et. al. [3]. Their algorithm has been implemented

pumerically to obtain explicit - solutions to non-convex programs.

I wish to thank R, Duffin and W. Anderson who, during their stay in
Stony Brook, added to the ‘conten’c. of this pé.per by constructive remarks and

examples. In particular the proof of lemma 1 is due to W. Anderson.

2. A Penalty ’Argument

The problem considered in this paper is to minimize f subjectto m con-
straints gj =0,0<Jj<s,and gj <0,s<jsm where m is unrestricted

and s < n. The functions £, g, are real valued and defined on B,

A1l constraints will be written as equality constraints. In order to do
this we define u, by u, (x) =1 whenefer g (x)>0, for j>s, and by U (x) = 1
otherwise;. here xeE*.We then observe that the original m . constraints are satis-
fied if and only if the m equality constraints g%uj = gzu‘?] = 0 hold. Moreover,
1f the m vector g with components g 3 belongs ‘to ¢l then so does (gu)® where gu

.18 the m vector with components gjuj.

. lements k .
Now let-K be an m by m diagonal matrix ve"ith positive diagonal e 3
nd asn*® .
Then K, + = means that all entries kn',j':in K increase without bou

- The quadratic férm r k. .(g.u )2 will be denoted by (gu, X, gu) and w2 define an

— B 4
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augmented objective function £, by £ + L (gu, Kn gu) for each n.

The sense of the theorem below is that the minima of the unconstrained
f, tend to the minimum of the constrained f as n + « since (gu, Kh gu) necessar-
ily tends to zero as the cost of violating the constraints increases without

bound. For this reason K is called a matrix of penalty constants.

Our main result in this section is based on a theé)rem given in the NIU
notes [Li] and in a paper by Butler-Martin [5]. An extension valid for convex
functionals on a Hilbert space is given in [6]. Another variant of the penalty

:argument on E? is to be found in several papers by Fiacco-McCormick (e.q., [ 7] 2

Theorem 1 Let f, gz; be lower semi-continuous (l.s.c.) on a closed set Qo in B

and suppose that either Qo is bounded or that f(x) + + = as [|x| + =. If Qo has

a non-empty intersection with the feasible sef Q defined by {xi(gu)a = 0} then,

for every sequence Kn -+ ®, there exists a corresponding sequence x, which mini-

mizes f on Qo and such that X, - x° for some subsequence. The point x° is a
v .

minimm of £ on Qo N 0 and £(x;) » £(x°).

The penalty argur;lent has the defect that it may yield fictitious solutions
when the problem is ill-posed. To iilustrate consider the problem of minim;lzing
distance from the origin in the plane subject ﬁo‘the ;l_inear constraints x +y -~ 1
=0and x +y -2 = 0. The problem clearly' does not possess a solution but,
acting in ignorance, let as form the a.ugmehted function f = £+ +nlx+y-1P
*+(x +y-2)P]. Here the penalty matrix consists of diagonal entries n. The
unconstrained minimum of f, is found by seﬁting vE to zero from which we obtain

I =¥ = 3n ;;‘.2(1 + 2n) + 3/L as n » », Thus £, = = but £(x;, y,) £(3/L, 3/L).



We mentioned above that Fiac;co and McCormick .have devised a penalty
approach to optimization. Their method generates a sequence of points which
lie within the feasible set for inequality constraints. By contrast with
their ’;iﬁterior" method the Courant method is an "outside" technique for it
may be shown that either the approximations Xn terminate after a finite

- number of steps or at least one inéquality constraint is violated at each

iterate.

In the following sections we give examples of how the penalty argument
obtains a solution to properly formulated problems even if the multiplier rules

 fail.

3. A Lemz;la Concerning Raﬁk

We begin with the following result whose proof is due to W. Anderson

(1967, unpubli shed).

Lemma 1 All n by m matrices of rank < r form a closed set in the norm topology.

Proof Let\ A be an n x m matrix of rank > r. The generalized inverse A" exists
and if B lies in the ball || B - A || <1 /] A" || then from B = A + (B - A) we

obtain BAY = m* + (B - a)ats A @ + (B Q_A) A* (for definition and properties
of generalized inverse see, for example, [lO]); Thus BA® = (8 g)*’ (3 2)

and || 6 || <||(B - 4) A7 || < 1 so that I +8& is invertible. Hence

23 ) (5 o) (3 T (0757

and since the.right side has rank > r, B must also. It follows that matrices

of rank Z r form an open set since a similar open ball can be formed for each

L. .



such A, Matrices of rank < r are then a closed set.

Another proof of this lemma, which T bélieve is due to R. Duffin is
that if A, - A in norm where rank A, < r then all minors of A of order > r
have zero determinant. Eaéh such minor converges to something whose determinant

must then also be zero. Hence rank A < r and we have a closed set.

If we are giﬁen a function f on a subs'e’o of EM then f is lower semi-con-
tinuous if and only if {x | £(x) < o} is closed for all a (see, for exampls,
[8], pg. LO). Hence Lemma 1 is equivalent to asserting that rank is l.s.c.

“on the class of n by m matrices. We will use this result in the following form.
Lemma 2 If A, + A then rank A< rank A for all large n.

I recently becams aware fhat P. R.Halmos has also independently established
the lower semi-continuity of rark in order to prove that reducible operators on
E? form a closed set. His proof will agppear in an appendix to a férthcoming

Paper on irreducible operators.

L. Lagrange Multipli ers

In this sectidn we restrict ourselves to equality constraints (the case
s=m<nandu=1l). Suppose that x° is a local minimum of f on EP subject' to
the m c‘onstraints g = 0 in an open regibn where f, g.are ¢ functions. There is
a closed ball Qo about x° contained within this region such that x° ié a global

‘minimum on Qo. Since the constraints are assumed to be satisfied it follows. that

Q =Qo N is non-empty where, as before,(z; is the feasible set {x | & = 0}.



One may safely regard X as the unique global minimum on Q for, as
we show in the next section, there is no loss in geriera.lity in our assuming

this.

bLet G denote the n bﬁr m Jacobian matrix associated with the vector valued
mapping g, and denote by Gy the n by (m+l) matrix which augments G by adding the
column vector vf. Then Gp consists of m + 1 colﬁmns VL, Ve seees Vg, « By suit-
able rearrangement of columns we can always vassume that if G is of rank r then
the first r columms of G are linearly indepehdent. We now prove a slightv exten-

sion of the usual Lagrange multiplier argument.

L]

&

Theorem 2 Let f, 85 be C* functions in an open set containing a local con-
strained minimum x° of f. If there is an open ball about x° in which rank G is

. for which

invariant then there exists multipliers A j

v£(x°) =j§r )\j -ng (Xo)’ (1)

" where r is the rank of G.

Proof Let £ denote the augmented but unconstrained objective functions des-

cribed in section 2. By theorem 1 there exists a sequence x, which tends to x°
(since we can assume that x° is the unique global minimum) and such that £, is
minimized on Qo by X, . For large enough mn . the sequénce of minimizing points
18 interior to Qo and so

Vi, =VE+I k_ .g.
n <m 1,38

at x;. Since f, g are C', G and Gp at xn'tend to G, Gy at x°. By hypothesis
rank G is r for large n and we can rewrite (2) as

vE(x,) = jé_r uh’ngj (xq) - (3)
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for suitéble scalars p‘n,j. Hence rank Gf is also r for such n from which it
follows, using Lemma 2, that r = rank G(x°) < rank Gp(x°) < rank Ge(x,) = r, or vf is

dependent on Vg , «+., V8. at x°, This proves the theorem.

The multiplier rule includes the usual well known cases, as we prove in

- the next result, which is a corollary of the above theorem.

Theorem 3 If G is of maximal rank m at x° or if the constraints are linear then
the rank of G is invariant in some ball about x° and the result of theorem 2

continues to hold.

“Proof If G is of maximal rank the theorem follows from the fact that matrices
of rank < m-1 are closed,by Lemma 1, so that those of rank m are open. If the
constraints are linear then G is constant and so invariance of rank is immedizte

" in this case. -

Note that if rank G is maximal then the multipliers )‘j are uniquely de-
termined since Vg1 s eees ng forms a basis in Em, but if rank G < m then the

- multipliers are not uniquely given.

The next example illustrates how the penalty argument can find a minimum
even when the multiplier rule breaks down. - Consider the problem of minimizing
distance from the origin in F° subject to the comstraint g(x,y) = ¥ - (x-1)® = 0.
An inspection of the graph of g shows that. the global minimun is attained af (1,0).
However vg =(—’3\(x—1)2) is zero at (1,0) and non-zero in a neighborhood of this point;
.Hence rank G d;Zs not satisfy the conditions .of theorem 2 and the multiplier rule is

not expected to hold. In fact any attempt to find the constrained minimum using

the multiplier rule quickly leads to-an unresolvable difficulty, as the reader



may verify. However we proceed by means of the penalty argument and form the
aﬁgmented functions £ (x,y) = £ + ¥ + n(y° - (x-1)° )é where the penalty
matrix is simply the scalar n in this case. Set vf; to zero and solve to obtain
points (x, y,) with yy = O and with x, tending to 1 as 0 » = . The constrained
minimum is thus obtained in the limit as constraint violations are increasingly
Penalized. In the neﬂ section another example of the same kind is discussed for

problems with inequality constraints.

The Kuhn-Tucker Rule

: - The proof given in the previous section resuited in a multiplier rule be-
cause of a dependence argument (rank G = rank G, at x°), Now, however, we wish
to use a more constructive argument to derive a general result which will include
theorem 2 as a special case. The reason for a different proof is that in case of
inequality con‘straints we are not content with merely s.howing that muitipliers

exist but wish to establish them as limiting values of certain non-negative quanti-

ties.

We need some additional notation., Let J denote the set of indices j corres-
ponding to gctive or binding inequality constraints. We let Qj be the open seb
{x l €; (x) < 0, j e J}. The set Qj may be empty but when it is non-empty it will

be possible to conclude a useful result (see theorem 5).

For notational simplicity we restrict ourselves in the next theorem to the

case of inequality constraints (s=0) and indicate later how to treat the cases s > O.

We define G, Gf in a slightly different way then in section 3. The matrix
G is the n by £ Jacobian of constraints for which j ¢ J and Gf is G aﬁgmented by

~ the column vector vf. The next theorem was first given by Kuhn-Tucker [9], using




a different regularity assumption.

Theorem h Let F, gj be C‘funcfions on an open set in ER containing a local
constragined minimuﬁ x° of f. If the constraints satisfy the regularity assump-
tion (vgj, h) < O for some h in E", for all j ¢ J, then there exists multipliers
'Xj >0 forv which

VEGE®) = - % 2. vel(x°) . )
jed J J

If rank G is maximal at x° the muitipliers are uniquely determined.

.Proof Let Qo be a closed ball about the constrained minimum x° contained within
'the .region in which £, gj are C* and for which x° is a global minimum on Qo. If
Q is the feasible set {x | u =0} thenQ = Qo N Ql is non-empty. Replace f by
the objective function f£(x) + || x - x° |2 = £9(x) so that f° has a unique global
minimum on Qo; If fn are the augmented but unconstrained‘functions corresponding
to i‘° then, by theorem 1, there exists a sequence x, which minimize f, on Qo and
such that x,; tend to x°, For large n the x, are interior to Qo and so Vi‘n(Xn) =0
. or

Vi‘o(xn) = -j_<2im xn,j ve; (xn) (5)

where Ap 5 = kn, 3 gj(&) uj(xn) >0 . When n is large enouéh Ap,j ~0for jgJd
since x° belongs to the open set {x l gj (x) <0, g J} and x, ° x° Hence (5)
can be written as a sum over j ¢ J for n > N. By the regularity a.ssﬁmption and
“because the ng are continuous it follows that (vgj (}&1), h) g_'— § < 0 for some
§>0 when n is large, since x - x° . Moreover (vf, h) is bounded by some
constant M on the closed ball Qo since Vf° is also contimuous. From (5) we ob-

tain M > (vf, h) > GJEJ n,j 28}, 5 « Hence the i, ; are bounded .and so ‘there

9.



exists a subsequence, also denoted by xn,j" . such that xn j - )‘j >0 as
, Z

n- o , Since fS’g are ', a passage to the limit as x, x° shows that

Vfo(xo) =yf(x°) = - % )‘j vgj (xo), If rank G is maximal at x° the ng form
2 Jed
a basis in E- and so the multipliers are unique.

In order to obtain a version of theorem i when s > 0 it is merely necessary
to insist that the regularity asswmption hold not only for j e J (active inequality
constraints) but for equality constraints as well. However in the latter case it

is no longer true in general that the multiplier approximations )‘n, j be non-

:negative and so the boundedness of )‘n 3 must be established in a slightly different
2

manner. What we do, in fact, is to write all s equality constraints as inequalit-

N A
ies by introducing 2s constraints gj < O defined by Ej =85, j<s,andg., =
. - - J*s

> 0 we can now proceed as in theorem L. Details are

A
-gj ’j$So.Slncegj uj

left to the reader.

In the general situation in which s > O the matrix G becomes an n by
24 + s < m Jacobian of constraints for which j<sand je J (note that when

je Jthen j> s).

In the next section we investigate to what extent the regularity assumption

can be expected to hold. For the moment we want to illustrate the extent of the

’ ; e
multiplier rule vis a vis the penalty argument. Consider the problem of minimiz-
ing f(x,y) = x , subject to the constraints g (x,y) = (y-2) - (3-x)* < 0 and
& (x,5) = - (y-2) - (3-x)® < 0. It is.not hard to determine that the minimum

hy . o .
exists at (3,2) and that if h =|;! | is an arbitrary vector in B then
2

at .
(vg, h) = - b and (vg,, h) =1 A(352) which implies that B =0 . Thus the

10..



regularity assumption is violated and, in fact, thé multiplier rule is not

valid since Vf = ( é) and so (vf,h) = h1 < 0 for suitable h. But then, should (L)
hold we arrive at a contradiction since 0 > (vr,h) = -Zy (ng, h) > 0 at xo‘
when A 3 > 0 . The penalty argument yields a solution, however, as in the ex-
' ample of section 3. In fact let fﬁ be the augmented objective function x +
‘n{[(Y-2)1}~(3—x:3] w (x) + [(y-2) + (3-x)%] v (x)} where w , ware zeroc when the

constraints g, g are satisfied. Since vfn. = 0 we obtain (xn, yn) given by

(3--2L, 2) which tends to (3,2), as we had hoped it would.
5\/""‘*"‘ ‘
on

« The Regularity Assumption

- It is a worthwhile task to isolate the several important cases in which
the regularity hypothesis or constraint qualification (ng, h) < 0 is satisfied.

The next two t.,heorems‘ do this for us.

Theorem 5 If the set Qj is non-emtpy and the constraints E; convex for j e Jd

then there e:::isté some h in E* for which (ng, h) < 0 at x° . Hence the reg-
| wlarity assumption is satisfied for j ¢ J and so theorem L holds for s - 0. On
the other hand, if there exists some open ball about x° in which rank G is in-
variant then the regularity assumption holds for all those j < s and j e J for
which {ng} form a maximal linearly indepe;ldent set at x°, In the latter case

the multiplier rule of theorem , remains true for all s > O.

Proof With Qj nonéerrxpty and g4 convex let h = x - xX° for any x ¢ Qe Then
(ng (x°), h) < g; (x) - g; (x°) < 0 for j e J. In the case where rank G is
"invariant in some ball we are assured. that rank G(xn) = p for some fixed

r <4 + s and for all n large enough. Let G.(x°) designate an r by n submatrix

11.




of G(x°) having rank r and consisting of r linearly independent colums ve, x°).
Then we know that for all large n, rank Gp = rank G = r continues to hold since,
by lemma 1, matrices of maximal rank form an open set. But equation (5) then
tells us that rank Gf(xn) is also r for all such large n and hence the sum in
- (5) is extended over the ng belonéing to GI,. Without loss of generality we

may denote the columms of Gy by Vg , «e., Vg, and since they form a basis in E¥

at x° there exists a dual basis ij (x°) for which (g5 Vg ) = 8 5. Now let

h = "J.EI_VEJ- 5 then (ng (x°), h) = - 1 < 0 so that the regularity assumption holds
, for those j ¢ J and j < s for which Vg; belongs to G.. Since the sum in (5) is

t
extended over precisely this subset of j values for all large n the proof of

theorem lj can be completed as before.

As in section 3 we can state the following special case of theorem 5,

proof of which is identical to that of theorem 3.

Theorem 6 If rank G(x°)is maximal or if the c-onstrain'ts are linear then the rank
of G is invariant in some ball about x° and the result of theorem l continues to
hold.

Because of theorem 5 the Lagrange multiplier of section 3 rule 1s obtained
from the Kuhn-Tucker theorem by let£ing s = m. We note, incidently, that .i‘or linear
constraints the proof of the multiplier.' rule follows more directly from the fact
that the linear manifold generated by t.he gradienﬁs of active constraints is
closed and does not vary wj.t.h n. Hence since vf(xﬁ) belongs to this manifold so

.does the limit vf(x°). This suffices to prove theorem 2. For inequality con-
straints we can use a similar argument to érove the Kuhn-Tucker rule with )\ 3 >
since the cone generated by the ng is also closed. '

12.



In summary, a constructive proof of the multiplier rule has been
given provided that the constraint qualification (vg, h) < O holds at
- x°, Moreover the constraint.qualification is satisfied whenever rank G
is invariant in some ball about x°, This last fact will hopefully sharpen

the applicability of the Kuhn-Tucker theorem.

13..
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