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I Introduction 

One way t o  approach constrained minimization problems on E" and, i n  

I part icular ,  nonlinear programs is  t o  append increasingly large cost or 

penalty terms t o  the objective function i n  such a way that  the minim of 

the augmented but  unconstrained functions converge t o  the constrained minimum 

i n  the  limit. I n  th i s  paper we discuss the va l id i ty  of t h i s  penalty concept, 

. due t o  R, Courant [I], and then apply it to  obtain constructive proofs 0 +  the 

Ktlhn-Tucker and Iagrange mul t ip l ie r  ru les .  

I n  section 2 we es tab l i sh  the penalty argument and show by several ex- 
i 

ampies t h a t  t h i s  approach allows one t o  obtain the  minima of constrained pro- 

blems even when the  mult ipl ier  ru les  a re  invalid, This i s  followed, i n  section 

3, by a proof of the appeaung fac t  that rank is lower semi-continuous on the 

space of m by n matrices, We use t h i s  r e s u l t  i n  section 4 t o  establish that  if 
.'l 

the rank of the Jacobian matrix G of constraints is invariant i n  some ball about 

the minimum then the Lagrange mult ipl ier  ru le  is applicable. We then show tha t  

th is  statement includes the  c l a s s i c a l  cases where G i s  of maximal rank or the 

constraints a re  Unezr.. The proof depends on the penalty argumnt and avoids the 

use of the  implicit  function theorem, In section 5 the Kuhn-Tucker ru le  is  

established by passing t o  the limit with the necessary conditions for unconstrained 

problems. The limiting argument i s  shown t o  hold under a suitable regularity 

assumption without appealing t o  the usual. procedure involdng Farkas lemma. One 

vir tue of t h i s  constructive proof i s  t h a t  the multipUers are  explicit ly obtained 

a s  limits of cer tain quan t i t i e s  i n  a na tura l  way. If we l e t  G denote the Jacobian 

matrix of active constraints  at  the minimum t h e l i t h e  regularity assumption i s  

sa t i s f i ed  i f  G is  of maximal rank, o r  if the constraints are l inear,  or if the feas- 

ib le  s e t  i s  non-empty and t h e  constraints  convex, The proof of t h i s  i s  given i n  



This paper the  Wgu~oents Used i n  an e w e r  note [2] where we 

emir gave some numerical e=vles  of  how the lnr l t ipuer  m& can be yeri- 

fied c q ~ t a t i o a ~  o r  vindicated i n  practice by using the  penalty approach. 

-8 c o n ~ t r u c t i v e  approach suggests a computationally feasible dgo r i  thm for 

solving norillnear programs and, i n  fact,  an i t e r a t i v e  procedure fo r  doing this 

- -s devised by Kelley, e t  . al. [3]. Their algorithm has been implemented 

nnmerically t o  obta in  expU c i t  solutions t o  non-convex programs. 

% 
I wish t o  thank R. Duffin and W. Anderson who, during their  stay i n  

s 
Stony Brook, added t o  t he  content of this paper by constructive remarks and 

examples. In pa r t i cu l a r  the proof OX lemm 1: is due t o  W. Anderson. 

2. A Penalty Argumeht 

Tne problem considered i n  t h i s  paper i s  t o  ninimize f subject tP m con- 

straints g = 0, 0 <_ j 5 s, and g <_ 0, s < j c_ m, where m is  unrestricted 
3 j 

and s < a. The functions f, g a r e  r e d  valued and defined on 9. 
3 

A l l  cons t ra in t s  ~3.n be m i t t e n  as equality constraints. I n  order t o  do 

this we define u.  J by u ($ = 1 whenever g (~)>o,for j > s ,  and by u j ( d  ' 1 
j 3 

here  % e . ~ e  then observe t ha t  the original  m constraints are sat ia-  

f l ed  if and only if the  m equali ty constraints  $u = 867 = 0 hold. Horsovm, j j  3 3  

5.f the  m vec to r  g with components g 3 belongs t o  C' then so does (gu)' &ere gu 

-5s t h e  m vec to r  with components g u j 3' 

Now l e t .  K be  an m by m diagonal matrix with posit ive d i a g o d  ab!ments k . 3 

Then Q + means t h a t  a l l  en t r i e s  k . in Kn increase without bound as n + n,$ 
. ) w i l l  be denoted by (gu, & gu) and wa define an - The quadratic f i r m  2 kn, (gJ 

J9 # 



augmented objective function fn by f + 'Z (a, Kn gu) for  each 

The sense of the  theorem below is t h a t  the  minima of the  unconstrained 

f, tend t o  the minimum of the constrained f as  n + or since (guy $ gu) necessar- 

i l y  tends t o  zero a s  the  cost of violat ing the constraints  increases without 

bound. For t h i s  reason K i s  cal led a matrix of penalty constants. , 

O u r  main r e s u l t  i n  t h i s  sect ion is based on a theorem given i n  the NYU 

notes [4] and i n  a paper by Butler-Martin [S] . An extension valid for convex 
I 

functionals on a Hi lbe r t  space is given i n  [6]. Another variant of the penalty 
5 , argument on E" i s  t o  be found i n  several papers by Fiacco-McCormi ck (eeq., [7] .) 

a Theorem 1 Let f, 8. be lower semi-continuous (1.s.c.) on a closed se t  Ro 5n..b 
J 

and suppose t h a t  e i ther  no is bounded or tha t  f ( x )  + + a s  1141 3 If ho has 

a non-empty i ~ i t e r s e c t i o n  with the feas ib le  s e t  4 defined by [4(gt1)~ = 0) then, 

for  every sequence Kn + a, there  ex i s t s  a corresponding sequence ly, which mini- 

mizes fn on no and such t h a t  % + x0 fo r  some subsequence. The point x0 i s  a 
v 

minimum of f on Ro fl and f ( d  + f(xO).  

The penalty argument has the  defect that it may y ie ld  f ic t i t ious  solutions 

when the problem i s  ill-posed, To i l l u s t r a t e  consider the  problem of minimizing 

distqnce from the o r ig in  i n  the plane subject  t o  the l inea r  constraints x + y - 1 

= 0 and x + y - 2 = 0. The problem c lear ly  does not possess a solution'but, 

act ing i n  ignorance, l e t  a s  form t h e  augmented flmction fn = 3 + 92 + n [(x + Y - 1)' 

.+ (X + y - 2)=]. Here the penalty matrix cons is t s  of diagonal entries n. The 

mconstrained minimum of f, is  found by s e t t i n g  V% t o  zero from which we obtein 
L:. 

% = yn = 3n / 2 ( 1  + 2i1) + 3/4 as n.4 Thus fn but  i(%, %) + f(3/4, 3/4). 



We mentioned above tha t  Fizcco and McCormick krave devised a penalty 

approach t o  optimization, Their method generates a sequence of points which 

l i e  within the feasible  s e t  fo r  inequality constraints. By contrast  with 

t h e i r  ' 'interlorll method the  Courant method i s  an noutsidetf technique for  it 

may be shown t h a t  e i the r  the approfirnations xn terminate a f t e r  a f in i t e  

number of  s teps  or a t  l e a s t  one inequality constraint is violated a t  each 

In  the following sections we give examples of how the penalty argument 

obtains a solut ion t o  properly formulated problems even i f  the multiplier rules 

6 fail. 
t 

3. A Lemma Concerning Rank 

We begin ~5th the  following r e s u l t  whose proof i s  due t o  W, Anderson 

(1967, unpublished) , 

~ e &  1 A l l  n by m matrices of rank < - r form a closed s e t  i n  the norm topology. 

Proof Let A be en n x m matrix of rank 2 r. The generalized inverse A+ exists 

and if  B l i e s  i n  the bi l l .  11 B - A I[ < 1 / [I A+ [I  then Porn B = A + (B - A) we 

obtain BA+ = &+ + (B - A)A+= P 
R (A) 

+ (B - A) A+ ( for  definit ion and properties 

of generalized inverse see, f o r  example, [lo]). Thus BA = 

and 11 6 11 5 11 (8 - A) A+ 11 C 1 so t h a t  I + 6 i s  invertible.  Hence 

and since the. r igh t  s ide  has rank > r, B must a lso.  It follows that  matrices - 
of rank 2 r form an open s e t  s ince  a similar open b a l l  can be formed for  each . 



such A. Matrices of rank <_ r zre then a closed se t .  

Another proof of t h i s  lemma, which I believe i s  due t o  R. Duffin i s  

t h a t  if $, + A i n  norm where rank A, < - r then all minors of A, of order  > r 

have zero determinant, Each such minor converges t o  something whose determinant 

must then also be zero', Hence rank A 5 r and we have a closed se t ,  

If we are given a function f on a subset of then f is lower semi-con- 

tinnous if and only i f  [x I f(x) < - a ]  i s  closed f o r  all cu (see, f o r  exampla, 

i 
f 81, pg. 40). Hence Lemma 1 is  equivalent t o  asser t ing tha t  rank is l .s ,c ,  

t on the c lass  of n by rn matrices. We will use t h i s  r e su l t  i n  the following form. 

L e m  2 If 11, + A then rank A < _  rank for a l l  la rge  n. 

I recently becane a w e  t h a t  P, R.Halmos has also independently establ ished 
7 

the lower semi-continuity of ra rk  i n  order to  prove tha t  reducible operators  on 

E~ form a closed se t .  H i s  proof will appear i n  an appendix to  a forthcoming 

paper on i r reducib le  operators. 

In this sec t ion  we r e s t r i c t  ourselves t o  equality constraints ( t h e  case 

s = in< n and u r 1). Suppose that x0 i s  a l o c a l  minimum of f on E~ subjec t  t o  

the m constraints  g = 0 i n  an open region  ere f, g a re  functions, There is 

a closed b a l l  00 about x0 contained within t h i s  region such tha t  x0 i s  a global  

'm3.nirnum on no, Since the constraints  are  assumed t o  be s a t i s f i e d  i t  follows t h a t  

Cl = m f l  4 i s  non-empty where, as before,% is the  feasible  s e t  {x I 8 = 03. 



One mag safely regard x0 as the  unique global minimum on fl for, as 

we show i n  the  next section, there i s  no l o s s  i n  generality i n  our assuming 

this, 

Let G denote the n by m Jacobian matrix associated with the vector valued 

mapping g, and denote by Gf the n by (m+l) matrix which augments G by adding the 

' column vector vf. Then Gf consists of m + 1 colum?2s Vf, V& , . . , Vg, . $. suit- 

able rearrangement o f  columns we can always assume t h a t  if G i s  o f  rank r then 

the first r columns of G are  l inear ly  independent. We now prove a slight exten- 

s ion  of the usual Lagrange multiplier argument* 
b 

Theorem 2 Let f ,  g be @ functions i n  an open s e t  containing a local con- 
j 

! s t ra ined  minimum x0 of f ,  If there i s  an open b a l l  about x0 i n  vhich rank G i s  

invariant  then there e-xists mult ipl iers  h f o r  which 
j 

&ere r is the rank of G, 

Proof Let fn denote the  augmented bu t  unconstrained objective functions des- - 
cribed i n  section 2. By theorem 1 there exists a sequence x which tends t o  x0 n 
(since we can assume tha t  xO is  the  unique global  minimum) and such that fn i s  

minimized on no by x, . For l a rge  enough n .  the  sequence of minimizing points 

18 i n t e r io r  t o  Ro and so 

a t  5. Since f, g a r e  C' , G and Of a t  % tend t o  G, Gf at xO. By hypothesis ' 

rank G is r fo r  l a rge  n and we can rewri te  (2) as 



for  su i tab le  sca la r s  p 
n,j. 

Hence rank Gf i s  a lso  r f o r  such n from which it 

follows, using Lemma 2, tha t  r -: rank G(xO) - < rank G~ (xO) 5 rank Gf (xn) = r, or ~f i s  

dependent on V& , , Vg, at xO. This proves the theorem. 

The mult ipl ier  ru l e  includes the  usual wel l  known cases, a s  we prove i n  

the  next r e su l t ,  which i s  a corollary of the above theorem. 

Theorem 3 If  G i s  of  max ima l  rank m a t  x0 or if t h e  constraints a re ' l inear  then 

the  rank of G is invariant  i n  some b a l l  about x0 and the r e su l t  of theorem 2 

continues t o  hold. 

5 

' - proof If G i s  of maxim1 rank the theorem follows e o n  the f a c t  t h a t  m t r i c e s  

of rank < - m-1 a re  closed,by L e w  I,. so t h a t  those of rank m areaopen. I f  the 

constraints a re  l i n e a r  then G i s  constant'and so  invariance of rank i s  immediate 
- 

i n  t h i s  case.. 

. Note t h a t  if rank G is maximal then the  mult ipl iers  are  uniqueQ de- 
j 

terrnined since v q  , . . . , vgm forms a basis i n  $9 but if rank G < m then the 

- mult ipl iers  are not  uniquely given. 

The next example i l l u s t r a t e s  how the penal ty argument can find a minimum 
I 

even when t h e  n d t i p l i e r  r u l e  breaks down. ' Consider the problem of minimizing 

distance from the  origin i n  E? subject  t o  the  constraint  g(x,y) = $ - (x-1)' = 0. 

An inspect i  on of  the graph of  g shows tha t  the  global  minimum is  attained a t  (1,0). 

However Vg = - 3 ( ~ - l )  i s  zero at (1,0) and non-zero i n  a neighborhood of t h i s  point. ( 237 2l 
Hence rank G does not sa t i s fy  the conditions of theorem 2 and the multiplier rule  is 

not expected t o  hold. I n  f a c t  any attempt t o  f i n d  the constrained minimum using 

t h e  multiplier r u l e  qulckly leads t o  .an unresolvable diff icul ty ,  as the reader 



way verify. However we proceed by means ' of the penalty argument and fo rm the 

augmented functions f,(x,y) = x? + y2 + n(f - (x-1)3)2 where the penalty 

matrix i s  simply the scalar  n i n  t h i s  case. Set Vf, t o  zero and solve to  obtain 

points  (%, yn) d t h  th = 0 and with x, tending t o  1 a s  n -r = . Zhe constrained 

minimum is thus obtained i n  the  limit as constraint violat ions are increasingly 

penalized. Ln the  next section another example of the  same kind is discussed f o r  

problems with inequal i ty  constraints. 

The Kuhn-Tucker Rule 

5 The proof given i n  t h e  previous section r e su l t ed  i n  a multiplier rule be- 
: 

cause of a dependence argument (rank G = rank Gf a t  xO). Now, however, we wish 

t o  use a more construc+,ive argument t o  derive a general resu l t  which will include 

theorem 2 as  a special  case. The reason f o r  a d i f f e ren t  proof is  that i n  case of 

inequality constraints we a r e  not content with merely showing that  multipliers 

exist but wish t o  establ ish them a s  l imit ing values of certain non-negative quanti- 

t i e s .  

We need some additional notation, Let J denote the s e t  of indices j corres- 

ponding t o  ac t ive  or binding inequality constraints.  We l e t  ilj be the open set  

I gj (x) < 0, j r J) . The s e t  Q may be. empty but when it i s  non-empty it w i l l .  

- be possible t o  conclude a useful  r e s u l t  (see theorem 5) .  

For notat ional  s implici ty  we r e s t r i c t  ourselves i n  the next theoren to  the 

case o f  inequality constraints  (s=o) and indica te  l a t e r  how t o  t r ea t  the cases S > 0. 

We define G, Gf i n  a s l igh t ly  different  way then i n  section 3. The matrix 

G i s  the n by I Jacobian of constraints fo r  which j J and Gf is G augmented by 

the column vector Vf. The next theorem was first given by Kuhn-Tucker [911 using 



a different  regular i ty  assumption. 

Theorem 4 Let F, g be @functions on an open s e t  i n  E" containing a local  

constrained minimum x0 of f. If the constraints s a t i s f y  the regularity assump- 

t ion  (vgj, h) < 0 for  some h i n  E", for all j c 3, then there exists multipliers 

X j  2 0 f o r  which 

If rank G i s  rt~ximal a t  x0 the multipliers are uniquely determined. 

Proof Let Ro be a closed b a l l  about the constrained minimum x0 contained within I- 

I 

the  region i n  which f ,  g are  c1 and for  which x0 is a globd. minimunl on Ro. I f  
3 .  

4 is the  feas ib le  s e t  {x 1 6 u  = 01' then R = 00 n R is non-empty. Replace f .by 
1 

the objective function f(x) + 11 x - x0 11' = fO(x)  SO t ha t  f O  has a Unique global 

m i n i m  on no. If fn a re  the .augmented but unconstrained functions corresponding 

t o  fO then, by theorem 1, there exis ts  a sequence 5 which nifrimise fn on Oo and 

such t h a t  Xn tend t o  xO. For large n the x, a re  in t e r io r  t o  Oo and so vfn(xn) = 0 

. or 

where A n , j  = Q,j gj(%) uj(x,) 2 0 . When n i s  la rge  enough = 0 for j p' J 

since x0 belongs t o  the open s e t  {X I g.  (x) < 0, j # J] and ?, + x0 . Hence (5 )  
3 

can be written as a sun over j e J f o r  n > N. l3y the  regularity assunqtion and - 
because the vgj a r e  continuous it follows t h a t  (vg.( ), h) 5 - 6 < 0 for some 

J 5-l 
.6 > 0 when n i s  large,  since % -t x0 . Moreover (vf, h) is bounded by some 

constant M on the  closed ball .  no. s ince v ~ O  i s  also continuous. h.om ( 5 )  we ob- 

k i n  M E  (of, h) > - 6 E An,3 > 6 - . Hence the J. a r e  bounded and so there 
jc J n, j 



ex i s t s  a subsequence, also denoted by . such tha t  X -t k j  2 o as n, j 

n-) = . Since fyg are  C' , a passage t o  the limit as xn + x0 shows that  

0 0 Vf (x ) = vf (xO) = - Z vgj (xO). If rank G i s  maximal a t  x0 the vg form 
I deJ S 

a basis i n  E- and so-the mult ipl iers  a r e  unique. 

I n  order t o  obtain a version of theorem 4 when s > 0 it i s  merely necessary 

t o  i n s i s t  t ha t  the regularity assumption hold not only for j s J (active inequality 

constraints) but fo r  equality constraints as  well. However i n  the l a t t e r  cash it 

i s  no longer t rue  i n  general t h a t  the multiplier approximations X n j j  be non- 
i 
I negative and so the boundedness of X must be established i n  a slightly different 

n, 3 
manner, What we do, i n  f ac t ,  is t o  wr i t e  a l l  s equality constraints as  inequalit- 

)r h A i e s  by introducing 2s constraints g. < 0 defined by g = gj , j 5 s, and gj+s = 
J - 3 

A - gj  , j ,< s. . Since g. u > 0 we can now proceed as i n  theorem 4. Details are J j -  

l e f t  t o  the reader. 

I n  the  general s i tua t ion  i n  which s > 0 t he  matrix G becomes an n by 

I + s - < rn Jacobian of constraints f o r  which j <_ s and j c J (note that  when 

j c J then j > s) . 
k the next section we invest igate  t o  what extent the regularity assumption 

can be expected t o  hold. For the moment we want t o  i l l u s t r a t e  the extent of the 
t 

mult ipl ier  ru le  vis  a v i s  t h e  penalty argument. Consider $he problem of minimiz- 

ing  f(x,y) = x , subject t o  the constraints  g, (x,y) = (37-2) - (3-x)~ <_ 0 and 

.&a (x,y) = - (y-2) - ( 3 - ~ ) ~  < - 0, It is. not hard t o  determine tha t  the minimum 

e x i s t s  a t  (3,2) and tha t  if h = ( $ ) i s  an a rb i t r a ry  vector i n  E? then 
2 

at 
(vg, h) = - ha and (v& , h) = hSA(3, 2) which implies tha t  h = 0 . lhus the 

2 



regular i ty  assumption i s  violated and, i n  fact,  the  multiplier ru le  is  n o t  

va l id  since vf = ( i) and SO ('Vf &) = hl i 0 f o r  su i tab le  h. But then, should (4) 

hold we a r r i v e  a t  a contradiction since 0 > (vf,h) = - I: X j  (vgj, h j  > - 0 at  x0 

when Xj >_ 0 . The penalty argument y ie lds  a solut ion,  however, as  in t h e  ex- 

ample of  section 3. f a c t  l e t  fi be the  augmented objective function x + . 

. n( [ (7-2)] 1- (3-x? 1 q (i) + [ (37-2) + ( 3 - ~ ) ~ ]  % (x) ] where y , % a re  zero when t h e  

constraints  g,, a re  satisfied. Since vfn = 0 we obtain (%, yn) given by 

( 3 - 2 ' ) which tends t o  (3,2), a s  we had hoped it would. 
5J5z- 

i 

s The Regularity Assunption 

It i s  a worthwhile task t o  i s o l a t e  the  severa l  important cases i n  which 

the regular i ty  hypothesis or constraint qua l i f ica t ion  ( ~ g  h) < 0 is  sa t i s f i ed .  
j ' 

The next two theorems d.o t h i s  .for us. 

Theorem 5 If the s e t  0 .  i s  non-emtpy and. the  constraints g convex f o r  j s J 
J j 

then there ex is t s  some h i n  9 f o r  which (v; h)  < 0 a t  x0 Hence t h e  reg- 
j ' 

u l a r i t y  assu.mption i s  sa t i s f i ed  f o r  j s J and s o  theorem 4 holds fo r  s = 0, On 

the other hand, i f  there ex is t s  some open b a l l  about x0 i n  which rank G is in-  

var ian t  then the regular i ty  assumption holds f o r  & those j 5 s and j c J f o r  
'i 

which [vgj] form a d m a l  Unear ly  independent s e t  at  xO. I n  the l a t t e r  case 

the  mult ipl ier  ru le  of theorem 4 remains t rue  f o r  all s > 0. 

Proof With R .  non-empty and g .  convex l e t  h = x - x0 f o r  any x c Qj- 
J 3 

Then 

'(vpj (&I, h) <_ g j  (x) - gj  ( x ~ j <  0 f o r  j e J. In the case where rank G i s  

invariant  i n  some ba l l  we a re  assured that rank G(%) = r for some f i x e d  

r 5 J? + s and f o r  all n la rge  enough. Let G,(x') designate an r by n submatrix 



of ~(x ' )  having rank r and consisting of r l inea r ly  independent columns Vg . (xO) . 
J 

Then we know t h a t  f o r  a l l  large n, rank Gr = rank G = r continues t o  hold since,  

by lemma 1, matrices of maximal rank form an open se t .  But equation (5) then 

tells us tha t  rank ~ ~ ( 5 )  is a lso  r for  a l l  such large n and hence the sum i n  

. (9 is extended over the Vg. belonging t o  Gr. Without l o s s  of generality we 
J 

may denote the columns of Gr by vg , . . . , vgr and since they form a bas is  i n  % 

at x0 there ex i s t s  a dual basis  VZ. (xO) f o r  which (vg j, V% ) = 6i Now l e t  
J 

N 

h = - .Z vg ; then (vgj (xO), h) = - 1 < 0 so t h a t  the regularity assumption holds 
J L r j  

, f o r  those j o J and j < - s f o r  which Vg. belongs t o  %. Since the sum i n  ( 5 )  i s  
1 

J 

extended over precisely t h i s  subset of j values f o r  a l l  large n the proof o f  

theorem k can be completed a s  before. 

A s  i n  sect ion 3 we can s t a t e  the  following special  case of theorem 5,  .. 

proof of which i s  ident ica l  t o  t h a t  of theorem 3. 

Theorem 6 I f  rank ~ ( x O ) i s  maximal  or if the constraints are  l inear  then t h e  rank 

- of G is invariant  i n  some b a l l  about x0 and the r e s u l t  of theorem 4 continues t o  

hold. 

Because of theorem 5 the Lagrange mult ipl ier  of section 3 ru le  is  obtained 

from the Kuhn-Tucker theorem by l e t t i n g  s = m. ' We' note, incidently, t h a t  for linear 

constraints  the proof of the mul t ip l i e r ' ru l e  follows more directly from the  f a c t  

t h a t  the  l inea r  manifold generated by the gradients of act ive constraints  i s  . 

closed and d.oes not vary with n. Hence since vf (xJ belongs t o  t h i s  -fold so  

does the limit vf(xO). This :suffices to  prove theorem 2. For inequal i ty  con- 

s t r a i n t s  we can  use a similar argument t o  prove the Kuhn-Tu.cker ru le  ~ 5 t h  h j  > @ 

since the cone generated by t h e  vg-  is  also closed. 
J 



I n  summary, a constructive proof of t he  mul t ip l ier  r u l e  has been 

given provided that t he  cons t ra in t  qua l i f i c a t i on  ( ~ g ,  h) < 0 holds a t  - 

- xO. Moreover t h e  constra int  qua l i f i c a t i on  is  s a t i s f i e d  whenever rank G 

is inva r i an t  i n  some b a l l  about xO. This l as t  f a c t  w i l l  hopefully sharpen , 

t h e  a p p l i c a b i l i t y  of  t he  Kuhn-Tucker theorem. 
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