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Abstract - 
&om a review of s i n g l e  p a r t i c l e  behavior, it was concluded that  both 

d r a g  and slip-she- f o r c e s  determine the interact ion between the phases. 

I Treat ing  t h e  p a r t i c u l a t e  phase a s  a -continuum, the  basic conservation e- 

quations were non-dimensionalized i n  terms of  the  par t ic le  s l i p  relaxation 

t ime and/o-r s l i p  r e l a x a t i o n  distance, This resulted i n  identification of 

a dimensionless cons tant  t o  which the  slip-shear effects  are proportional, 

and yielded a set of "universal"  two phase boundary layer equations appli- 

cable t o  a c l a s s  of p a r t i c u l a t e  suspensions. These i n  turn were solved 

f o r  the  case of laminar mixing of a suspension stream with a clean f luid 
4 

. stream. From p e r t u r b a t i o n  solut ions va l id  i n  the  i n i t i a l  portion of the 

mixing l a y e r  and i n  t h e  far down stream regions, a description of the vel- 

ocity f i e l d  of bo th  phases, t h e  s l i p  between t h e  phases, and the particu- .** ,q 

l a t e  concentra t icn  wi th in  t h e  mixing layer  was obtained. It was shown that . ." 
mixing of  t h e  p a r t i c u l a t e  phase with the  clean f lu id  is ent i re ly  due t o  

- 
the ef fec ts  of t h e  s l ip-shear  forces. However, tha t  par t ic le  injection into 

the clean f l u i d  occurs within the  i n i t i a l  portion of the mixing layer. 

In t h i s  r eg ion  p a r t i c l e s  e x h i b i t  two di rec t ional  migration characteristics. 

In the  f a r  out mixing r eg ion  the  par t icula te  phase is essential ly frozen 

the  local f lu id ,  wi th  t h e  s l i p  shear forces again detemining the par- 

1 t i c ~ l a t e  &ncentration. wi th in  the  mixing layer .  The resul t s  ~ 0 f i t l a t e  

with he re to  i m e q l a i n e d  observations, and consequently Con- 

t r ibu te  to a mope act-mte of pa r t i c l e  mipation phenomena 

1 in laminar - suspension flows. 



The behavior of multiphase systems which a re  characterized by the 

motion of aggregates of small sol id  p a r t i c l e s  analor l i qu id  drops re la -  

t i v e  t o  f l u ids  i n  which they a re  suspended covers a wide range of pheno- 

mena of great  technical  importance. hiany examples R81 can be c i t ed ,  in- 

cluding the col lect ion of dust  and mist from chemical processes i n  order 

t o  reduce o r  eliminate atmospheric p o r n t i o n .  Recently, however, a s  a 

r e s u l t  of the  pioneering work of Marble (1964) C111, Singleton (1965) 

[171, and Soo (1967) El81 and others C2, 3 ,  91 the ' f l u id  mechanics of mul- 

t iphase systems has been separated from par t icu la r  de ta i led  problems and 

has found a place i n  the  general disczpline of  f l u id  mechanics. Our aim 

i s  t o  contribute fur ther  t o  t h i s  e f for t  by investigating the r o l e  of 

slip-shear forces i n  laminar boundary l aye r  suspension flows. I n  pa r t i -  

cu la r  we a re  in te res ted  i n  gaining a b e t t e r  understanding of t he  experi- 

mentally observed, Young (1960) C211, Segre and Silberberg (1962) C151, 

and Karmis e t  a 1  (1966) [s], but hereto unexplained pa r t i c l e  migration 

i n  laminar suspension flows. I n  the  case o f  tube flows, the migration 

resulted i n  accumulation of pa r t i c l e s  near the wall C211, o r  on t h e  ax is  

with a pa r t i c l e  free zone near the w a l l  [6], or  i n  an annular region be- 

tween the  tube wall  and 'axis  [1,5]. A comprehensive review of l a t e r a l  m i -  

gration charac te r i s t ics  i n  tubes is given by Brenner (1966) C11 and Law- 

l e r  and Lu (1967) [%]. The l a t t e r  &so t r e a t  the problem of p a r t i c l e  m i -  

gration i n  ro t a t i ng  tubes. The general  feature  of t h i s  migration is the  

movement of p a r t i c l e s  across f lu id  stream l i n e s  i n  regions where there  

exists a f l ~ d  shear, Momover, as was  pointed out  i n  c121 and C141, i n  

the  absence af centrifugal forces, p a r t i c l e  migration i s  probably due t o  



an interaction of the particle with the walls which is inertial in nature, 

in combinatiofi with slip-shear effects. Because very little is known con- 

cerning the former, even in the Ease of a single particle, we have se- 

lected a flow situation which is of significant practical importance, but 

in which the drag and slip-shear effects entirely determine the migration 

characteristics, i .e., laminsr mixing of a suspension with a clean fluid. 

Up to now, a theoretical or expe~imental study of this problem has 

not been reported in the open lzterature. Soo (1965) El91 investigated 

the' laminar mixing of a circular suspension jet, and the turbulent mixing 

of a suspension with a clean fluid. The results of this theoretical study 

are valid only for extremely dzlute suspensions and in only those cases 

where the slip between the phases is small. More significantly, this 

analysis neglects the effect of slip-shear forces. The latter, as we 

1 shall show, play a key role in particle migration and primarily determine 

the particle distribution within the mixing layer. Moreover, Soo neg- 

lects the conservation of particulate phase momentum in the normal di- 

- rection. 
. . 

We also, of course, have to place some limitations on the scope of 

I this problem. ~hus, we restrict ourselves to those suspensions in which 

the solid particles are spheri.& and all of the same size. Moreover, 

'We  assume that suspension is sufrficiently dilute so that flow field a- 

bout any particle does n o t  interact with the flow field about any other 

1 Particle. If the radius of the particles is of order 0.10 to 10.0 mi- 

crons, this being the range of triterest to us, the above restriction 

still allows significant total -ticUte mass content per unit volume 

of mixture, Yp . In particular we m e  interested in those situations 

1 
in which YP , where p is Lfifinstc density of the fluid, is of 



. order unity. We do, however, assume that the fluid phase of both the 

suspension and the clean fluid are identical, incompressible, and in 

thermal equilibrium with each other and with the particulate phase through- 

out the mixing process. Extensions of the result obtained to situations 

where this is not the case is immediate and of secondary importance on 

particle migration which results from transverse forces acting on the par-.. 

titles. Migration which is due to the Brownian effects is neglected in 

this study, since it cannot result in particle accumulation of the type 

previously mentioned. Moreover, we are not interested in the detail mo- 

tion of individual particles, and consequently adopt the approach pre- 

viously employed by [2, 11, 17, 191 in which the particulate phase is 

treated as a continuum. 

The general conservation equations, required in this approach, were 

1 - derived by Soo [18], Hinze [ 5 1, and Marble clll. These, subject to the 

restrictions placed on our problem, become: 

Fluid phase: 

Solid Phase: (designated by the letter -PI 



Where Xp; is  the  in te rac t ion  force (per u n i t  volume) between the  phases. 

The i n t r i n s i c  density of s o l i d  phase by which we mean the  densi ty  of the  

mater ia l  making up the  p a r t i c l e s  is denoted by fA and does not expli-  

c i t l y  en te r  t he  above equations. 

11. Interaction between the  phases 

C r i t i c a l  t o  any invest igat ion of the f l u i d  dynamics of suspensions 

is the modelling of  the interact ion between t h e  phases. In  general ,  the  

t o t a l  force on an individual  pa r t i c l e  within a suspension depends upon 

t h e  acceleration h is tory  of the pa r t i c l e ,  t h e  proximity of other pa r t i c l e s  

and/or w a l l s ,  t he  p a r t i c l e  Reynolds number, Knudsen number, as wel l  a s  on 

the loca l  acceleration,  pressure gradient,  .and shear gradient of f l u i d  

f ie ld .  A review of t h e  present s t a t e  of knowledge concerning these ef- 

fects  is given by Otterman (1968) [127, Soo (1967) Clsl, and Torobin and 

Gauvin (1959) [21]. It is concluded i n  [12] t h a t  our present knowledge 

concerning these effects  is such t h a t  a2 t he  very outset  w e  must l i m i t  

our analysis t o  those cases where the p a r t i c l e  Reynolds number is small. 

In  addition it is shorn t h a t  the  Basset res is tance (which accounts for  

the acceleration his tory)  is small compared t o  the  instantaneous Stokes 

1 drag, provided That the  time scales of h t e r e s t  are of order Z: . , the 
P 

Stokesian s l i p  ml-tion time constant, and when the  p a r t i c l e  accelera- 
I , 
i tion is not extreme, 
I 

i _ 
I Pa r t ic le  m t i o n  i n  a s p a t i d l y  non-uniform veloci ty  f i e l d  r e s u l t s  

I in a transverse force on the  even when the p a r t i c l e  is pre- 

t 



'vented from ro ta t ing .  Saffman (-1965) [ l b l ' i n  a recent  study obtained' the 
' ' 

- net  force ac t ing  on a small t rans la t ing  sphere which is simultaneously ro- 

t a t i ng  i n  an unbounded, uniform, simple shear flow f i e l d ,  the  t rans la t ion  
/ 

velocity being p a r a l l e l  t o  the  stream l i n e s .  Three independent p a r t i c l e  

Reynolds number a r i s e  i n  the analysis : 

shear: ( ~ e )  , 4 d h  - 

where, the p a r t i c l e  r e l a t i v e  velocity (u  -u) is measured a t  i-trs center& P 

is the magnitude of the  veloci ty  gradient, and fi i s  the magnitude of 

the angular velocity.  The analysis, which is va l id  when 

showed tha t  i n  addition t o  Stokes drag force 

the par t ic le  eqe r i ences  a transverse force given by 

which is due to the  of s l i p  and shear ,  and a lift force 



. . 
which is due t o  ro t a t i on  given .by:. 

, 

The l a t t e r  r e s u l t  was  a l s o  obtained by Rubinow and Keller (1961) C131 

However, Saffmants study shows tha t  unless t h e  ro t a t i on  speed is  very 

much greater  than t h e  r a t e  of shear, and f o r  f r e e l y  ro t a t i ng  p a r t i c l e  

-(L 10.5 k , t he  l ift  force  due t o  p a r t i c l e  r o t a t i o n  i s  l e s s  by an order 

of magnitude than t h a t  due t o  the sl ip-shear (Eq. 9 1. Moreover, a s  

(Re..-30 Brenner 117 showed t h a t  Saffnanls conditions (Eq. 8) a re  always P 
m e t  and the Rubinow-Keller theory i s  inapplicable.  

Although d i r e c t  experimental v e r i f i c a t i o n  of Saffman's analysis i s  

up t o  t he  present no t  a v a i l a l e ,  an ana lys i s  of the  above c i t ed  migration 

experiments shows t h a t  the  l a t e r a l  fo rce  r e s u l t i n g  from slip-shear ef- 

fec t  plays a s ignif icant  r o l e  i n  these phenomena. Since boundary layer  

flows are characterized by large veloci ty  grad ien ts ,  and because the 

slip-shear lift force a s  given by Equation 9 is proportional t o  the  

Square root  of the  veloci ty  gradient we would expect, and indeed f i n d  it 

the case, t h a t  the p a r t i c l e  veloci t ies  i n  t h e  d i rec t ion  normal the main 

flow direct ion a r e  s ignif icant ly  affected by t h i s  force.  However, up t o  .now 

t h i s  effect has not  been incorporated i n t o  continuum type C3, 9,  14, 16 

191 analysis of suspension flows. The only exception being the recent 

study of Lawler and LY [8] i n  which they analyzed the  behavior of a di- 

l u t e  suspension i n  t h e  entrance region of  a slowly ro t a t i ng  pipe. Their 

r e s u l t  which follows from a l inear ized  model shows once again the signi-  

ficance of  lift force on the  pa r t i c l e s -  

In. l i g h t  of t h e  above, wk assume t h a t  t h e  i n t e r ac t ion  between the 

par t ic les  and the f l u id  i s  governed by Equations 8 and 9 ;  S t r i c t l y  



I * shear  f i e l d .  s ince  *he veloci ty  p rof i le  i n  a laminar boundary layer  is 

smooth, and because we a r e  considering p a r t i c l e s  o f  micron s i ze ,  we as-  

sume t h a t  Equations 8 and 9 can be applied l o c a l l y  with suff ic ient  ac- 

curacy. In  t e r m s  of a force per un i t  volume of mixture, t h e  interact ion 

I between the p a r t i c u l a t e  and f l u id  phases (Equations 8 and 9) becomes 

where 



*I1* The Two-Dimensional Suspension Boundary Layer Equations 

Given the non-linear form of the  i n t e r ac t i on  between t h e  phases, Eq. 

11, i n  addit ion t o  t h e  non-linear form of the '  conservation o f  momentum 

I equations of both hhases, Eqs. 1 through 4, it is imperative t o  inves t i -  

I .  
. gate  what simplification of these equations r e s u l t  i n  t h e  case  of l a rge  

Reynolds number flows. With t h i s  i n  mind, it i s  shown i n  [1*1 t h a t  the  

standard boundary l aye r  approximations a r e  v a l i d  f o r  t h e  f l u i d  phase, i -e , .  

p rov ided  tha t  'p/f is of order 1. Moreover, it is shown t h a t  simplifi-  

cat ion of the  pa r t i cu l a t e  phase momentum equations does n o t  occur, and 

1 
t h a t  t h e  y-momentum equation cannot be neglected. 

I The two-dimensional boundary layer  equations are specialized'  f o r  

the case where viscous dissipations,  p a r t i c l e  volume, Brownian motion and 

I e l e c t r i c  o r  magnetic effects  a re  negligible;  and where t h e  f l u i d  phase is  

imcompressible, t h e  pa r t i c l e s  are  a l l  of equal and unchanging s i ze ,  and 

the  interact ion between the  phases is specif ied by Equation 11. Subject 

t o  these r e s t r i c t i ons  the  continuity and boundary layer  momentum equa- 

t ions  f o r  the  two phases become: 



We now in t roduce  t h e  f o l lowiag dimensionless quantities : 

cons tan t ,  
= constant 



is termed the  s l i p  re laxat ion length. Physically it represents  t h e  dis-  
I 

t a m e  required f o r  a p a r t i c l e  t o  t r a v e l  i n  order t o  reduce i t s  s l i p  ve- 
-I 

. l o c i t y  by e . Hence, as w a s  f i r s t  pointed out  by Elarble [Ill, if 
.It 

\ --the p a r t i c l e s  have not  had time t o  a a j u s t  t o  the  gas f low and con- 
. 

4 

Sequently take on large  ve loc i ty  s l i p s .  On t h e  o the r  hand, if x \> 1 

the pa r t i c l e s  have moved many times t h e  required dis tance,  and exh ib i t  

small veloci ty  s l i p s .  Fop t h e  case where the p a r t i c l e s  have a d i f fe ren t  

A .  

temperature from the  surrounding f lu id ,  analagous thermal equ i l i b r a t i on  

length can be developed [16Ia 

. . Substi tut ion of Equation 18 in to  Equations 1 3  through 1 7  y i e ld s :  



Thus, we have successful ly  combined a l l  t h e  phys ica l  parameters govern- 

ing  t h e  motion of  a viscous suspension i n t o  two dimensionless constants ,  

4 and f . Equations 20 through 24 represent  a f luniversa l"  s e t  o f  e- 

quations which descr ibe  t h e  bas ic  f l u i d  mechanics o f  suspension boundary . 
l a y e r  flows. These w i l l  now be solved f o r  t h e  case  o f  laminar mixing of 

a suspension with a c lean f l u i d .  



I V .  Analysis 

' malle l  t o  each o ther  with Cons2der two ~ n i f e r m  streams which move-pa. 

Velocit ies.  u and h respect ively ,  say, i n  t he  ,horizontal d i r ec t i on .  
1 

Let 
2 

t h e  stream moving with veloci ty  u2, u2 > ul have pa r t i c l e s  suspended i n  

it. A t  x = 0 ,  t he  suspension and the clean f l u i d  begin t o  mix. Our pW- 

Pose is  t o  compute t h e  steady-state growth of t h e  mixing region,  t he  s l i p  

between the  phases, and the  par t i c le  concentration within t h e  mixing re -  

gion. 

The governing equations fo r  t h i s  problem a r e  Equations 20 through 

24 with the  time dependent terms deleted. I n  addit ion,  w e  assume t h a t  

mixing occurs a t  constant  pressure, i . e . , 

' For the  present problem we define the charac te r i s t i c  ve loc i t y  by: 

and l e t  

represent t he  average veloci ty  difference of t h e  two streams. 

1 The bouhdary conditions are: 



Unfortunately, Equations 20 through 24 wi th  t h e i r  accompanying 

boundary conditons a r e  n o t  amenable to  an exact  solut ion fo r  t h e  e n t i r e  
*- . . 

"ange of X . We there fo re  obtain a so lu t ion  applicable i n  the i n i t i a l  

por t ion  of t h e  mixing l ayer ,  and one v a l i d  f o r  t h e  f a r  ou t  mixing region. 

Both so lu t ions  a r e  obtained i n  terms of the  transform variables 

Where t h e  i n i t i a l  mixing region sol a t ion  is a coordinate perturbation 
n 

so lu t ion  i n  terms of S , n being pos i t ive ,  and the f a r  out mixing re -  

. gion solut ion is  l ikewise  a coordinate pe r tu rba t ion  solut ion where. n is  

negative. It is  r e a d i l y  observed t h a t  for  t h e  i n i t i a l  mixing region so- 
I * * ' %  

l u t i o n  t h e  boundary condit ions,  a lo, 3 ) = \+A, and U ( h, wJ = 
. . 

collapse i n t o  a s i n g l e  boundary condition a t  t A o~ . The quest ion 
& 

- t h a t  now a r i s e s  i s  what s o r t  of i n i t i a l (  )c=O)boundary condition does 

the far out  mixing region sa t i s fy .  Clearly, f o r  it' t o  be a v a l i d  des- 

c r ip t ion  of our problem i n  t h e  f a r  downstream region, and not some a rb i -  

t r a r y  l a rge  5 (small s l i p )  solut ion,  it a l s o  must s a t i s f y  t h e  boundary 

+ .  
condition (L lo, LJ), \+A. That this indeed i s  the case, can be noted 

- X I 

from the  f a c t  t h a t  fj = - expansion i n  the l i m i t  as %-+& i s  mathemati- 
2 

tally equivalent  t o  one i n  which A--3 0 . Physically, the l a t t e r  repre-  

1 sen t s  a suspension flow i n  which t h e   articles are pemIanantly frozen t o  

! t h e  surrounding f l u i d .  The flow f i e l d  of  such a mixture, l i k e  t h a t  of a 

P m e  f lu id ,  is similar i n  t h e  var iable  2 (which is independent of ) 
4- 

1 and, moreover, s a t i s f i e s  t h e  boundary condit ions a t  >( = 73 . Consequently, 

-1 
t h e  zeroth order  t e r m  of 5 errpansion a l s o  s a t i s f i e s  the i n i t i a l  con- 

* 
di t ion  a t  X = 0 . Fina l ly ,  it should-be noted that  t h e  analys is  ..which 



follows is parallel to the one developed by Singleton C171 for flow over 

a semi-infinite flat plate in which slip-shear forces were not incorporated. 

The Initial Mixing Region 

At the start of the mixing region, to zeroth order, the two phases 
\. 
\ 

f l o w  independently of each other. This suggests a solution in terms of 
4 * 

a separate stream function for each phase. We define Y )  and the 
P ' 

dimensionless fluid and particulate phase stream functions',by: 

Note that the defined stream functions satisfy identically the fluid and 

particulate phase continuity relations. Substituting Equations 33 and 

34 into Equations- 21, 23 and 24 we obtain: 



Introducing t h e  transform defined by: 

in to  Equations30 through 31 we obtain: 





The i n i t i a l  mixing i s  character ized by 5 . Consequently, w e  assume * 4P x 

i 
t h e  followi?g expansions f o r  9 , qr , and Yr 

Subs t i tu t ing  these  expansions i n t o  Equations 35 through 37 and equating . 
n 

coefficients  of 5 t o  zero  y i e l d s  t h e  following: 

Equation 35 gives  i n  t h e  zeroth  order  

while Equations 36 and 37 y i e l d  respec t ive ly  

and . 

\ 

1 but  s ince  ho #= 0 , Equation 42 y i e l d s  

I 

where C i s  a proport ion constant .  

i 



Moreover, s ince ,  Lo = if A , we obtain:  

Thus, t o  t h e  zeroth order  t h e  two phases flow independently of each o t h e r .  

The flow f i e l d  of t h e  f l u i d  phase i s  governed by t h e  Blasius equa- 

t i o n  (Eq.41) which fo r  t h e  present case of laminar mixing is  s u b j e c t  t o  

t h e  following boundary conditions: 

1 
Note t h a t  we a r e  given only two boundary condit ions f o r  a t h i r d  o rder  

1 ' d i f f e r e n t i a l  equation. I n  order t o  determine the  s o l u t i o n  exac t ly  w e  

take 

Equation 46 s p e c i f i e s  t h a t  0 is a .stream l i n e .  e= Since, Fo cor- 

responds t o  t h e  l i n e  y = 0, i n  essence we have assumed t h a t  t h e  i n t e r -  

face of the  two streams remains located along t h i s  l i n e .  More l i k e l y ,  

t h i s  in te r face  w i l l  bend and devia te  from t h e  o r i g i n a l  l i n e  of contact .  

Suppose we now write t h e  two phase conservation equations i n  terms of 

curvi l inear  orthogonal coordinate system, whose x-axis i s  i n  t h e  direc--  

t ion  of the  in te r face ,  and y perpendicular  t o  it. If w e  now assume t h a t  

i the curvature of t h e  in ter face  is small ,  these  equat ions  reduce t o  t h e  

1 , governing Equations 2 2through 26. We feel  t h a t  t h 5 s  assumption is  rea-  
l 

I Sonable, and represents  an appropriaie approximation f o r  a "first round" 



i-heoretical s ~ l u t i ~ n  t o  a problem far which experimental data is not a- 

va i l ab le .  

Goer t ler  ( 4 )  i n  a paper on turbulent mixing of two fluid streams 

suggests t h e  fol lowing method of solution for  the Blasius equation sub- 

ject t o  t h e  above boundary conditions. Let 

Substi tut ing t h i s  expansion in to  Equation 41 gives : 

subject t o  t h e  fo l lowing  boundary conditions : 



The solut ion of Equation 48 sub jec t  t o  Equations 51  and 52 is :  

where 

We approximate t h e  f l u i d  phase ve loc i ty  by t h e  f irst  two terms of t h e  

expansion, i . e . ,  

as shown i n  Figure 1. . .- 

The f i r s t  order modification t o  t h e  f l u i d  phase s t r eam,  funct ion,  f, (c 
i s  obtained from Equation 35 which y i e l d s :  . 

Equation 58 can now be wr i t t en  as: 



The boundary cond i t i ons  a r e :  

Equation 60 s u b j e c t  t o  t h e  above boundary c o n d i t i o n s  w a s  so lved  numeri- 

c a l l y  and t h e  r e s u l t s  a r e  i n  Figure 2. Note t h a t  s i n c e  t h e  p a r t i -  

- c u l a t e  phase l e a d s  t h e  f l u i d  phase, t h e  first o r d e r  modi f ica t ion  on t h e  
I 

%id v e l o c i t y ,  3, ($  , is pos i t i ve .  The first o r d e r  func t ions  h (y_) 
and <, lrL) as obta ined  from Equations 36 and 37 a r e :  

where, 

I The complimentary s o l u t i o n  of Equa-tion 62 is: 

I BY t h e  method o f  v a r i a t i o n  of parameters, 2. e  . , 

I We obta in  f o r  the above p a r t i c u l a r  so lu t ion  



Therefore, the complete solut ion i s  

and 

Note t ha t  

and . 

. - 
I 

Since H ,(s) = 0, we obtain C2 = 0 and C; = - ( l  +A), consequently, 

The above expression seems quite reasonable, since i n  t he  regime of 

large pa r t i c l e  s l i p ,  the  par t ic les  do not have su f f i c i en t  time t o  ad-  

just  t o  loca l  flow conditions, and thus the  velocity would a l s o  depend 

on t he i r  i n i t i a l  conditions, (1  +A), and on integrated effect  of t h e i r  

motion through the flow f i e ld .  This is i n  sharp contras t  t o  w h a t  w i l l  

occur i n  the regime of s m a l l  s l i p ,  where we s h a l l  f i n d  the pa r t i cu l a t e  
I 
I phase velocity only a function of the l o c a l  flow conditions. Finally,  
i 



w e  can show t h a t  

A graphical  r epresen ta t ion  of hi/(?() ') as obtained by numerical integra-  

t i o n  is  given i n  Figure 3. The first order pa r t i cu la te  phase ve loc i ty  

i n  t h e  h o r i z o n t a l  d i r e c t i o n ,  k: it) , is negative becuase t h e  decelerat-  

ing f l u i d  phase e x e r t s  a drag force on t h e  pa r t i cu la te  phase. I n  addi- 

t i o n ,  t h e  l a t t e r  experiences a drag force  i n  the y-direct ion.  The re-  

s u l t i n g  v e l o c i t y  i s  given by: 

* (1 )  A p l o t  of U i s  given i n  Figure 4. Observe t h a t  t h e  e f f e c t  of t h i s  
P 

' ve loc i ty  i s  t o  t r anspor t  the  p a r t i c u l a t e  phase away from t h e  clean f l u i d  

region. 

The first order modification t o  t h e - f r e e  stream p a r t i c u l a t e  phase 

densi ty i s  given by Equation 6 3 . The l a t t e r ,  a f t e r  s u b s t i t u t i o n  f o r  
\ \ : C 1) .and b, (tb becomes : ' 

which a f t e r  in tegra t ion  yie lds :  

Since K1(k ) = 0 it must be t h a t  C1 = 0, consequently, 



i . e . , a t  t h e  s t a r t  of t h e  mixing region where 5 < , t h e '  drag ef- 

fects d:, not r e s u l t  i n  a change of t h e  p a r t i c u l a t e  phase dens i ty .  This 

impl ies  t h a t  i n  t h i s  region,  t h e  i n c ~ e a s e  i n  t h e ' p a r t i c u l a t e  phase den- 

s i t y  r e s u l t i n g  from t h e  slowing down of the  phase i n  the x-direct ion,  i s  

i d e n t i c a l l y  counterbalanced by the  removal o f  t h e  p a r t i c l e s  from the  

boundary l a y e r  i n  t h e  p o s i t i v e  y-direct ion.  The higher order  terms of 

Equations37 and 36 a r e  respec t ive ly :  

Equation 77 is imnediately in tegra tab le  and y i e l d s :  

t - 
Since K2( OD ) = h *( = ) = 0. Defining, 

7 

Equation 78 becomes: 

1 where 



The ' so lu t ion  t o  t h e  homogenous p a t  of Gquatior, 81 is: 

Again, using t h e  method of  ariat ti on of parameters, we obtain: 

Therefore,  t h e  complete so lu t ion  i s  

I Since H 2(c- ) = 0, C1 = C2 = 0 ,  we have 



the clean flurd region. The corresponding decrease in the particulate 

phase density of tbe suspension is determined by Equation 88. We can 

show that 

4 - Since F (0) = ciT)'/l( , K is singular at . 2 L= 0. This result is in 

.agreement with our notion that in the neighborhood of t= 0, the basic 
assumption of a parTiculate continuum would become invalid, due to par- 

For q%J, K2( e ticle depletion. is well behaved.as is illustrated 
I 

in Figure 6. Finally, observe that 5, ( 1 , f , c~ ~ A A  , h : (.t' / A , 
are universal functions of 2' Once 

calculated provide the first order solution (in the context of the as- 

sumption made in the analysis) for the problem of mixing of. any solid 

particle-fluid suspension with a clean fluid. 

The Far Out Mixing Region: 

In the limit as' S-7- , the slip between the phases approaches 

zero and the suspension flows as a single continuous phase. Therefore, 

to the zeroth order, the region specified by (62 _>%s characterized by 

the flow of a fluid stream of densityf~~h) and viscosity . On the rU 
other hand, the particulate density of the originally clean stream at 

distances far downstream from the initial point of contact is small,, 

.since the particulate phase which was injected into it has become di- 

luted by the continual additien of clean fluid. Consequently in the far 

downstream region, the problem corresponds to the mixing of two streams 

of equal viscosity but of different density. We take this into account 
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by def in ing a f l u i d  stream f u n c t i o n , q l ,  f o r  0, and another, K, 
f o r  7 5  0. Where, 

which i d e n t i c a l l y  s a t i s f y  the  f l u i d  continuity,Equation 20. 

A continuum d i s c r i p t i o n  of the  p a r t i c u l a t e  phase i n  t h e  far down- 

stream reg ion  and f o r  4 0 , i s  not v a l i d  because of the  vanishingly Y 
s m a l l  p a r t i c u l a t e  densi ty.  For > 0 w e  describe t h e  veloci ty  of t h e  L- 
p a r t i c u l a t e  phase i n  terms of s l i p  v e l o c i t i e s ,  

s i n c e  we expect t h a t  t h e  l a t t e r  a re  of o rder  .y f =The X- andy-momentm 

eq-uations of  t h e  s o l i d  phase (E~. 's  23 and 24) i n  terms of the  s l i p  velo- 

c i t i e s  become: 



and t h e  p a r t i c u l a t e  phase continuity equation becomes: 

 he r e s p e c t i v e  f l u i d  phase momentun. equations f o r  t h e  r e g i o n s 6  t, O) 
& 0) are :  

Once again  w e  6efine the  transformation, 

Equations 95 through 99 i n  terms of t h e  transform var iab les  become: 





W e  now assume t h e  following expansions f o r  the  dependent var iables  Y) 1y 

* +  4 -IF v Y A 9 and 

Where t h e  f a c t o r  ( s  + 1)l'* i n  Equation 107 accounts f o r  the 

fact t h a t  i n  t h e  zeroth order t h e  p a r t i c l e s  af fec t  t h e  f l u i d  only through 

t h e i r  mass. Subs t i tu t ing  t h e  'above expansions i n t o  Equation 195anO 

equating t h e  sum of coefficients  of term of equal power in 3 t o  zero 

y i e l d s  : 



p l u s  higher o rder  terms. While the  zeroth order  p a r t  of Equations 102 

and 103 are respec t ive ly :  

Combining Equations 112  and 114 we obtain: 

I Therefore, 
I 

j Let,  

Therefore, 

( 
Thus, , as expected, t h e  zeroth order approximation of the  suspension 

flow corresponds t o  a Blasius d is t r ibut ion but  i n  terms of a v e r t i c a l  
i 

s c a l e  modified t o  account f o r  the  mixture dens i ty  r a t i o .  On the  other 
- 

hand, t h e  zeroth order  approximation of the  f low i n  t h e  lower stream is  

given by : 



The last  l i s t e d  boundary condition insures  continuity of tangential  

S t r e s s ,  and consequent ly o f  pressure across  t he  interface.  . I t  should 

be noted  t h a t  throughout  t h i s  study we have neglected the shear contri-  

bu t ion  o f  t h e  p a r t i c l e  l a y e r  loca ted  a t  the  interface,  since the l a t t e r  

r e s u l t s  i n  h i g h e r  o r d e r  modification of  the  f l u i d  phase velocity f ie lds .  

For t h e  far downstream region, t h i s  approximation is fur ther  justified 

because t h e  z e r o t h  o r d e r  s l i p  ve loc i ty ,  b 4 ( ~ )  = 0. 

The v e l o c i t y  f i e l d  formed between two f l u i d  streams of different 

I d e n s i t y  and/or  v i s c o s i t y  which is described by Equations 120 through 

I 
i 

122 w a s  i n v e s t i g a t e d  by Lock (1951) [lo] and Kenlegan (1944) C 7 1. We 
1 

employ t he  r e s u l t s  of t he  former s ince the l a t t e r ' s  analysis as- 

S m e s  an approximate expression f o r  t he  boundary layer  thickness i s  not 

g e n e r a l  and is  developed only fo r  t he  case where one of the fluid stmams 

i s  a t  rest. The r e s u l t s  obtained from a numerj.ca1 solution of Equation 

I 120 through 122 by t h e  method developed by Lock f o r  the case o f  A = 1/2, 
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1, 3 a n d A =  \ .O are given i n  Tables 1, 2 and 3. Note t h a t  t h e  mixing 

l a y e r  th ickness  o f  t h e  suspension is smaller  than t h a t  of t h e  c lean f l u i d ,  

and t h a t  t h e  i n t e r f a c e  ve loc i ty  increases a s  /S increases .  Equations 

114 and 115 can be wr i t t en  as: 

The s i g n i f i c a n t  f e a t u r e  t o  observe here is  t h a t . t h e  s l i p  v e l o c i t i e s  are 

propor t ional  t o  t h e  l o c a l  flow accelerat ion,  1 / 2  Fo Fo". These r e s u l t s  

a r e  q u i t e  reasonable s ince  we would expect t h e  pa r t i cu la te  phase v e l o c i t y  

f o r  f >>\ t o  be  independent of previous h i s t o r y  of not ion,  and governed 

by t h e  l o c a l  flow condit ions.  Moreover, t h e  s l i p  ve loc i ty  t r ansverse  t o  

t h e  main d i r e c t i o n  of motion i s  proportional t o  the l o c a l  shear g rad ien t .  

This i s  i n  sha rp  con t ras t  t o  t h e  r e s u l t s  obtained i n  t h e  case of f 4<\, 

where t h e  p a r t i c u l a t e  phase motion was determined by t h e  i n i t i a l  condi- 

t i o n s  and by t h e  in tegra ted  history of the motion. Final ly ,  it is worth- 

while t o  n o t e  t h a t  t h i s  type of general behavior was.predicted by Marble 

i n  reference 12 .  

Recal l  t h a t  t h e  zeroth order solut ion represents  the  case i n  

which,the two phases move a s  one phase, i.e., the p a r t i c l e s  a r e  frozen 

t o  t h e  surrounding f l u i d .  Consequently, t h e  pa r t i cu la te  phase t o  t h e  

zeroth o rder  has  a ve loc i ty  i n  the normal direct ion,  given by: 



Note t h a t  t h e  e f f e c t  of  t h i s  v e l o c i t y  i s  t o  t r anspor t  the  p a r t i c u l a t e  

phase from t h e  mixing l ayer  i n t o  t h e  main por t ion  of the  suspension 

I stream. Graphical representa t ion of  Equations 123 through l a f o r  t h e  

case  where A= 1 and A = 1/2 o r  3 a r e  given i n  Figures 7 through 9 . 
Observe t h a t  t h e  s l i p  shear fo rces  r e s u l t  i n  a migration of t h e  p a r t i -  

cles towards t h e  i n t e r f a c e . o f  t h e  two s t reams.  However, because 

. g5(0) = 0, migration of  p a r t i c l e s  a c r o s s  t h i s  i n t e r f a c e  does not  occur. 

The p a r t i c u l a t e  phase densi ty  d i s t r i b u t i o n  is determined by Equation 

107 which a f t e r  subs t i tu t ion  o f  Equations 107 through 111 yie lds  : 

1 - which can be  w r i t t e n  as: 

and which after 

Note t h a t  t h e  l a t t e r  i s  determined n o t  on ly  by the  l o c a l  flow f i e l d ,  

b u t  a l s o  by and in tegra ted  ef fec t  of t h e  l a t e r a l  s l i p  velocity gradient.  

I n  a d d i t i o n  we can show t h a t ,  

f ) a s  determined' by numerical in tegra t ion of Equa- Figure 10 gives  K ( 
/ 

t i o n  127 f o r  t h e  case where -h = 1 and A = 1/2,  3. Before interpre-  



t a t i n g  t h i s  curve  r e c a l l  t h a t :  

i ', Therefore,  t o  t h e  first order ,  

Since K3 is n e g a t i v e  a t  7 = 0,the par t icu la te  phase tends t o  ac- 

cumulate a l o n g  t h e  i n t e r f a c e .  Moreover, near the  edge of mixing layer 
I 

where K3( 2) = 0,  t h e  p a r t i c u l a t e  phase density is diminished as  a 

. - r e s u l t  o f  be ing  convected out  of t h e  mixing zone. 

The n e x t  h ighe r  order  modification of  the part iculate  phase density 

3: 
K4( ) is due t o  d rag  e f f e c t s  and is determined by: 

which a f t e r  s i m p l i f i c a t i o n  becomes: 

. Since ,  Fo(0) = 0, 4- 
I d  

It can b e  shown t h a t :  . tt \ 

I 
< (T6-~*\ 

L I** ' I;, K4 cq )= , 
d-o f-+ 0 Fb 



A p l o t  of K ( * ) is shown i n  Figure 11. 
4 'L 

 ina all$, t h e  first order'  inodification F ' ( t o  t h e  f l u i d  veloci-  3 

t y  is  determined by: 

where 
X 

which i s  v a l i d  f o r  t h e  region ( S  s t  2 0) and 

which i s  v a l i d  i n  t h e  region ( ' ~ $ 1 ~  o ) *  

The connected boundary condit,ions f o r  Equations 133  and 135 are :  

It is evident ,  t h a t  the re  a re  a double i n f i n i t y  of so lu t ions  f o r  Equa- 

t i o n  133 through 136 depending on the  parameters A and A . Because f o r  

given values of these  parameters it i s  not easy t o  f i n d  t h e  appropr ia te  

i solut ion,  a numerical solut ion has up t o  d a t e  not been obtained. Simi- 

I 
1 

l a r  d i f f i c u l t i e s  were reported by Stngleton [16]. W e  do not persue t h i s  
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mat t e r  f u r t h e r  s i n c e  we. a r e  pr imar i ly  in te res ted  i n  par t ic le  migration 

I 
I 

cha rac t e r i s t ' i c s  and because the' l a t t e r  a r e  not s ignif icant ly effected by 

I t h e  first o r d e r  modi f ica t ion  of the '  f l u i d  phase velocity f ie ld .  Tech- 

niques f o r  c a l c u l a t i n g  t h e  l a t t e r ' i n  regions of small s l i p  represent a 

s u f f i c i e n t l y  impor tan t  problem t o  meri t  fur ther  investigation on its own. 

Summary and Discussion: 

An a n a l y s i s  o f  laminar mixing of a suspension stream with a clean 

f l u i d  stream which included the e f f e c t s  of both drag and slip-shear 

f o r c e s  was performed. It was shown t h a t  the former determine the inter- 

- a c t i o n  between t h e  phases and t h e  pa r t i cu l a t e  velocity distribution in  

t h e  main f low d i r e c t i o n  while t h e  l a t t e r  primarily determine the part i -  

c u l a t e  d e n s i t y  f i e l d  and the  p a r t i c l e  migrations in  the direction normal 

t o  t h e  main flow. ' It was s h a m  t h a t  in jec t ion  of the  part iculate  into 

t h e  c l e a n  f l u i d  r e g i o n  i s  due e n t i r e l y  t o  the e f fec ts  of the slip-shear 

..- forces .  Moreover, t h a t  t h i s  i n j e c t i o n  occurs only within "leading edger' 

P o r t i o n  o f  t h e  mixing region where 544 \. In t h i s  region part ic les  

e x h i b i t  t w o - d i ~ e c t i o a a l  migration charac te r i s t ics ,  where i n  general the 

p a r t i c l e s  near t h e  in t e r f ace  t end  t o  move towards the  clean f lu id ,  

whi le  t h o s e  c l o s e  t o  t h e  edge of the'boundaq layer  move in to  the un- 
I 

d i s t u r b e d  suspension sfieam. Equation 91  gives the ver t ica l  position 

w i t h i n  t h e  mixing l a y e r  a t  which t h e  transverse velocity of t h e  par t i -  

I 
I 

' cles is ze ro ,  i .e. , t h e  p a r t i c l e s  a r e  moving only i n  the main flow di-  

r e c t i o n .  Th i s  p o s i t i o n  is  a funct ion of r , the slip-shear parameter. 

I n  t h e  far downstream -on where 3 771, the  s l i p  between the 

phases  is small and injection of t h e  par t icu la te  fiom the suspension 



i n t o  t h e  lower str eam does no t  occur. 
However, the first order modifica- 

t i o n  t o  t h e ' p a r t i c l e  phase bulk t ranspor t  velocity i n  the normal direc- 

t i o n  is a g a i n  due to  sl ip-shear  e f f ec t s .  Furthermore, i n  t h i s  regime 

t h e  s l i p  v e l o c i t i e s  a r e  proportional t o  t he  loca l  flow acceleration. 

This  2 s  i n  sha rp  c o n t r a s t  t o  t h e  r e s u l t s  obtained f o r  the case of gel, 

where t h e  p a r t i c u l a t e  phase motion was determined by the i n i t i a l  condi- 

t i o n s  and by i n t e g r a t e d  e f f e c t  t he  drag forces .  

We have determined f o r  t h e  i n i t i a l  and f a r  out  m i x i ~ g  regions the 

growth o f  t h e  mixing l aye r ,  t h e  ve loc i ty  f i e l d  of the  phases, and the 

number of p a r t i c l e s  p e r  u n i t  volume. Unfortunately, direct  comparison 

o f  t h e s e  r e s u l t s  wi th  experimental f indings i s  impossible, due t o  the 

u n a v a i l a b i l i t y  o f  t h e  latter. However, i n  t h i s  connection, consider a 

series of experiments reported by Karmis, e t .  a l .  C63 i n  which a suspen- 

s i o n  w a s  pumped through a tube. It was observed t h a t  i n  those cases 

where t h e  s o l i d  phase lagged t h e  f lu id ,  a pa r t i c l e  f r ee  zone.developed 

n e a r  t h e  w a l l .  During these  experaiments, the Saffman El41 condition of 

(Re I k / ( ~ e l p 2  >> 1 was no t  s t r i c t l y  f u l f i l l e d .  The l a t t e r  varied between 

10 a d  100 f o r  run& in which t h e  f ree  zone was observed. How- 

eve r ,  i n  s p i t e  o f  t h i s ,  it would appear reasonable i n  l i gh t  of our 

t h e o r e t i c a l  f i nd ings ,  t h a t  t h e  p a r t i c l e  f r e e  zone was caused by the com- 

b ined  e f f e c t s  of t h e  i n e r t i a l  wal l  e f fec t  and the  slip-shear forces 

which a c t e d  on t h e  p a r t i c l e s  t o  move them towards the  centerline. In 

cases where t h e  p a r t i c l e s  l ead  the  f l u i d ,  the slip-shear forces would 

t e n d  t o  move t h e  p a r t i c l e s  towards t h e  w a l l s  of the  tube. This indeed 

w a s  t h e  case f o r  p a r t i c l e s  located near  the  center of the tube* However, 

P a r t i c l e s  very c l o s e  to t h e  w a l l  migrated away from it. In addition. 

Young . . [211, i n  s i m i l a r  experiments .(and fo r  the case where the part ic les  
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l e ad  t he  f l u i d )  reported migration towards and p a r t i c l e  accumulation a t  . 

t h e  walls .  -Serge and Silberberg l151 performed experiments on d i lu te  
f 
I 

I - suspensions of neu t ra l ly  Buoyant spheres 'and observed t h a t  the par t ic les  

I / 

migrated t o  an equilibrium posi t ion approximately ha l f  way between the 

w a l l  and a x i s  of t h e  tube. Where t h e  two-directional migration consisted 

of p a r t i c l e s  near t he  wall  moving inward, while those near the axis  moved 

outward. 

Recal l  t h a t  t h e  herein predicted two-directional migration of par- 

I t i c l e s  within the  suspension stream r e s u l t e d  from t h e  opposing effects  

I 
( i n  t h e  t ransverse  di rect ion)  of  drag and slip-shear forces.  However, 

because t h e  v e r t i c a l  component of f l u i d  veloci ty  f o r  tube flow is zero, 

- t r anspor t  of p a r t i c l e s  i n  t h e  r a d i a l  d i rec t ion  by means of drag forces 

1 does not occur. Consequently, the phenomena observed by Serge and S i l -  

berberg probably have resu l ted  from t h e  opposing e f f ec t s  of slip-shear 

and wal l  forces .  

F ina l ly  note t h a t  the  problem o f  mixing of two streams presents a 

unique ppportunity t o  experimentally inves t iga te  t he  boundary layer flow 
1 

of a suspension in .  t h e  absence of t h e  w a l l  e f fec t s ,  a s  such it represents , , 

an i dea l l y  sui ted problem f o r  inves t iga t ion  of the  drag, l i f t ,  s l i p -  

I ', 
shear caused p a r t i c l e  migrations. + 
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NOTATION 

q = particle radius 

D = drag force acting on particle ' 

= coefficient in expansion of dimensionless fluid stream 
function 

9(1)(7) = coefficient in expansion of dimensionless particulate 
slip velocity in the y-direction 

t 

h(ir (7) = coefficient in expansion of dimensionless particulate 
stream function, or coefficient in expansion of dimen- 
sionless particulate slip velocity in the x-direction 

k = absolute value of velocity gradient 

K ( ) = coefficient in expansion of dimensionless particulate, a, 'I phase density function 

L = transverse force acting on particle 

p = fluid pressure 

) = coefficient in expansion of dimensionless fluid stream function 

(g) = particle Reynolds number 

t = time 

, = Cartesian velocity components 

X I  = Cartesian coordinates 

X ,  = force per unit volume exerted by particle on fluid 

%= ? X i  = dimensionless transform coordinate in the flow direction 

7 = 9k.j' = dimensionless transform coordinate normal to the flow 
direct ion 

?=7(dc$'= modified dimensionless transform coordinate normal to 
the flow direction 

= slip relaxation length for particulate phase 

/C( = fluidviscosity 

7/ = kinematic viscosity of fluid 
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Table. I: 

Solution of Equations 120 through 122 f o r  the Case of A=1, s=1/2 



Table 2 

Solution of Equations 120 through 122 f o r  Case of h = l ,  s=l  



Table 3 

Solution of Equations 1 2 0  through 122 f o r  the case of h=1, s=3 
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