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Abstmct- A plane multigraph is said to be dual Eulerian if both itself and its dual contain
an Euler path or circuit, and the Euler paths have corresponding edge sequences. In this paper
several properties of plane multigraphs are derived, and a necessary and sufficient condition for
a plane multigraph to be dual Eulerian is given. Although the necessary and sufficient condition
for a multigraph to be Eulerian is somewhat trivial; the necessary and sufficient condition for
a plane multigraph to be dual Eulerian is not. Nevertheless, the question of whether or not a
plane multigraph is dual Eulerian can be answered in time proportional to a linear function of
the number of edges of the graph, and an algorithm which answers this question is presented in
this paper. This theory can be applied to the layout synthesis of functional cells for CMOS VLSI
circuits.
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INTRODUCTION

The problem of identifying plane multigraphs which are dual Eulerian is investigated in this

paper. A dual Eulerian plane multigraph is one in which both itself and its dual contain an Euler

path or circuit, and the Euler paths have corresponding edge sequences. The problem is restricted

to planar multigraphs, since these are the only graphs for which a dual is defined. Furthermore,

it is assumed that a specific imbedding of a planar graph, called a plane graph, is given [1]. The

problem of whether or not a planar graph admits an imbedding which is dual Eulerian is a different

problem, and is not addressed in this paper.

This problem is of interest in the design of Complementary Metal-Oxide Semiconductor

(CMOS) Very Large Scale Integrated (VLSI) circuits [2]. In VLSI design it is desirable to design the

physical implementations of circuits such that they require a minimum amount of silicon area. When

circuHs are represented by undirected multigraphs, dual paths correspond to linear placements of

transistors which require a minimum amount of silicon area [2].

This paper is organized as follows. The necessary mathematical definitions and some pre:

liminary results are presented in the next section. The derivation of the algorithm and the main

results are presented in Section III. The algorithm is specified in pseudo-code and analyzed in

Section IV. An example illustrating the application of the algorithm is presented in Section V, and

the paper is concluded in Section VI.

II DEFINITIONS AND PRELIMINARY RESULTS

f( V, f, E) is an undirected multigraph with a set V of vertices, a set E of edges and a function

f : E --+ P2(V), where P2(V) are the subsets of V of sizetwo [3]. Furthermore, the edgesare labeled

for convenience in representation and presentation. A path p = vOeOvlelv2" ,vn-len-lVn in r is

a sequence of alternating vertices and edges which begins and ends at a vertex, f(ei) = {Vi,Vi+d

(0 S i S n - 1) and ei oj:ej for i oj:j. The length of a path is the number of edges contained in it.

A path is a circuit if Vo= Vn. A multigraph r is said to be Eulerianif and only if it contains a path

which contains every edge of r. A circuit is elementary if each vertex is distinct with the exception

of the first coinciding with the last. The edge set of a circuit in r is a cycle [3]. An elementary cycle

is the cycle of an elementary circuit. r is said to be planar if it can be drawn on the plane with

edges meeting only at the vertices [3]. An imbedding of a planar multigraph on the plane is called

a plane multigraph [1]. A face of a plane graph r is a domain of the plane surrounded by edges of

r such that any two points in it can be joined by a line not crossing any edge [4]. A facial cir'cuit
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Fig. 1. A plane undirected multigraph r and its dual rd.

is a circuit which forms the boundary of a face in r. A facial cycle is the cycle of a facial circuit.

The dual multigraph rd of a plane multigraph r can be constructed by placing a vertex in each

closed face of r and one vertex in the infinite region (i.e., the region of the plane not surrounded

by edges), and connecting two vertices, say Vl and V2, in rd by an edge labeled e if and only if the

edge labeled e in r is on the boundary of the faces of r corresponding to Vl and V2of rd. The edge

sets of rand rd are the same, and the vertices of rd correspond to the faces of r and vice versa. A

plane multigraph r and its dual rd are shown in Fig. 1. Henceforth it is assumed that r is a plane

undirected multigraph. We restrict ourselves to plane multigraphs, since their duals are unique. A

path in r is said to be a dual path if there exists a path in rd with the same edge sequence. For

example, V2d V3TnV4k V69 V2e Vs f V6 is a path in r of Fig. 1, and U2d U3TnU4k Us 9 U6e U7f U6 is a

path in rd. Since these paths have corresponding edge sequences, each one is a dual path. A dual

path is a dual circuit if it is a circuit in both rand rd. A path can be identified by its sequence

of edges, and this alternative means of identification is used throughout the sequel whenever it is

unambiguous or the ambiguity is unimportant. In r of Fig. 1 a e f 9 is a path, but it is not a dual

path since a e f 9 is not a path in rd. Similarly, e a bc is a path in rd, but is not a dual path since

it is not a path in r. r is said to be dual Eulerian if and only if it contains a dual path which
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Fig. 2. Example illustrating that both rand rd being Eulerian is not a sufficient condition for
them to be dual Eulerian.

contains every edge. Of course if r is dual Eulerian, then so is rd. An obvious necessary condition

for r to be dual Eulerian is that both rand rd be Eulerian2. A simple counter example shown in

Fig. 2 illustrates that this is not a sufficient condition.

A submultigmph of a plane undirected multigraph reV, f, E) is a plane undirected multigraph

r'(V', flEI, E'), where V' ~ V, E' ~ E and flEI is the function f restricted to the set E'. A

submultigraph r'(V', flEI, E') of reV, f, E) is a component of r if there does not exist v E V' and

e E E \ E' such that v E f( e). A cocycle in r is a set of edges of r such that the removal of these

edges from r increases the number of components of r. The set of edges incident on a vertex is a

cocycle and is referred to as a vertex cocycle. If the vertex cocycle of v E V is denoted by f*( v),

then

rev) = {e E Elv E f(e)}[3].

An isthmus is an edge which when removed from r increases the number of components of

r (i.e., it is a cocycle of size one). It is assumed that r does not contain any isthmuses, since if

it did, its dual would not satisfy the definition of a graph [3]. That is, the dual of a graph with

2 A well known necessary and sufficient condition for a multigraph to be Eulerian is that it have no more than two

vertices with an odd degree [3].
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isthmuses contains loops (i.e., an edge which is incident on the same vertex at both its ends), and

loops contradict the definition of the function f: E ---+ P2(V),

Two edges ei and ej are said to be in series if ei = ej or 3Vk E V'3'I*(vk) = {ei,ej}

or there exists a path 'Upep Vp+1 ... 'Un-1en-1 'Onsuch that Vi eiVp ep Vp+1 ... Vn-1 en-1 'OneJ VJ or

Vj CjVp Cp Vp+1 ... Vn-1 en-1 'Onei Vi is a path and 11*( Vq)1 = 2, Vq(p ::; q ::; n). Two edges ei and ej

are said to be in parallel if f( ei) = f( ej).

Lemma 1 The ser'ies and pamllel relations are equivalence relations.

Proof: First consider the series relation.

1. It is reflexive by definition.

2. Assume that ei and ej are in series, and without loss of generality assume ei =I ej. There are

two cases which need to be considered.

(a) 3Vk E V'3'1*('Ok) = {ei,ej}. Since {ei,ej} = {ej,ei}, the relation is symmetric.

(b) There exists a path from ei to ej. Since the path is bidirectional, the relation is symmetric.

3. Assume ei and ej are in series and ej and ek are in series. Assume without loss of generality

that f(ei) = {'01,V2}, f(ej) = {'Ol,V3} and f(ek) = {V3,V4}. v2eiVlej'03CkV4 is a path and

11*('01)1 = 2 since ei and ej are in series and 11*('03)1 = 2 since ej and ek are in series. Hence,

ei and ek are in series, and the relation is transitive. The same argument is true if there is a

path between ei and ej and/or ej and ek.

Consider the parallel relation.

1. Clearly f( ed = f( ei). Hence, the relation is reflexive.

2. If f(ed = f(ej), then f(ej) = f(ei)' Hence, the relation is symmetric.

:3. If f(ei) = f(ej) and f(ej) = f(ek), then f(ei) = f(ek)' Hence, the relation is transitive.

0

Let the equivalence classes induced by the series and parallel relations be known as the series

and parallel sets of edges, respectively. A series (respectively, parallel) set of edges in r corresponds

to a parallel (respectively, series) set of edges in rd, and vice versa. Define the series reduction

opemtion on a graph r as the operation of replacing an even (respectively, odd) series set of edges

in r by two (respectively, one) series edges, and the pamllel reduction opemtion as the operation

of replacing an even (respectively, odd) parallel set of edges in r by two (respectively, one) parallel

edges. Define the reduced gmph r r of a graph r as the graph obtained by recursively applying

the reduction operation to r until it can no longer be applied. For example, the reduced graph
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Fig. 3. Examples illustrating graph reduction.

rr in Fig. 3(b) is obtained from r in Fig. 3(a) by applying the series reduction operation, and the

graph r' in Fig. ;3(d) is obtained from r in Fig. 3(c) by applying the parallel reduction operation.

The series reduction operation can be applied to r' in Fig. 3(d) to obtain the reduced graph r r in

Fig.3(e).

'Theorem 2 A graph r is dual Eulerian if and only if its reduced graph r r is dual Eulerian.

Proof: Assume r is dual Eulerian. The proof is by induction on the application of the

reduction operators. Without loss of generality consider a series set of edges in r as shown in

Fig 4(a). rd has a corresponding parallel set of edges as shown in Fig 4(b). There are two

possibilities that need to be considered for the basis case.

1. Without loss of generality assume the dual path V1 e1 V2 e2 V3 ... Vk ek Vk+1 is contained in the

dual Euler path of r. If k is even, then the corresponding dual path contained in the corre-

sponding dual Euler path in rd is either U1 e1 U2 e2 U1 ... U2 ek U1 or U2 e1 U1 e2 U2 ... U1 ek U2.

Without loss of generality assume it is U1 e1 U2 e2 U1 ... U2 ek U1. If the even series (respec-

tively, parallel) set of edges in r (respectively, rd) is replaced by two edges, say ex and ey, in

series (respectively, parallel) to obtain r1 (respectively, r~), then the dual path in r1 (respec-

tively, rn is Vt ex V2ey Vk+1(respectively, U1ex U2ey U1)' If r is dual Eulerian, then r 1 is dual
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Fig. 4. Dual plane multigraphs with general series and parallel sets of edges.

Eulerian. If k is odd, then the corresponding dual path contained in the corresponding dual

Euler path in rd is either UI e1 U2e2 UI ... U1ek U2 or U2e1 U1e2 U2 ... U2ek UI. Without loss

of generality assume it is UI e1 U2e2 UI ... UI ek U2. If the odd series (respectively, parallel) set

of edges in r (respectively, rd) is replaced by a single edge, say ez, to obtain r1 (respectively,

r~), then the dual path in r1 (respectively, r~) is VIez Vk+I (respectively, UIez U2). If r is

dual Eulerian, then rI is dual Eulerian.

2. The dual Euler path in r begins at some vertex Vi (2 :s; i :s; k). Without loss of

generality assume the dual Euler path is Vi ei+I Vi+I ... vk ek Vk+I ... VIeI V2 ... Vi-1 ei Vi.

If k is even, then without loss of generality assume the dual Euler path in rd is

U1 ei+ 1 U2 . . . UI ek U2 ... U2 e1 UI ... U2 ei U1. If the even series (respectively, parallel) set of

edges in r (respectively, rd) is replaced by two edges, say ex and ey, in series (respectively,

parallel) to obtain r1 (respectively, r~), then the dual Euler path in rI (respectively, rn is

V2eyV3 ",v1exv2 (respectively, U1eyU2 ",u2exuI). Ifr is dual Eulerian, then r1 is dual

Eulerian. If k is odd, then without loss of generality assume the dual Euler path in rd is

U1 ei+1 U2 ... U1 ek U2 . .. U2 eI U1 ... U1 ei U2. If the even series (respectively, parallel) set of

edges in r (respectively, rd) is replaced by a single edge, say ez, to obtain r 1 (respectively,

r~), then the dual Euler path in r} (respectively, r1) is either Vlez V2.. . or ... VI ez v2 (re-

6
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spectively, ul ez u2 ... or ... ul ezU2)' If r is dual Eulerian, then rl is dual Eulerian.

For the induction hypothesis assume that the reduction operations have been applied re-

cursively to r and the result is a graph rr-l and if r is dual Eulerian, then rr-l is dual Eulerian.

By the same argument as was used to prove the basis case, rr, which is obtained from rr-l by

applying the reduction operations, must be dual Eulerian if r r-l is dual Eulerian. Hence, if r is

dual Eulerian, then r r is dual Eulerian.

Suppose r is not dual Eulerian. We claim that repeated applications of the series and parallel

reduction operators cannot produce a graph r r which is dual Eulerian. If r is not dual Eulerian,

then there exists at least two edge disjoint dual paths in r which do not share end vertices. An

application of the parallel reduction operation does not change the number of vertices in r, and

therefore cannot cause two disjoint dual paths to be joined. An application of the series reduction

operation eliminates vertices of degree two, but does not cause any two edges to be incident on the

same vertex if they were not already. Hence, if r r is dual Eulerian, then r is dual Eulerian.

An interesting special case of the previous theorem is stated in the following corollary.

0

Corollary 3 If r r is /(2, then r is dual Eulerian.

Corollary 3 is not a necessary condition for a graph to be dual Eulerian, since the graph of

Fig. 5 is dual Eulerian, but its reduced graph is not /(2.

III IDENTIFYING DUAL EULERIAN GRAPHS

It is assumed throughout this section that r is a reduced graph. The determination of dual

paths in a plane undirected multigraph r requires the traversal of edges in both itself and its dual

in corresponding sequences. Suppose VI el V2 e2 V3 e3 V4 is a dual path in rand Ul el U2 e2 U3 e3 U4 is

its corresponding dual path in rd. These dual paths can be extended in length if and only if there

exists an edge ei E E such that ei E (J*(V4)n j*(U4))U (J*(Vl)nj*(Ul)) and ei f- el, ei f- e2 and

ei f- e3. Therefore, the intersections of vertex cocycles of rand rd indicate which edges can be

adjacent in a dual path of r.

Let R denote the set of vertex cocycles of a graph r(V,f,E) (i.e., R = {J*(v)lv E V}).

Similarly, let Rd denote the set of vertex cocycles of rd. Define the set T as follows:

T = {x n ylx E R; y E Rd}.

That is, take the intersection of all possible pairs of elements of Rand Rd and let these be the

elements of the set T.
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Fig. 5. A pair of dual plane multigraphs.

Lemma 4 All nonempty elements of T have cardinality two.

Proof: The set of vertex cocycles Rd of rd corresponds to the set of facial cycles of r.

Therefore T is formed by taking the pairwise intersections of vertex cocycles and facial cycles

in r. Choose some vertex v E V and facial cycle ( in r. If v is not in the facial circuit which

corresponds to the facial cycle (, then the intersection is empty. If v is contained in the facial circuit

corresponding to (, then the intersection must have exactly two elements because ( is elementary.

0

The elements of T represent sets of edges which are incident on a common vertex in both

rand rd. Suppose {a, b} is an element of T for some rand rd. This means that there exists a

dual path in which a and b are adjacent. Now it must be determined which edges can be placed

adjacent to a and b such that a larger dual path can be constructed. For this purpose a table is

constructed which is known as a successor table. The successor table is constructed beginning with

all possible dual paths oflength two. This information can be obtained from T. Each element of T,

say {a, b}, is ordered in two ways, (a -+ b) and (b -+ a). These two orderings represent the traversal

of a then band b then a, respectively. In order to determine which edge can be appended to the

dual path (a -+ b), the possible successors in rand rd are listed and their intersection is ta.ken.
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Table 1. The successor table for the plane multigraphs shown in Fig. 5.

This intersection represents the set of edges which may be appended to (a -4 b) in order to create

a dual path of length three. The successor table for the dual plane multigraphs shown in Fig. .')

is given in Table 1. Placed in the first column of the successor table are two ordered pairs (each

in a separate row) for each element in T. Placed in the second (respectively, third) column are

the possible successors of the ordered pair in r (respectively, rd). The intersection of the second

and third columns is placed in the fourth column, and represents the edges which may succeed the

ordered pair in a dual path (Le., a successor common to both rand rd). The sets in the second,

third and fourth columns of the successor table are referred to as the r -successors, rd -successors

and dual-successors, respectively. For the example shown in Fig. 5 vertices V2 of rand UI of rd

contribute the element {a,c} E T (i.e., J*(V2)nJ*(UI) = {a,c} E T). This element of Tcontributes

two rows to the successor table as shown in rows 9 and 10 of Table 1.

The ordered pairs in the first column of the successor table represent all possible dual paths

9

ordered pairs r -successors rd-successors dual-successors
1 (a g) {d,f,h} {h} {h}
2 (g -4 a) {b,c,e} {b} {b}
3 (a -4 b) {c, e} or {g, h} {e,f,h} {e} or {h}
4 (b -4 a) {c,e} or {g,h} {c, d, g} {c} or {g}
5 (g -4 h) {d, f} or {a, b} {b,e,f} {f}or{b}
6 (h-4g) {d, f} or {a, b} {a,c,d} {d} or {a}
7 (b -4 h) {d,f,g} {g} {g}
8 (h -4 b) {a,c,e} {a} {a}
9 (a -4 c) {d} {d,e,f} {d}

10 (c-4a) {b,g,h} {b} {b}
11 (c -4 e) {J} {b,f,h} {J}
12 (e -4 c) {d} {a,d,g} {d}
1:3 (b -4 e) {J} {c,d,f} {J}
14 (e -4 b) {a,g,h} {a} {a}
15 (c -4 d) {J,g, h} {a, g} or {e, f} {g} or {J}
16 (d-4c) {a, b, e} {a,g} or {e,f} {a} or {e}
17 (e-4J) {d,g,h} {b,h} or {c,d} {h} or {d}
18 (J -+ e) {a,b,c} {b,h} or {c,d} {b} or {c}
19 (d-+g) {a, b, h} {h} {h}
20 (g -+ d) {c} {c,e,f} {c}
21 (d -4 J) {e} {b,e,h} {e}
22 (J -4 d) {c} {a, c, g} {c}
2:3 (J-4h) {a,b,g} {g} {g}
24 (h -4 f) {e} {c,d,e} {e}



of length two. The dual-successors of an ordered pair are a set of edges that can be apppnded to

the dual path of length two to form a dual path oflength three. Suppose (x y) is an ordered pair

of a successor table and {z} is its dual-successor. x y z is a dual path of length three, and therefore

y z must be a dual path of length two. Since all dual paths of length two are represented in the

successor table, the ordered pair (y z) must be in the table. The ordered pair (y z) has a set

of dual-successors, so the dual path can be extended. Before taking this development further, let

us analyze one exceptional case.

The case in which two edges are in parallel requires special consideration, since the ordered

pair does not identify a unique vertex at which the dual path ends. Two edges in parallel are

referred to as a two-element circuit. For example in r of Fig. 5, (a -- b) can imply either the dual

path 'VI a V2 b VIOl' 'V2a 'VI b V2. Since it is desirable that an ordered pair identify a unique dual path,

the ordered pairs corresponding to two-element circuits are split in two so that each identifies a

unique dual path of length two. For example, rows 3, 4, 5, 6, 15, 16, 17 and 18 of the successor

table shown in Table I must be split into two rows each. A new table is constructed by splitting

these rows and is known as the augmented successor table. The augmented successor table derived

from the successor table in Table I is shown in Table II.

In the case where an entry in the first column of the successor table corresponds to a

two-element circuit in either r or rd there are two sets in either the second or third column

corresponding to the two possible ways to traverse the two-element circuit. Consider the two-

element circuit 'VIa V2bVI in the graph of Fig. 5. The r -successor of (a -- b) may be either {c, e}

or {g, h} depending on whether (a -- b) is traversed starting at V2 or VI, respectively. Rows 3 and

4 of Table I are contributed by the two-element circuit {a, b} E T. The edge b is the dual-successor

of the ordered pairs (g -- a),(g -- h),(c -- a) and (J -- e) (rows 2, 5,10 and 18 of Table I,

respectively). The dual path a b is contained in the dual paths gab and cab. Concatenating the

dual paths gab and cab with the dual-successors of (a -- b) yields the edge sequences gab e, gab h,

cab e, and cab h. gab hand cab e are dual paths, but gab e and cab h are not. Therefore, the

ordered pair (a -- b) is split into two ordered pairs (a -- b)' and (a -- b)/I with dual-successors {h}

and {e}, respectively (rows 17 and 18 of Table II, respectively), and the dual-successors of (g -- a)

and (c ;- a) are updated to {b}' and {b}/I, respectively (rows 2 and 6 of Table II, respectively).

Similarly, all other two-element circuits are split.

Lemma 5 The dual-successor of an ordered pair in the augmented successor table is unique.

Proof: Assume the ordered pair is not a two-element circuit. Given an arbitrary ordered

pair (x -- y), without loss of generality assume it corresponds to the dual path VIx V2YV3 in

10



Table II. The augmented successor table derived from the successor table shown in Table I.

11

ordered pairs r -successors pt-successors dual-successors
1 (a--+g) {d,f,h} {h} {h}'
2 (g --+a) {b,c,e} {b} {b}'
3 (b--+h) {d,f,g} {g} {g}'
4 (h--+b) {a,c,e} {a} {a}'
5 (a--+c) {d} {d,e,J} {d}'
6 (c--+a) {b,g,h} {b} {b}/I
7 (c --+e) {J} {b,f,h} {J}'
8 (e--+c) {d} {a,d,g} {d}/I
9 (b --+e) {J} {c,d,J} {J}/I

10 (e--+b) {a,g,h} {a} {a}"
11 (d--+g) {a,b,h} {h} {h}/I
12 (g --+d) {c} {c,e,J} {c}'
13 (d--+1) {e} {b, e, h} {e}'
14 (f --+d) {c} {a, c, g} {c}/I
15 (f--+h) {a,b,g} {g} {g }"
16 (h --+1) {e} {c,d,e} {e}/I
17 (a--+b)' {g,h} {e, f, h} {h}
18 (a --+b)" {c,e} {e,f,h} {e}
19 (b--+a)' {g,h} {c,d,g} {g}
20 (b --+a)" {c,e} {c,d,g} {c}
21 (g --+h)' {a, b} {b,e,J} {b}
22 (g --+h)/I {d,J} {b,e,J} {J}
23 (h--+g)' {a,b} {a, c, d} {a}
24 (h --+g)" {d,J} {a, c, d} {d}
25 (c --+d)' {J,g,h} {a,g} {g}
26 (c --+d)/I {J,g,h} {e,J} {J}
27 (d--+c)' {a, b, e} {a,g} {a}
28 (d --+c)/I {a,b,e} {e,J} {e}
29 (e --+1)' {d,g,h} {c,d} {d}
30. (e --+1)" {d,g,h} {b,h} {h}
31 (f --+e)' {a,b,c} {c,d} {c}
;32 (f --+e)" {a,b,c} {b,h} {b}



(a - g) (a- c) (c- e)

Fig. 6. Continuity graph corresponding to the augmented successor table given in Table II.

rand UIXU2YU3 in rd. Since y E (J*(V3)nJ*(U3)) andlJ*(v3)nJ*(U3)1 = 2 (Lemma 4),

I(J*( V;3)\ {y}) n (J*( U3)\ {y})1 = 1. Hence, the dual-successor is unique.

Assume the ordered pair is a two-element circuit. Using the same argument as in the

is split, the dual-successor is unique.

preceding paragraph, the dual-successor is unique for each starting vertex. Since the ordered pair

0

A directed graph A(V, A), henceforth known as the continuity graph, is constructed where

V is the set of vertices and A the set of directed arcs. The continuity graph is constructed in such a

way that there is an one-to-one correspondence between the vertices of A and the ordered pairs of

the augmented successor table. Hence, for simplicity, in the following discussion the ordered pairs

are used to denote the corresponding vertices of A. An arc is directed from vertex (el ~ e2) to

vertex (e:3 ~ e4) if and only if e2 and e3 are identical edges in rand {e4} is the dual-successor of

(el ~ e2)' The arc indicates that it is possible to traverse the edges el, e2 = e3 and e4 in rand rd

in that order. The continuity graph constructed from the augmented successor table of Table II is

shown in Fig. 6.

A chain in a directed graph A is a sequence of vertices VI V2 ... Vn such that there is an arc

from Vi to Vi+l for 1 :::; i < n. A chain is said to be closed if VI = Vn. A chain in the continuity

12



graph A corresponds to a sequence of edges traversed in r and rd. A maximal chain is a chain

whose set of vertices is not properly contained in the set of vertices of any other chain. For example,

(a ~ c)(c -+ d)' (d -+ g) is a chain in the continuity graph of Fig. 6 and (a -+ g) (g -+ h)' (h ~

b) (b -+ a)' is a maximal chain.

The mirror image of a chain VI v2 ... Vk in a continuity graph is the chain v~ v~-1 ... v~

where Vi and v: contain the same edge labels with opposite ordering (e.g., if Vi = (a -+ b), then

v: = (b -+ a)).

Lemma 6 For' every chain in a continuity graph A, there is a mirror image of that chain also

contained in A.

Proof: Consider an arbitrary ordered pair (a ---+ b) and its row in the augmented successor

table. Suppose its dual-successor is c. Then the ordered pair (b ---+ c) exists in the first column of

the table, and (a ---+b)(b ---+c) is a chain in A. It must be shown that (c ---+b)(b -+ a) is also a

chain in A. Since (b ---+c) is an ordered pair in the first column of the table, so is (c -+ b). The

r -successors of (a ---+b) are the elements of the vertex cocycle of r which contains b and not a

with the element b removed. That is, it is the set J*(x) \ {b} such that bE J*(x) and art J*(x).

Similarly, the r-successors of (c ---+b) are the elements of the vertex cocycle J*(y) of r less b, where

b E J*(y) and c rt J*(y). Since b E J*(x) n J*(y) and r has no loops, x :f y. By hypothesis, a and b

must be in the same vertex cocycle of r for some v E V. b is contained in only two vertex cocycles

(i.e., If(e)1 = 2, "Ie E E) and art J*(x), therefore a E J*(y). Hence a is in the set of f-successors

of (c ---+b). That is, r contains the subgraph shown in Fig. 7(a), and rd contains the subgraph

shown in Fig. 7(b). A similar argument shows that a is in the set of rd-successors of (c ---+b) in the

augmented successortable and therefore (c ---+ b)(b---+ a) is a chain in A. 0

For example, the chains (a ---+ g) (g ---+ h)' (h ---+b) (b ---+ a)' and (a ---+ b)' (b ---+ h) (h ---+

g)' (g ---+a) in the continuity graph of Fig. 6 are mirror images of one another. The mirror image

of a chain corresponds to the traversal of edges in f and rd in the opposite direction.

Lemma 7 Every vertex in a continuity gr'aph A has exactly one incoming arc and one outgoing

arc.

Proof: Choose an arbitrary vertex v E V. From Lemma 5 it is known that v has one outgoing

arc. From Lemma 6 it is known that there is a corresponding v' E V that is the mirror image of v.

Since v has one outgoing arc, v' has only one incoming arc. It is also known from Lemma 5 that v'

has only one outgoing arc; hence, v has only one incoming arc. 0

13
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Fig. 7. Subgraphs illustrating the proof of Lemma 6.

Corollary 8 A chain in a continuity graph A is maximal if and only if it is closed.

Pmof: If a chain in A is closed, then by Lemma 7 this chain must be maximal. Suppose

there exists a maximal chain in A which is not closed. There must be a vertex in A which has an

incoming arc and no outgoing arc which is a contradiction to Lemma 7. 0

The property of the continuity graph A stated in Lemma 7 makes the identification of

chains in A trivial. Since each chain is contained in a maximal chain, the set of all maximal chains

is sufficient to characterize the edge relationships of interest. A dichotomy of the vertex set of A is

induced by the mirror image property. The dichotomy is obtained by placing in opposite sets chains

which are mirror images of one another. Since the direction in which edges appear in the chains

is not important, it is sufficient to analyze only one set of the dichotomy. Let the chains which

connect the vertices of one set of the dichotomy be known as the representative set of maximal

chains.

A dcsircd chain in a continuity graph A is a chain, say (eo -+ Cl) (Cl -+ e2) ... (cn -+ Cn+l),

such that Vi, 1 ::; i ::; n, Vj, 1 ::; j < i and Vk, i < k ::; n, ej .::pek. A maximal desired chain is a

desired chain of maximum length.

Lemma 9 There is an one-to-one correspondence between desired chains of A and dual paths of r.

14



Proof: Suppose there is a desired chain in A that does not correspond to a dual path in r.

There are two possibilities: either there is an arc in A for whkh there is no sequence of edges in r

or rd or the chain in A corresponds to a sequence of edges in r or rd which traverses the same edge

more than once. The former case cannot occur by the construction rules of the continuity graph.

The latter case is a sequence of edges which is not a desired chain.

Suppose there is a dual path in r, say el e2 ... en, for which there is no corresponding desired

chain in A. For some ei (1 ~ i ~ n - 2), the dual path ei ei+l ei+2 is not a desired chain in A. The

ordered pair (ei --+ei+l) is in the augmented successor table, since ei and ei+l must be incident on

a common vertex. From Lemma 7 it is known that every ordered pair has a dual-successor and it is

unique. Furthermore, ei+2 cannot coincide with either ei or ei+l even if ei and ei+l are contained

in a two-element cycle. Hence, ei ei+l ei+2 must be a desired chain in A. 0

The dual path corresponding to the desired chain (eo --+ ed (el --+ e2) . . . (en --+ en+1) is

el e2 ... en. The above derivation has led to the major result of this paper which is presented in

the next theorem.

Theorem 10 r is dual Eulerian if and only if there exists a desired chain which contains every

edge of r'.

P7'Oof: Assume there exists a desired chain which contains every edge. From Lemma 9 it

is known that every desired chain has a corresponding dual path in rand rd. Hence, rand rd

contain a dual Euler path.

Suppose there is no desired chain which contains every edge. From Lemma 9 there is a

desired chain corresponding to every dual path. Hence, there is no dual path which contains every

edge. 0

Theorem 2 in conjunction with Theorem 10 guarantee the successful identification of dual

Eulerian plane multigraphs.

IV ALGORITHM REALIZATION AND ANALYSIS

The input to the algorithm is a spectfication of a plane connected undirected multigraph.

The reduced graph can be obtained easily by searching for vertices of degree 2 in rand rd, and

applying the series and parallel reduction operations. It is not necessary to identify parallel edges,

since a parallel set of edges in r (respectively, rd) corresponds to a series set of edges in rd

(respectively, r). The imbedding of a multigraph on the plane may be specified by indexing the

edges incident on each vertex in the clockwise direction. The indices are assigned in the clockwise
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Fig. 8. Partial graph used in the explanation of procedure Determine-Dual-Successors.

direction with the first index being zero. Each edge has two indices assigned to it; one for each

vertex it is incident on. The index of the edge e incident on the vertex v is denoted by index( v, e).

For example in the partial graph shown in Fig. 8, index( VI, el) = 1. Each edge appears in exactly

four elements of T, except for edges which are contained in two-element cycles; these edges appear

in three elements of T. Consider the partial graph shown in Fig. 8. The elements of T in which the

edge e2 appears are {e2, ed, {e2, e3}, {e2, es}, and {e2, e6}' These four elements can be determined

in constant time due to the data structure used for a plane graph. Two edges el and e2 are said

to be neighbors of one another if and only if index( v, ed = (index( v, e2) + 1) mod 11*(v)1 or

index(v,el) = (index(v,e2) -1) mod 11*(v)l. The algorithm to form the set Tis shown in Fig. 9.

Lemma 11 ITI = 2JEI- k + 1, wherek is the number of two-element circuits.

Proof: Each v E V contributes exactly 11*(v)1 elements to T. For each v E V these elements

are unique except for vertices which are contained in two-element circuits. The same two element

set of edges in T is contributed by different vertices if the vertices are contained in a two-element

circuit. In addition, the empty set is an element of T. Hence,

ITI = L: 1f*(v)1 - k + 1.
VvEV
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Procedure Oetermine_TO{

for (each e E E){

for (each neighbor, say ei of e){

if (ei is not marked)
add {e, ei} to T;

}
mark e;

}
}

Fig. 9. Algorithm for determining the set T.

Since

L 1j*(v)1 = 2\EI[3],
V'vEV

ITI = 21EI - k + 1.

0

Consider the example shown in Fig. 5. The neighbors of the edge b in r are a,

e and h. Therefore, during the construction of T the sets {b, e}, {a, b} and {b, h} are

placed in T and another edge is considered. The neighbors of the edge a in rare b,

c and g. The sets {a, c} and {a, g} are placed in T. Since b is marked, {a, b} is not

placed in T a second time. This process is repeated for each edge and the result is T =

{{a, g}, {a, b}, {g, h}, {b, h}, {a, c}, {c, e}, {b, e}, {c, d}, {e, J}, {d,g}, {d, J}, {f, h}}. This algorithm

is clearly O(IEI), since the number of neighbors of an edge is constant.

Lemma 12 The augmented successor table contains exactly 4lElrows.

Proof: From Lemma 11 it is known that ITI = 21EI - k + 1, where k is the number of

two-element cycles. Each element of T (except the empty set) contributes two rows to the successor

table. Therefore the successor table has 41EI- 2k rows. Each two-element cycle contributes two

rows to the successor table and each row is split when the augmented successor table is formed.

Hence, the number of rows in the augmented successor table is 41EI- 2k + 2k = 41EI. 0

The dual-successors ofthe ordered pairs are determined using the algorithm shown in Fig. 10.

In the graph of Fig. 5, the dual-successors of the ordered pairs (a -+ g) and (g -+ a) are hand b,

respectively. The dual-successors of the ordered pairs (b -+ h) and (h -+ b) are 9 and a, respectively.

The body of the for loop in the algorithm Determine-Dual-Successors is executed in constant

17



Proced ure Determine_Dual-SuccessorsO{

for (each {ei,ej} E T){ I*Fig. 8*1
if ( {ei, ej }is a two-element cycle) {

split it into two elements and mark the direction of traversal in each;
place one of them in T so that it gets processed in a successive iteration;

}
if(index(v1,ej) = (index(v1,ei) + 1) mod 1J*(V1)1){

I*ei and ej correspond to e1 and e'2 in Fig. 8, respectively* 1
the dual-successor of (ej -+ ei) is the edge e[ such that
(index(v3,e[)+ 1) mod 1J*(V3)1 = index(v3,ei);
I*e[ corresponds to e4 in Fig. 8*1
the dual-successor of (ei -+ ej) is the edge e[ such that
(index(v'2,eL) - 1) mod 1J*(V'2)1= 'index(v2,ej);
I*e[ corresponds to es in Fig. 8*1

}
else{

I*ei and ej correspond to e3 and e2 in Fig. 8, respectively* 1
the dual-successor of (ei -+ ej) is the edge e[ such that
(index(v2,q)+ 1) mod 1J*(V2)1= index(v2,ej);
I*e[ corresponds to e6 in the graph of Fig. 8*1
the dual-successor of (ej -+ ei) is the edge e[ such that
(index(v4,e[) - 1) mod 1J*(V4)1= index(v4,e;);
I*e[ corresponds to e7 in Fig. 8*1

}
}

}

Fig. 10. Algorithm for determining the dual-successors.
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Proced ure Determine_Representative_SeLof _MaximaLChains(){

while (an unvisited ordered pair exists in the augmented successor table){
Choose any unvisited ordered pair, say (a -t b), and mark it and its mirror image visited;
(x -+ y) = (a -t b); j*assign (a -+ b) to the temporary variable (;I:-+ y)*j
do{

choose the dual-successor of (x -+ y), say z;
(J; -+ y) = (y -+ z);
mark (y -+ z) and (z -+ y) visited;

}while((a -+ b) i= (x -+ y));
record the maximal chain;

}
}

Fig. 11. Algorithm for determining the representative set of maximal chains.

time, and the body ofthe loop is executed once for each element ofT. Therefore the time complexity

of the procedure is 0(1£1).

Consider the augmented successor table given in Table II. The procedure Deter-

mine-Representative_SeLoLMaximaLChains works as follows. The ordered pair (a -+ g)

is chosen as the starting point of the first maximal chain. The ordered pairs (a -+ g) and (g -+ a)

are marked visited. Since the dual-successor of (a -+ g) is {hY, the next ordered pair in the

chain is (g -+ h)'. The ordered pairs (g -+ h)' and (h -+ g)' are marked visited and the next

ordered pairs in the chain are (h -+ b), and (b -+ a)'. Since (a -+ g) is the next ordered pair and

it has already been visited, the maximal chain is complete. Not all the ordered pairs have been

visited so the body of the outer while loop is repeated. The next unvisited ordered pair in the

augmented successor table is (a -+ c). Beginning with this ordered pair yields the maximal chain

(a -+ e)(e -+ d)'(d -+ g)(g -+ h)//(h -+ 1)(1 -+ e)//(e -+ b)(b -+ a)//. The procedure continues

until all the ordered pairs in the table have been marked visited.

Lemma 7 and Theorem 8 guarantee the correctness of the procedure Deter-

mine-Representative_Set_oLMaximaLChains. It is clear that the procedure Deter-

mine-Representative_SeLoLMaximaLChains has time complexity 0(1£1), since it visits ex-

actly half the rows of the augmented successor table and performs a constant time task at each

row.

Since an edge of r appears in at most four elements of T, it appears in at most eight vertex

labels in the continuity graph A, and therefore in at most four vertex labels in the representative
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(a - ekl) (ek3 - el). (el- ek6). (ek2 - el)

(ekS - a) (el - ek4)

Fig. 12. A maximal chain containing a repeated edge, namely eI'

set of maximal chains. Hence, an edge in r can appear at most four times in a maximal chain.

Based on these observations the set of maximal desired chains is obtained from the representative

set of maximal chains as follows. Choose a maximal chain from the representative set of maximal

chains, say VI V2 ... Vn VI' A desired chain is a subchain of a maximal chain which contains no

repeated edges. A subchain is a chain which is contained in another chain. Therefore, a desired

chain is maximal if it begins with an edge which appears twice in the maximal chain, and ends just

prior to an edge which is already contained in the desired chain. The maximal desired chains are

determined using a constructive algorithm as follows. Begin a maximal desired chain at a vertex

Vi = (ek -+ ep) (1 :S i :S n) for which there is another vertex Vj = (q -+ ek) (1 :S j :S nand

j oj: i - 1) for arbitrary p and t. That is, the label ek appears four times in the maximal chain.

The maximal desired chain is Vi Vi+I Vi+2 ... Vk, where Vk is of the form (ekj -+ et) and there exists

Vm = (ek2 -+ et) for some Tn (i:S Tn:S k - 1) and some arbitrary ki (i = 1,2) (see Fig. 12). Begin

construction of the next maximal desired chain at Vm+I = (e[ -+ ek3) for arbitrary k3. Repeat

this until the first maximal desired chain constructed from this maximal chain is repeated. If each

repeated edge has been used as the start of a maximal desired chain, then choose a new maximal

chain and repeat the outermost loop of the algorithm; otherwise, choose a repeated edge which has
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ProcedureDetermine_M aximaLDesired_Chains(){

for (each maximal chain in the representative set of maximal chains){
if (the maximal chain is of the form..., (ei --+ ei+d, (ei+1 -T ei+2),"" (ej --+ei+1),

(ei+1 -T ej+1),' . .){ j*it has a repeated edge, namely ei+1*j
while ( 3ei+1 which is not the start of a maximal desired chain){

choose an ei+1 arbitrarily;
(y --+ z) = (ei+1 --+ ei+2);
do{

(m --+ n) = (y --+ z);
while (n -::Jek+1,\I(ek --+ ek+d E MDC)
j*M DC is the maximal desired chain currently being constructed* j

(m --+ n) = (n -T ed;
(y --+ z) = (Ck+1 --+ Ck+2);

}while ((y --+ z) -::J(ei+1 --+ei+2));
}

}
else

the maximal chain is a maximal desired chain;
}

}

Fig. 13. Algorithm for determining the maximal desired chains.

not been used as the start of a maximal desired chain and continue. If a repeated edge does not

exist in the maximal chain, then the maximal chain is a maximal desired chain. The algorithm is

shown in Fig. U. The maximal desired chains for the example of Fig. 5 are a 9 h b, a c d 9 h f Cb

and c c f d. Since the maximal desired chain a c d 9 h f c b contains every edge, the graphs shown in

Fig. 5 are dual Eulerian.

The maximal chains are stored as linked lists of pointers to the data structures representing

the edges. Each edge appears exactly twice in the set of maximal desired chains and each existence

is a pointer to the same data object. Therefore, when the data structure of an edge is updated, the

change is reflected in every instance of that edge. The maximal desired chains are recorded as a

pair of pointers to the start and end positions in the maximal chain from which it is derived. The

first task performed by the procedure Determine..MaximaLDesired_Chains is the search for

the starting point of a maximal desired chain. This task is performed once for each maximal chain

and traverses each link in a maximal chain at most once; hence, this task requires O(IEI) time.

Associated with each edge is an index which is initialized to the maximum positive integer. The

starting position of a maximal desired chain being constructed is assigned an index of zero, and

21



a pointer is recorded to this position. The links of the maximal chain are traversed assigning to

each edge an index one greater than the previous edge. If an edge is traversed for which its index

is less than the edge previously traversed, then this edge already exists in the current maximal

desired chain and the maximal desired chain terminates. Contained in the data structure for each

edge are two pointers, one to each instance in the set of maximal chains. Hence, the start of the

next maximal desired chain is obtained in constant time and the traversal of edges continues at

the end of the maximal desired chain previously completed. This clever use of pointers results

in an algorithm which visits each link of the maximal chains only once, and performs a constant

amount of work at each link. Hence, the procedure Determine-MaximaLDesired_Chainshas

time complexity O(IEI).

Theorem 13 The ovemll time complexity of the algorithm which identifies dual Eulerian plane

multigmphs is O(IEI).

v ApPLICATION OF THE THEORY

In the design of functional cells for CMOS VLSI circuits it is desirable to physically imple-

ment each functional cell such that it requires a minimum amount of area [2]. For example, the

CMOS functional cell shown in Fig. 14(a) can be physically implemented as shown in Fig. 14(b);

however, if the dual Eulerian theory presented in this paper is applied, then it can be implemented

as shown in Fig. 14(c). The reduction in area due to the application of the dual Eulerian theory is

significant.

VI CONCLUSIONS

It has been shown in this paper that the question of whether or not a plane undirected

multigraph is dual Eulerian can be answered in a time proportional to a linear function of the

number of edges in the graph, and an algorithm has been presented which answers this question.

Interesting properties of plane multigraphs have been presented and can be summarized as follows.

1. A plane undirected multigraph r is dual Eulerian if and only if its reduced graph r T is dual

Eulerian (Theorem 2).

2. A dual path of length two can be extended in a unique way (Lemma 5).

3. A plane undirected multigraph r is dual Eulerian if and only if there exists a desired

which contains every edge of r (Theorem 10).

4. The set of maximum length dual paths Can be computed in linear time (Th1:lor1:l11113).

chain
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Fig. 14. (a) A CMOS functional cell, (b) a physical implementation of the cell and (c) a physical
implementation of the cell after applying the dual Eulerian theory.
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The question of whether or not a planar multigraph admits an imbedding which is dual

Eulerian is interesting. Although an imbedding of a planar multigraph can be computed efficiently,

it is not known whether or not all possible imbed dings of a planar multigraph can be computed

efficiently. That is, the number of imbed dings is not easily countable for general planar multigraphs.

Of course the imbedding, and hence the dual, is unique for triconnected planar multigraphs [3].
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