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RADIATION HEAT TRANSFER IN AN ABSORBING MEDIUM

BOUNDED BY A SPECULAR REFLECTCRl)

By R. D. Cess and A, E, Sotak, Stony Brook, N. Y., U.S.A.2>

1, INTRODUCTION

In analyziﬁg radiation heat transfer within a medium which
absorbs and emits thermal radiation, a rather large number of
assumptions are conventionally employed. One of these is that
the bounding surfaces are diffuse reflectors, and the purpose of
the present note is to investigate a simple situation involving
a bounding surface which reflects in a specular rather than
diffuse manner.

The physical model and coordinate system are illustrated in
Figure 1, and this consists of two infinite parallel plates sepa-
rated by an absorbing and emitting medium. The bottom plate is
assumed to be isothermal, gray, a diffuse emitter and a specular
reflector. For simplicity the upper plate is taken to be an iso-
thermal black surface, and the following assumptions regarding

the absorbing medium will be employed:
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1. The medium is gray with an index of refraction
of unity and an absorption coefficient which is
independent of temperature.

2. Scattering is negligible.

3. Radiation is the sole mode of energy transfer.

It should be noted that in the absence of an absorbing
medium the net heat transfer between plates will be independent
of whether the lower plate is a diffuse or specular reflector [1].
Thus, the present physical model is one which isolates the effect
of surface reflection characteristics upon radiation transfer

within the medium.

2. Results for Diffuse Reflection

Before proceeding with the analysis in which surface 1 is a
specular reflector, it will be convenient to briefly summarize
the equations which apply to the analogous situation where sur-
face 1 reflects in a diffuse manner. Let €& denote black-body
emissive power (& = 7% where O0° is the Stefan-Boltzmann con-
stant and T is absolute temperature), Z denote the radiation
heat flux within the medium, and K, denote the radiosity of the
lower surface (i.e., the sum of emitted and reflected radiation
from surface 1). Further, dimensioniess quantities will be de-~

fined as

— e - e,z_ - ??”
P = >—= QU= z-e;




The expression for the radiation heat flux ﬁ; is given
in a number of references, for example [2] and [3], and in

dimensionless form is

r %
Q = 260 + 2] PHE(-Adr - 2§ eWEF-T)Ir @

where 77 =ay , T, =alL , a is the absorption co-
efficient of the medium, and E;(f) is the exponential
integral

!
E,() = S exp (- Z) " F el
(o]

The equations governing the emissive power profile @%&0 , the

radiation heat flux @ , and the radiosity K, , are as follow:

Emissive power profile;

% |
29(r) = E(r) + ) o) E (I7-7]) dt (22)

(o]

Radiation heat flux

- %
Q = /-2 emE(r) T (20)
(=}
Radiositys;

7?,—‘6’,_ - €

IEATRRN ‘ (2¢)
ST €+ (1-€)Q




where € is the emissivity of suxrface 1.

Equation (2a), which is an integral equation describing
‘Péf) l, is obtained by differentiating Xquation (1) and noting
that @ is a constant. ZEquation (2b) describes the net heat
transfer between the two plates, and is simply Equation (1)
with 77 =0 . The radiosity expression, Equation (2c),

follows from combining the diffuse surface relation [3, 4]
r %
R, = €¢g, + (zﬂe)iezEa(g)+ j e(T)Ez(T)c/T] (3)
(=]

with Equation (2b), and this procedure is analogous to that pre=-
viously employed by Perlmutter and Howell [5]. Results for Cr)

and @ are given in a number of references, for example [2]

and [6].

-

3. Analysis for Specular Reflection

Consider now the case in which surface 1 is a specular re-
fiector, and let I" and I~ denote the intensities of radia-
tion (i.e., the rate of energy transfer per unit solid angle per
unit area normal to the pencil of rays) in the upper and lower
directions as illustrated in PFigure 1. With LU =C05© , it

follows from [2] that

T -
I'7) = It 0) exp(—%) + %;—j e(r) exp(-—’f—u—-z—')%t (42)
I (1) = S2exp(Brl) - =+ e(f)exp(f r df ‘ (4b)




These expressions are completely general as far as the direc-
tional emission or reflection characteristics of surface 1 are
concerned. If surface 1 is a diffuse emitter and diffuse re-
flector, the quantity 17+CL4Cﬂ appearing in Equation (4a)
is a constant, while for any other situation 277;%10) will
be a function of L .

For the present situation in which surface 1 is a diffuse

emitter and specular reflector

I'uo) = ——/—-——'—+( -¢) I 0)

where (/ — € ) is the reflectivity of a gray surface. Thus,

from Equation (4b)
') = €& v (-e)[Sexpl B) + # e ep(H L] o

The net radiation heat transfer, ﬁ; , may now be obtained

through integration over the solid angle, with the result
I, -l
Z = 275[ (e 7)rt dat — .277’5 I () udu
o Q

and from Equations (4) and (5)

7, = 2€€,E,0) - 28, E,(z-7) + 2 €(1)E(r-1) I

- erze(f)51<f‘ 7’)Q/f + 2 (/-—6) [6253(7-'+7;) *ivé(f)Ez (T+7,)d7t]




For comparative purposes, it will be convenient to express
Equation (6) in terms of the same dimensionless quantities pre-
viously considered; i.e., ¥ and @ . To this end, it is
first necessary to obtain an expression for the radiosity XK, .

Since

/
R, = =27 I'(w0)udu

then from Equation (5)
%
R = € + 2(/—6)[@;53(7;%5 e(r)f:;(’r)dr] (7
Q

and this is identical with the result for diffuse reflection
given by Equation (3). One may now express Equation (6) in

the dimensionless form

%
Q= 25+ 2jj¢(r)Ez(7“—f)df - ij P E(t-T) T

+ 2(I- e)jf?(f) [ En(r+7) - 2EMEM) | JT

Referring to Equation (1) for diffuse reflection, it is seen
that BEquations (1) and (8) differ through the appearance of the
last term in ZEquation (8).

The equations describing CF’(?’) , & and K, may be
obtained in exactly the same manner as previously described for

diffuse reflection, and these equations are as follow:




Emissive power profile;

RP(r) = EN(7) + 57g¢(f)5(lr—f/)df

5 (9a)
+ (/—e)j :P(f)[ﬁ‘,(h—r)—— 2 5,(r)E(r) | It
(]
Radiation heat flux:
% _
QL= /-2 P(1) E,(7) 7 (9b)
Radiositysg
RI - €y - & (9c)
e, -e, €+(;_€)Q

Comparing the above equations with Bquations (2) which apply
for diffuse reflection, it is seen that only Equations (2a) and
(%a) differ. Equation (9a) contains an additional term, and this
term affects 9907) in two ways. PFirst, it introduces the
emissivity € as a parameter; and second, ﬁﬁﬁr) is no longer
antisymmetric as it is for diffuse reflection [7].

To obtain a first approximation for f?(T) , a particularly
meaningful approach for the present problem is the exponential
kernel approximation as employed by Lick [Q}, and this makes use

of the expressions.

—3?/2 — o ) "3772
E,(+) = %e ) B = Le




Upon substituting these into Equation (8) it is seen that the
last‘term vanishes, and this is the term that makes Equation (&)
differ from its diffuse reflection counterpart given by Equa=
tion (1). Thus, within the framework of the exponential kernel

approximation diffuse reflection and specular reflection yield

identical results, and from Lick ES] these are

3 Q) _ 32

(1) = </" *z) - 2 7 (10)
Q = .

I+ 3%/4 (L

It is interesting to note that the above expressions have also
been obtained by Deissler [9] through use of the Rosseland
equation with jump boundary conditions.

A second approximation for CPCT) can be obtained by
substituting Equation (10) into the right hand side of Xqua-
tion (9a); i.e., conventional use of the method of successive
approximations. The resulytiﬂg qo(ﬁ profiles are illus-

3)

- ~ s S
trated in Figures 2 and 3 for €= O.7 “and 0,3 respectively “.

4)

Also illustrated are curves representing diffuse reflection 7,

3) PFor the sake of brevity, the rather lengthy expression for

‘P(?‘) is omitted. _
4) It should be recalled that for diffuse reflection qD(T) is

independent of € .




and these were obtained in the same manner as the specular re-
flection results by substituting Equation (10) into the right
hand side of Equation (2a). The present diffuse reflection curves
agree almost precisely with those of References [2] and [6] , and
it was thus deemed unnecessary to consider higher approximations
of ¢WT) for either diffuse or specular reflection.

It may be seen that the difference between the specular and
diffuse results is quite small. It is slightly greater for
€ = 0.3 than for €= 0.7, since reflection plays a greater
role at the lower emissivity value. One may also note that the
difference decreases as 7, becomes large. The reason is that
for large 77 radiation transfer within the medium approaches
a diffusion process and thus becomes independent of the reflec-
tion characteristics of the bounding surfaces. A direct analogy
to this involves molecular heat transfer in a gas, since the
manner in which a surface reflects molecules plays no role in
continuum heat conduction but is a factor only under rarefied
conditions.

A comparison of net heat transfer is illustrated in Table 1,
and these results were obtained through numerical integration

of the expression

T
Q= /-2 Pr)EFIr

As would be expected from the close agreement of the emissive

power profiles, there is no appreciable difference between the




10

specular and diffuse reflection results for net heat transfer.

Table 1. Radiation heat flux, Q = q./(Ry-e,)

Specular
s Diffuse —
e = 0.7 e = 0.3
0.1 0.916 0.915 0.914
1 0.554 ‘ 0.553 0.549
10 0.111 ‘ 0,109 0.107

4, Concluding Remarks

In closing, it is worth mentioning the more general case
in which both surfaces are specular reflectors. Letting £,
and @, be the reflectivities of the two surfaces, the

radiation flux equation will contain integrals of the type

S' exp(- /) " i
o | = RAexp(-2%/4)
This reduces to the exponential integral, &, (t) , only for

the case in which one of the two surfaces is black.
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