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OPERATING POINTS IN INFINITE NONLINEAR
NETWORKS APPROXIMATED BY FINITE NETWORKS *

Bruce D. Calvert and Armen H. Zemanian

Abstract — Given a nonlinear infinite resistive network, an operating point can be
determined by approximating the network by finite networks obtained by shorting together
various infinite sets of nodes, and then taking a limit of the nodal potential functions of
the finite networks. Initially, by taking a completion of the node set of the infinite network
under a metric given by the resistances, limit points are obtained that represent generalized
ends, which we call “terminals,” of the infinite network. These terminals can be shorted
together to obtain a generalized kind of node, a special case of a 1-node. An operating point
will involve Kirchhoff’s current law holding at 1-nodes, and so the flow of current into these
terminals is studied. We give existence and bounds for an operating point that also has a
nodal potential function, which is continuous at the 1-nodes. The existence is derived from

the said approximations.

1 Introduction

This paper forms part of the body of work that studies existence, uniqueness, bounds,
stability, etc. for operating points in nonlinear resistive electrical networks. In particular,
we look at infinite networks and how we may naturally and simply consider voltages and
currents associated with the ends of the graph or more naturally with certain extremities of
the network, which we call “terminals” or more specifically “s-terminals”, where s may be

defined in terms of the resistances or i-v characteristics of the network. We obtain existence

* 1993 Mathematics Subject Classification. Primary 94C05.

Key words and Phrases. Infinite resistive networks, ends, metrizing infinite networks, monotone networks,
1-nodes, Kirchhoft’s voltage law, Kirchhoff’s current law.

This work was partially supported by the National Science Foundation under Grants DMS-9200738 and
MIP-9423732.



results by approximating these infinite networks by finite networks. The latter are formed
from subnetworks by identifying various nodes to match the structure of the infinite network.
This was stimulated by recent works [1] and [2], in which finite approximations to the infinite
network, coupled with a priori bounds that give compactness, lead to the existence of an
operating point for the infinite network. This strategy appears in [11].

We note that the investigations of existence of an operating point involving Kirchhoff ’s
voltage law around infinite loops (i.e., 1-loops), given in {18] - [20], are rather different in
that the existence of infinite loop currents is built into the theory through the construction
of a solution space [18, pages 77 and 133}, [20, page 130].

The relationship of our present result to the approximation theorems in Flanders [6] and
Soardi [15] is that in their works there was no shorting at infinity, whereas in this paper it
is a central issue. In fact, most studies — linear or nonlinear —do not involve Kirchhoff’s
current law at infinite extremities; see [4], [16], and [17] for such theories. Also, the existence
results in [4], [6], [16], [18] and [20] are given directly in infinite dimensions, in contrast to
this paper. However, this paper extends some of the work on finitely structured 1-graphs
in [20]; the latter does achieve Kirchhoff’s current law at cuts around certain transfinite
extremities [20, Section 6.2].

We divide this paper into four sections. Its crux is the fourth section on existence and
bounds. But, equally significant is the general study of terminals in Section 2, followed by
the study of current flows into terminals in Section 3.

We conclude this Introduction by going over some terminology. Following Iri [12], to
form a directed graph we take a set B of branches (synonymously, edges), a set A’° of nodes
(synonymously, vertices), and an incidence relation consisting of two functions 8+ : B ~ A®
and 8~ : B ~» N®. We say that branch b is incident to the node n if 8+(b) = n or 8~ (b) = n.

In this paper there is nothing necessarily or specifically electrical; indeed, Iri {12] ex-
plains how transportation problems and project-scheduling problems have the same form.
Nonetheless, we will speak in terms of the electrical paradigm. The simplest electrical net-
works are modeled by a finite digraph together with, for each branch b, a set My C R?,

which gives the set of possible pairs (¢,v) that measure the time-invariant current and



voltage in branch b. An operating point consists of (¢4, v5) € M, for each b with i = {i5}seB
satisfying Kirchhoff’s current law and v = {vs}sep satisfying Kirchhoff’s voltage law; these
laws are specified below. We may call the network resistive to emphasize that we are not
looking at time-dependent behavior.

In this work we not only start with a conventionally infinite network (B, A°), but we
then construct generalized nodes, called 1-nodes, at the network’s infinite extremities and
denote the result by (B, N, A'1); consequently, the definition of an operating point requires
some preliminaries. We say that (B, A°) is locally finite to mean that for every node there
are only finitely many branches incident to it; later on we will extend the idea of local
finiteness to the 1-nodes. We say that i: B ~» R! satisfies Kirchhoff’s current law, when
the digraph (B, A7) is locally finite, to mean that its boundary 8i: N° ~» R! is 0, where

for each n

di(n) = Y i — Y .

9tb=n 9=b=n
We say that v: B ~ R! satisfies Kirchhoff’s voltage law on the digraph (B,AN?) if vis a
coboundary dp, that is, there is a function p: N° ~» R!, called the potential for v, with

v, = p(8b) — p(d7b)

for all b. These laws too will be extended to the network augmented by 1-nodes.

As is usual, we may consider the digraph (B, N°) in situations that concern only the
underlying graph, wherein the branch orientations are ignored; in such cases we may refer
to (B, N°) as a graph. If £ C B, (£) denotes the digraph induced by £. We say, given a € B
and b € B, that a is adjacent to b or that a and b are adjacent to mean that a # b and a
and b are incident to the same node. Furthermore, that b is adjacent to £ C B means that
b is adjacent to some a € £ and b g £. We write A(E) for the set of branches adjacent to
£. We say that two nodes z and y are neighbors or are adjacent when there is a branch
incident to both z and y and z # y. If V C A?, (V) denotes the digraph induced by V. If
V and W are disjoint subsets of A%, (V, W) denotes the set of branches incident to a node
in V and a node in W. Given a subgraph G of (8,N?), write V(G) for its node set and
E(G) for its branch set.



We use NN for the set {0,1,2,...} of natural numbers and Z for theset {...,-1,0,1,...}

of integers. A one-ended path may be conceived of equally as:

(i) A function P from IV to B, or from — IV to B, such that P; is adjacent to P; if and only

if |t — j| =1, and Py is not a self loop.
(i) A subgraph induced by the range of P as in (i).

(We cannot describe P as a sequence {z;} of distinct nodes with z; and z;4, adjacent
because parallel branches are allowed.) We write O for the set of one-ended paths. An
endless path P is similarly a function from Z to B with P; adjacent to P; if and only if
|t — j| = 1 or equally is a subgraph induced by the range of such a function.

We recall definitions and notations concerning monotone networks in Section 4, and
generally recall definitions as they are used.

We use the symbols V and A to denote max and min respectively. We write (X, d) for
the completion of the metric space (X, d). We use A’ to denote the set of limit points (or,
synonymously, cluster points) of A, a subset of a given topological space. We write U(z) for
the set of open neighborhoods of the element z of a given topological space. We use U*(z)
for the set of neighborhoods M of z that are both open and closed and for which (M NA?)

is a connected graph, where now z is a point in a topological space containing .

2 s-terminals and ends

Rather than starting with an infinite graph and determining its infinite extremities, that is,
its “ends” — as is done in [7], [8], [9], [14], [3], [16], and [17], we start with an infinite elec-
trical network and devise a metric on the network’s nodes based on the (%, v)-characteristics
of the branches. We then determine infinite extremities, which we call “terminals” or more
specifically “R-terminals,” by completing the network under that metric. More generally,
we construct “s-terminals” in the next definition. Qur s-terminals encompass as special
cases the strictly graph-theoretical ends of Freudenthal and Halin; s-terminals expand into

ends when s is summable.



Definition 2.1. Let (B,A?) be a locally finite graph, and let s: B ~» (0,00) be given.
Define the metric d, on V(G) for each component G of (B,N?) by d,(z,z) = 0 and

ds(z,y) = inf { Z 8y: P a path connecting z and y} .
beE(P)

Write (V/(Z}'), d,) for the completion, and call any limit point or cluster point (i.e., any
element of V/(Z')’) an s-terminal of (B,NV?) and say it is in G when we wish to specify G.
We often refer to an s-terminal simply as a terminal when the function s is understood.

Remark. Since (B,N?) is locally finite, d, is a metric; in particular, z # y =
ds(z,y) > 0. Also, note that Definition 2.14 extends this definition.

Remark. In Section 4 we will choose s: B~ (0,00) as follows. When b is a branch in
Norton form with linear resistance r, > 0 and current source hy € R, we set s, = 74 + 3,
where ¢, > 0 is a term to ensure s, > 0 with EbeB ty < 00. In the monotone nonlinear case
we take sy = R}, where Rj is defined in Section 4.

Example 2.2. For the ladder graph of Figure 1, if s = 74, there are exactly two s-
terminals e and f. In this case, there is an isometry of (M?,d,) into R?, providing thereby
a visualization of (Xf\o,d,) and hence of the s-terminals.

Theorem 2.3. Let (B,N7?) be a connected locally finite graph, and let s: B ~ (0, 0)
be given. Then, for any s-terminal f and one-ended path P with node sequence (yo,¥1,.-.)

such that y, — f, we have

ds(yOsf) < Z Sb. (1)

beE(P)
Moreover, for any v € N°, any s-terminal f, and any € > 0, there erists a one-ended path

P with node sequence (yo, 41, ...) such that yo = v, yo — f, and
Y % < dy(y0.f) + € (2)

beE(P)
Proof. Let (b1,b2,...) be the branch sequence of P. For any n > 1, d,(y0,¥n) <
2196 < LseE(p) - Letting n — oo, we obtain (1).

To show the existence of P, we start by taking z, € A° for n > 1 with dy(zn, f) <
€/(2"3). Take Py as a path connecting v and z; with Yyep(p) 86 < ds(v, f) + €/2. For



n =1,2,... take P, as a path connecting z, and zn41 With Lyep(p,) 86 < /2"t which
can be done because dy(Tn,Znt1) < ds(Tn, )+ ds(Tnt1, ) < €/27F1. Let Q be the infinite,
locally finite graph U3%o P,. By Konig’s lemma [10, page 81], we can take P to be a
one-ended path in @ with initial node v. Now,

oo < D> <Y D s

beE(P) beE(Q) " beE(Pn)

< d,(v,f)+§:e/2"+l = ds(v,f) + ¢

n=0

whence (2).
Now, if y € V(P,) for n > 1, then

da(yv f) < da(y’ zn+1) + d,($n+1, f) < €/2"-}.l + €/(2n+13) = 6/(2n-13).

Let (yo,%1,...) be the node sequence of P. Since the P; are all finite paths, given any N,
(¥1,¥2, .- .) is eventually in Ui>n V(Pi), and so for large enough 7, dy(yn, f) < e/(2V13).
Hence, y, — f. O

Corollary 2.4. Let (B,N°) and s be as in Theorem 2.3. The s-terminals bijectively
correspond with R-equivalence classes of the set O, of one-ended paths P with 3-,cp(py sp <
00, where R is defined by P! RP? if and only if for every K > 0 there are infinitely many
paths Q connecting a node of P! and a node of P? with dobe E@Q) % < K. The correspondence
maps the equivalence class RP to the limit of the node sequence of P, while to the s-terminal
e there corresponds the set of paths P in O, whose node sequences converge to e.

Proof. One checks that R is a transitive relation on O, and hence an equivalence
relation. We may define ¢: O, ~ /’V\O, taking P to the limit of its node sequence, since
this is a Cauchy sequence for P € J,. We want to show that ¢ is constant on equivalence
classes under R. Let P!RP? where P! has the node sequence (z},z},...) and P? has
the node éequence (z3,23,...). Given any € > 0, there is an N such that, for all j > N,
dy(z}, J(P)) < €/3, d,(z3, §(P?)) < €/3, and moreover there is a path Q connecting a node
z} of P! and a node z2, of P? such that m > N, n > N, and ToeE(Q) S < €/3, the third

fact being a consequence of local finiteness. Thus, d,(¢(P!), #(P?)) < ¢, and consequently,
¢(P') = ¢(P?).



Furthermore, ¢ induces a map, also denoted by ¢, on O,/R. By Theorem 2.3, ¢ maps
onto M9 . To see that ¢ is one-to-one on O,/ R, note that, if P! and P? are not equivalent,
there is a K > 0 and only finitely many pairs of nodes z! from P! and z? from P? with
dy(z',z%) < K. Since, for j = 1,2, 23, — ¢(P?) as n — o0, ds(¢(P'),4(P?)) > K, and
therefore ¢( P') # ¢(P?). O

Terminology. We may refer to these equivalence classes of @, as s-terminals, and say
“P is in the s-terminal f” when P € O, has the node sequence (yo, %1,--.) with y, — f.
We may also say “P is a one-ended path connecting yo and f.”

Corollary 2.5. Let (B,N°) be connected and locally finite, and let s: B ~» (0,00) be
given. Given f an s-terminal and € > 0, the ball B(f,¢) in (Xf\o,d,) has the property that
(B(f,€) N M) is connected.

Proof. By Theorem 2.3, given any two nodes in B(f,€) N A°, there are two one-ended
paths connecting those nodes to f. Then, by Corollary 2.4, there is at least one path
connecting a node of one path to a node of the other path that remains within B(f,¢). O

Corollary 2.6. Let G = (B, N°) be connected and locally finite, and let s: B ~ (0,00)
be given. Given two s-terminals e and f in G, there is “an endless path P connecting e and
f,” (i.e., there is a function P: Z ~» B with, for all m,n, P, is adjacent to P, if and only
if|m — n| = 1 and with P|y in f and P|_y) in ¢), and, given € > 0, we may take P with
Lbep 3 < ds(e, f) +e.

Proof. Let P/ € O, with node sequence y, — f, and let P¢ be in the s-terminal e # f.
We see that, for large n, y, is not a node in P?, for otherwise there would be a subsequence
converging to e. Suppose P° connects yo to e. Let N = max{n: y, € V P} since this is
nonempty and bounded above. Combining the paths connecting yn to e in P and yy to
f in Pf gives P. That P¢ and P/ can be so chosen that P satisfies the inequality can be
seen as fo}lows.

We can choose a node z such that d,(z,e) < ¢/2. By Theorem 2.3, there is a path @
connecting z and e such that 3"ycp(q) s6 < €/2. Moreover, d,(z, f) < ds(z,¢€) + dy(e, f) <
€/2 + d,(e, f). Again by Theorem 2.3, there is a path L connecting z and f such that
2seE(L) S < ds(e, f) + €/2. Now, Q U L contains an endless path P connecting e and f,



and moreover

s Y s Y st ) s

teE(P) beE(QUL) bEE(Q) beE(L)
< ¢/2+ds(e,f)+e/2. O

Now, always assuming (B,AN?) to be locally finite, we check the relationship of s-
terminals to ends, but first recalling their definition and some results, since ends can be
thought of in several ways {7}, (8], [16], [17].

Definition 2.7. Let (B, M) be a locally finite graph. An end in (B, A'?)is a function f
taking each finite subset F of B to an infinite component of (B\F, A°) such that, if £ C F,
then f(F) C f(£). Write 8(B,N?) for the set of ends.

Definition 2.8. With (8,N°) being a locally finite graph and O its set of one-ended
paths, define the equivalence relation R on © by P'RP? if and only if, for every finite
£ C B, there is a component C of (B\&,N?) with P} € E(C) and P? € E(C) for all large
n.

The next result follows from Theorem 1 of Cartwright et al [3], but we give here a more
elementary proof of it. This gives an extension of Konig’s lemma, which is further extended
by Theorem 2.3 in conjunction with Theorem 2.11.

Theorem 2.9. Suppose (B, N°) is a locally finite graph. Then, the set of ends in (B, N'®)
bijectively correspond with the set of equivalence classes of O under R, that correspondence

being given by
f — {P€O: forall finite F C B, P, € E(f(F)) for all large n}.

Proof. Given the finite set 7 C B, each one-ended path can meet (F) only finitely
many times and therefore must eventually be confined to an infinite component of B\F.
This gives a function ¢: @ ~ 9(B,N?) taking any one-ended path P to the end ¢(P)
defined by ¢(P)(F) equal to the infinite component of (B\F, V) that P is eventually in.
We note that ¢(P) is indeed an end, i.e., if £ C F, then ¢(P)(€) D #(P)(F). Since ¢ is
constant on equivalence classes under R, it induces a function also denoted by ¢ from O/R
to &(B,N?). Note that ¢ is one-to-one. We claim that ¢ is surjective. This will complete

the proof since ¢ is seen to give the inverse of the correspondence described in the theorem.

8



To proceed, we want to show that given an end f as in Definition 2.7 thereisa P € O
such that, for all finite £ C B, P is eventually confined to f(£). Choose any node ag, and
let £; be the set of branches incident to ap. Take a sequence {£,}32, of branch sets with
Ent1 D (A(En) U &) for each n. Take a; € V(f(€1)) NV{€1) and PP the (one branch) path
in {£;) connecting ag and a;. For n = 1,2,..., given a, € V f(£,) NV (E,) we claim that
there is a path P in f(£,)\f(€nt1) connecting a, to any1 € V f(Eng1) NV (Ens1). Let
v € Vf(En41), and take R as a path in f(&,) connecting a, and v with initial node a,.
Then, take @,41 as the first node in V f(&,41) that R meets. This gives P" as the part of
R connecting a, and a4+, proving the claim.

Finally, set P = |J;>, P"; P is a one-ended path starting at ap. Given any finite branch
set £, we may take &, with £, D £, giving P eventually in f(£,) C f(£). O

As a result of Theorem 2.9, the equivalence classes of Definition 2.8 are also defined as
ends, and we shall say that a one-ended path P is in an end e. Let us denote the set of
ends by (B, N°). We give a metric d¢ related to the sets above.

Proposition 2.10. Let G = (B,N°) be a connected locally finite graph. Suppose
E = (€.}, is a sequence of finite branch sets with & = 0, Uiz, & = B, and &, increasing

with n. For u,v € V(G) andee, f € 3G, if
de(u, f) = inf{n7':u € Vf(£a)},

de(e, f) = inf{n7":e(&) = (&)},
and

de(u,v) = inf{n~': u and v connected in (B\&,,N?)},

then dg is a metric on V(G)U 9G.
Proof. We see that dg(u,u) = 0 since u is connected to itself in all (B\&,, N?). For
the triangie inequality, we claim for u,v,w € A that

de(u,v) < de(u,w)Vde(w,v).

Suppose the right-hand side is equal to 1/N. Then, u and w are connected in (B\En, N?),

and so too are w and v, giving v and v connected too in (B\En, A°) and thus dg(u, v) < 1/N.

9



Hence, dg(u,v) < dg(u,w) + dg(w,v). The same argument holds for any combination of
nodes and ends. O |

We will be interested in elements of G that are isolated, i.e., not in the set (3G)’ of
limit points of 9G.

Corollary 2.11. Let (B,N?) be locally finite and connected. Let e be an end. It is
isolated if and only if there is a finite set F C B such that, for all f, e # f = e(F) # f(F).

Proof. Only if: Assume e is an isolated end, and let £ = {£,}32, be as in Proposition
2.10. Then, there is an N < oo such that dg(e, f) > 1/N for every end f # e. Therefore, e
and f select different infinite components of B\Ex. That is, e(En) # f(EN).

If: Suppose F C B is finite and, for all ends f, e # f = e(F) # f(F). Take Exy DO F.
Then, e # f = e(Enx) # f(En), and so dg(e, f) > 1/N for all f # e. Therefore, e is
isolated. O

As the next consideration, we now show that ends and s-terminals are the same thing
when s is summable. Hence, there are metrics d, on A° U G for all summable s, and all
these metrics give the same topology as that of any d¢.

Theorem 2.12. Let (B,N°) be a connected locally finite graph with s: B ~ (0, 00)
summable: 3 ,cp35 < 00. Then, the set of ends (i.e., the equivalence classes of O) is the
set of s-terminals (i.e., the equivalence classes of O, ).

Proof. Note that O = O, because ) ;5 8 < 00; that is, every one-ended path P has
Lser(p) 8 < 00. Let P! and P? be in the same s-terminal f with node sequences {z}}7%,
and {z2}%2, both converging to f. Since inf{sy: b € F} > 0 for F any finite branch set
and since d,(z,22) — 0, z, and z2 are connected in (B\F,N?) for n large. Hence, If P!
is in the end e, so too is P2.

Conversely, let the one-ended paths P! and P? be in O, and in the same end. By Halin
[8] there is a one-ended path @ meeting both P! and P? infinitely often. Since Q € O,,
P! and QI are in the same s-terminal, as are P? and @, and so P! and P? are in the same
s-terminal.

Thus, the equivalence relations R of Corollary 2.4 and Definition 2.8 are the same, and

the ends and the s-terminals coincide. O

10



Next, we find that, if two functions mapping B into (0, 0o) differ by a summable function,
they give the same s-terminals. Similarly, if K is greater than 0 and if two functions differ
only where they are greater than K, they give the same s-terminals.

Proposition 2.13. Let (B, N?) be a connected locally finite graph. Let S denote the
set of all mappings of B into (0,00). Define the equivalence relation Ly on S by sLyr if and
only if 3pep |8 — 5| < 00. Define the equivalence relation Ly on S by sLar if and only if
there is @ K > 0 such that, for allb € B, s, = ry or sy Aty 2 K. Define the equivalence

1 s2,...,8" =r} such

relation L3 on S by sLar if and only if there is a finite sequence {s = s
that, fori=1,...,n, s;_1L18; or 8;_1L28;. Then, s — (xf\o,d,)’ ts constant on equivalence
classes under Lj.

Proof. Suppose r € S, s € S, and r = s + t, where Y, |ts| < 00. Suppose {z,} is a
Cauchy sequence in (AM°,d,). Given € > 0, take & C B, finite and with Thene sl < €/2.
Take N; and an end e such that z,, € Ve(€) if n > Ny, and take N; such that dy(z,,,2,) <
€/2if m,n > N3. Also,let N = NyVN,. Form,n > N, d,(Zm,Zn) < ds(Tm, Tn)+2peq Itols
where @ is a path in e(£) connecting z,, and z,. Hence, d,(zm,2,) < €, and {z,} is Cauchy
in (M°,d,). Moreover, by reversing the roles of s and r, we see that {z,} is Cauchy in
(N, d,) if it is Cauchy in (M, d,) Consequently, (/Tfa, d,) = (KfB, d,)'. Similarly, if rLjs.
0

Definition 2.14. In view of Proposition 2.13, we may speak of an Ljs-terminal. We
now give a definition of an s-terminal in a component G for a given s: E(G) ~ [0, c0].
For each branch b, take s; = 1 if s, = oo, s; = 83 if 8 € (0,00), and s > 0if 8, = 0
with 375,20} 83 < 00. Define an s-terminal to be equal to an s*-terminal. In particular,
this defines a O-terminal, and thus ends are simply 0-terminals by this definition (as well
as being s*-terminals with s* > 0 and summable, by Definition 2.1). Also, in Section 4, we
may speak of R-terminals since Ry may be 0 or oo for some b.

Propt‘Jsition 2.15. Assume that e is an end in the locally finite graph (B, N°), that m
s a positive integer, and that for every finite £ C B there is a finite F C B with F D &
and with Ve(F) N V{(F) having no more than m nodes. Given s: B ~» (0,00), there are no

more than m s-terminals contained in e.

11



Proof. Suppose, to get a contradiction, that y;,...,Y¥m+1 are s-terminals with y; C e
for each i. Taking € > 0 such that the B(y;,¢) are pairwise disjoint, we may take P* =
{PJ'}J"‘;1 € O with all nodes of P in B(y;,¢€) and with those nodes converging to y;. Take
£={P}:1< i< m+1}and F by hypothesis with £ C F and Ve(F) N V(F) having
no more than m nodes. But, Ve(F)N V{F) contains a node of P* for 1 <i < m+ 1 and
therefore has no less than m + 1 nodes, a contradiction. O |

The proof of Theorem 2.12 showed that each s-terminal is a subset of an end when we
view these entities as equivalence classes of one-ended paths. We state this as a separate
result and extend it.

Proposition 2.18. Let (B, A°) be a connected locally finite graph with s,r: B ~» (0, 00)
given. Ift+ 8 > r > 0 for some summable t > 0, then the s-terminals are subsets of the
r-terminals. In particular, they are subsets of the ends.

Proof. We have that O, C O, for, if P € O,, then ZbeE(P) Ty < ZbeE(P)(sb+tb) < o00.
Furthermore, if P! and P? are in O, and equivalent (i.e., are in the same s-terminal), then,
for all K > 0, there are infinitely many paths @ with }",¢g(g)(ss + t) < K, @ connecting
nodes in P! and P2. Hence, P! and P? are equivalent in O, (i.e., are in the same r-terminal).
The last sentence of the theorem follows from Theorem 2.12 and the added assumption that
r is summable. O

Note. There can be more than one s-terminal in an r-terminal.

Theorem 2.17. Given a locally finite graph (B, N°), assume that M is an open and
closed neighborhood in (N0, dg) of the end eq such that (M NAN?) is connected. Then, there

ezists a finite branch set F such that
M = Veo(F)U {e € 3(B,N): e(F) = eo(F)}. -
Proof. We may suppose that (B, A°) is a connected graph G. Let
Vo = {ve MNN®: 3w € N°\M with w adjacent to v}.

Suppose Vj is infinite. Then, there exists a sequence {v,} in Vp convergent to some end
e;. We may take a subsequence {wy,,} in N°\M with w,, adjacent to v,, with {wy,,}

convergent to an end e;. Given s: B ~ (0,00) summable, we have dy(wp,,vn,) — 0, and
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so e; = e3. But, ey € M and e; € Kf\O\M since M is open and closed; whence e; # e3, a
contradiction. Thus, Vp is finite. Take F = (M N AN°, N°\M), which is finite since G is
locally finite. Note that the graph (M NA®) is infinite and connected and is equal to eo(F).
Thus, M is Veo(F) along with all the ends of eg(F). O

Remark. It is tempting to use the driving-point resistance (i.e., the input resistance —
see, for example, [12]) between pairs of nodes as our metric, at least in the linear case, for
it satisfies the triangle inequality as well as the other metric axioms. It has some appealing
features; it identifies some s-terminals which are forced to have the same potential. But, it
does not seem large enough to force easily the continuity of potentials, in contrast to what

occurs with dy(z,y).

3 Current flows into s-terminals

Given a locally finite digraph (B, N°) and ¢ : B ~» R! satisfying Kirchhoff’s current law
at all nodes n € A, we wish to define the flow of i into an s-terminal, as a step toward
studying Kirchhoff’s current law at a 1-node n!. The simplest case, as shown by Corollary
3.4, seems to be flow into an isolated end. Non-isolated ends and even isolated s-terminals
all involve limits. We are led to a natural definition for s-terminals, which can be applied
to existence theorems in Section 4.

Definition 3.1. Let (B,N?) be a locally finite digraph. Let V and W be disjoint
subsets of A'°. Recall that (V, W) denotes the branches b incident to nodes of both V and
W. Given a real-valued function i defined on a domain that includes (V, W), define the
flow I(i,V, W) of i from V into W to be

Y e
be(V,W)
if this sum converges absolutely, where ¢, = +1 if 3*b € V and ¢, = —1 otherwise. If
VUW = N, we write I(i, W) for I(i, N\W, W).

Example 3.2. This example illustrates Definition 3.1. Consider Figure 2. The letters

fs9,...,0 are names of branches, not the currents in them. The current in, say, branch

z is denoted by i,. Let (B,N°) be as sketched with ends a, b, and ey and with oriented
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branches f to o as shown. Let & = {f} and F = {f,9,h,i,j,k,I,m,n,0}. We take the
ends ep and b to be so defined that eg(&p) is the subgraph to the right of f, eg(F) is the
subgraph induced by all the nodes above and to the right of the upper dotted curve, and
b(F) is the subgraph induced by the nodes below the lower dotted curve. Thus,

I(i, Veo(&o)) = iy,

I("',Vb(]:)v= ig+ik+im+in+ioa

and

I(i,Veo(F)) = ip +ij = im — in = b0

The next theorem shows how the first current on the left-hand side is the sum of the last
two.

Theorem 3.3. Let e be an end in the locally finite digraph (B,N°). Let & and F be
finite branch sets with & C F. Suppose {B,..., Br} is the set of infinite components of
the subgraph (Ee(E)\F,Ve(&)). Then, for i: B~ R! satisfying Kirchhoff’s current law
at alln € N°, .

> I(i,VB;) = I(i,Ve(&)). (3)

=0

Proof. (a) First, suppose that F D & U A(&). Next, for each branch b € F incident
toau € V(B;) and a v € V(Bg) for j # k, we introduce an imaginary node w and replace
b by two branches b, and b,. If 316 = u, let 3*b, = u and d+b, = w, and take the current
in each branch to be i;. Then, the cuts (VB;, N°\VB;) and (Ve(&),N°\Ve(&)) form
mutually disjoint sets. Now, Ve(&)\ U?:o V B, is finite since F\& is finite, and thus there
are finitely many finite components of (Ee(&)\F,Ve(€)). Equating to zero the current
I(3,Ve(&)\ Uf=0 V B;), we get (3) since we have that

(Ve(€o)\ UlLo VB;, N°\(Ve(£0)\ Ui V B)))
is the disjoint union

(Ve(£o), N'\Ve(&o)) U (URo(V B;, NO\V B;)).
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(b) Next, assuming that F O & but not F D A(&), we take H to be a finite subgraph
containing F U A(F), and for each infinite component B; of e(&)\F, we take {Bj;: 0 <

k < R;} as the set of infinite components of B;\H. By (a), with B; = e;(F) say,

R(5)
1(i,VB;) = Y I(i,VBj),
k=0
and so )
R R R(j)
> I(i,VB;) = > > I(i,VBji).
Jj=0 7=0 k=0

But, {Bjk:j=0,...,R;k=0,...,R(j)} is the set of infinite components of e(£y)\H, and
therefore
R R(5)

I(i,e(&)) = > > I(i, Bji),

7=0 k=0
giving (3). O

Corollary 3.4. Let ep be an isolated end in the locally finite digraph (B,N°), and
suppose that i: B ~» R satisfies Kirchhoff’s current law at all n € N°. Suppose & C B is
finite and e # eg = (&) # eo(&o). Then, for € finite with £ D &, we have I(i,Veo(€)) =
I(3,Veo(&)).

Definition 3.5. We suppose that e is an isolated end in the locally finite digraph
(B,N?) and that i: B ~ R! satisfies Kirchhoff’s current law at all n € N°. The flow
I(i,ep) of i into eg is taken to be I(i, Vey(&p)), where, for all f # e, f(&) # e(&o)-

Note. Let U(ep) be the set of open neighborhoods of an isolated end ey. Then, for
M € U(eg) with M C Veo(£o) U {eo}, we have M N N? = Veo(E)\A for some finite £,
where A is finite, and therefore I(i, M N M) = I(i,Veo(E)). Now, since ep is isolated,
all sufficiently small neighborhoods of ey are both open and closed. Hence, with U/*(eo)
denoting the open and closed neighborhoods M of e and with (M N A7) connected, we
may write

I(i,e0) = Melélm( )I(i,MnN’“) = MEL‘R )I(i,MnN"),
*(eo €0

by Theorem 2.17. This result anticipates Definition 3.10 for the current flow into an s-
terminal.
Now, we extend this idea to give the flow of ¢ into an end that is a limnit point of the set

of ends, but an isolated one.
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Example 3.6. Let the digraph G be as sketched in Figure 3 with current ¢ satisfying
Kirchhoff’s current law as shown. For each integer n there is an end e,, which is isolated.
Then, there are two non-isolated ends ey, and eg as indicated. We see that I(i,e,) = 27"
for n € N and that I(i,e~,) = —2" for n € N, n # 0. It is natural to take I(i,eg) = 1 =
limn— o I(%, Bn), where B, is the node set of the infinite component on the right obtained
by removing the horizontal branch with current 1+ 2~". Similarly, we may set I(i,er) = 2.

Proposition 3.7. Let eq be an end in the locally finite graph (B, N°). Suppose £ and
F are finite branch sets and Eeq(E) C Eeg(F). Then, eo(F U (€ N Eeg(F))) = eo(€) =
ea(EUF).

Proof. We show that the first equality holds. Write £* = F U (£ N Eeg(F)). Now,
£* C £U F, giving eo(E U F) C eo(€*), and so eg(E*) is the component of (B\E*,N?)
containing eg(€ U F). Now, if b € Eeg(€), then b € eo(F) by hypothesis, implying that
b (ENEep(F))UF = £*, and hence eo(£) is contained in some component of (B \&*, A?).
Since €o(£) D eg(€ U F), it follows that eg(€) C eg(E*).

Similarly, for the reverse inclusion, we want to show that, if b € Eeg(E*), then b ¢ €.
But, such a b is not in £*, hence not in & N Eeg(F) by definition of £*. But, Eeq(£*) C
Eeg(F), so that e € £. The second equality is straightforward. O

Proposition 3.8. Let ey be an end in the locally finite digraph (B,N®), and let L € R!.

For i: B~» R! the following are equivalent.

(a) The net £ — I(i,Veo(E)) converges to L, the net being defined on the finite branch sets
ordered by inclusion, that i3, £ < F if and only if € C F. In other words, for each
€ > 0, there ezists an & such that, if £ D &, then |I(:,Veo(E)) — L] < €.

(b) The net eg(E) — I(i,e0(E)) converges to L on the components eo(E) with £ finite,
where eg(E) < eo(F) if and only if Eeg(E) D Eeo(F). In other words, for each ¢ > 0,
there erists an & such that, if Eeo(£) C Eeo(&o), then |I(i,Veg(€)) — L| < e.

(c) If {€.} is a sequence of finite branch sets and if the filter base {Veo(E,)} converges to
eo, then I(i,Veo(€n)) — L.

(d) If {£.} is a sequence of finite branch sets, if the filter base {Veo(E,)} converges to e,
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and if £, C Ent1 C &, U Eeg(E,) for all m, then I(i,Veo(E,)) — L.

(e) Let U*(eo) be the set of open and closed neighborhoods M of eg such that (M N N°)
is connected. The net M — I(i, M N N'?) converges to L, the net being defined on
U*(eo). In other words, for each € > 0 there ezists an Mo € U*(eg) such that, for all
M C My with M € U*(eq), we have |I(i, MNAN®) - L| < e.

Proof. (a) = (b): By Proposition 3.7.
(b) & (e): By Theorem 2.12.
(b) = (c): Immediate.
(c) = (d): Nothing to prove.
(d) = (a): If (a) does not hold, there is an o > 0 and an increasing sequence {£,} with
UE, = EG, where € is an end in the component G such that |I(i,Veo(E,)) — L| > € for

all n. By Proposition 3.7, replacing each £, inductively by £, where & = £ and
Enr1 = £ U (En41 N Eeo(E})),

we have £, C &; U Eeo(€) for all n. But, |I(3,e0(€;)) — L| > €o, contradicting (d). O

Definition 3.9. If any and therefore all of (a) to (e) hold and if i: B ~» R! satisfies
Kirchhoff’s current law at every n € N°, we write I(i,e0) = L and say that the flow of i
into eg is L.

We use (e) to extend this definition to the flow of i into an s-terminal.

Definition 3.10. Let (B,N°) be a locally finite digraph with s: B ~ (0,00). Let
i: B ~ R! satisfy Kirchhoff’s current law at every n € A°. For e an s-terminal in a
component G having countably many s-terminals, let 2/*(e) denote the set of open and closed
neighborhoods M of e under d, such that (M NA°) is connected. Assume that I(i, M NA°)
exists for all M in some terminal set of &*(e), that is, for {M € U*(e): M C M}, where
M%e U‘(e). We then define the flow I(7,e) of 7 into e by

I(i,e) = Mgc’ﬁ(e) I(i, M n N'®)

if the limit exists.

17



Note: If e is in the component G and if there are only countably many s-terminals in
G, then U*(e) is a directed set since the ball B(e,¢) with € # d(e, f) for f an s-terminal in
G is in U*(e).

Example 3.11. Let us take A to consist of points pm, = (27™,27™) for m,n €
{0,1,2...} = N. Take B to be horizontal and vertical line segments between adjacent
nodes pmn and pm41,, Or between pn, , and pp 41, as indicated in Figure 4. Take d = d,

with s; being the length of b. This gives the metric d as the /; distance on N°. We see that
WB,dY = {(27%,0):k € N}U{(0,27%): k € N}U{(0,0)},

and that
(NS, d)" = {(0,0)}.

In Figure 4, we have sketched the ball B; with center at (0,2-!) and radius about .2 and
also the ball B; with center at (0,0) and radius about .26. This can serve, given current i,
to illustrate the following.

Proposition 3.12. Suppose that (B, N) is locally finite and that d, is the metric given
by s: B ~ (0,00). Suppose (N°,d,) is totally bounded. Suppose i: B ~ R! satisfies
Kirchhoff’s current law at every n € N°.

(a) For f an isolated point of N and U([) the set of neighborhoods of f, if there ezists
Mo € U(f) such that A(Mo)NN® = {f} and if I(i, MonN'®) ezists, then I(i, MNN®)
ezists for all M € U(f) with (M )nﬁ' = {f} and equals I(i, MoNN"®). In particular,
I(3, f) ezists and equals I(i, Mo N N'°).

(b) For f an isolated point of/v?’”, if there exists Mo € U*(f) such that cl(Mo)ﬂ./\/f\oﬂ = {f}
and if I(i, Mg 0 N0) ezists, then I(i, M N N'°) ezists for all M € U*(f) such that
Mo = {f}.

(c) For f and My as in (b), if 3" I(i,e;) converges absolutely, where the sum is over all

isolated s-terminals e; in My, then I(i, f) ezists, and

I(i, f) = I(i, Mon N®) = S"{I(i,e):e € Mo N NO\{f}}.
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Proof. (a) Assume M C Mj,. By the compactness of J\/f\“, cd(Mp)\M is a compact
subset of A'?, hence finite. Now, let Mo\M = A. My N N7 is the disjoint union A U M.
Now, (N°\ Mg, Mg N M%) is the disjoint union (N°\ My, A) U (N?\ Mo, M N A°). Hence,

I(i, MoN N®) = I(i, N°\ Mo, A) + I(3, N°\ Mo, M N N) (4)

Note that the left-hand side is equal to 3_{ise5: b € (N°\ Mo, Mo N N®)}, which converges
absolutely by Definition 3.1. Hence, the second sum on the right-hand side converges

absolutely too, while the first is finite. Also,
(NOAM, M NN®) = (N\Mp, M NAN°) U (A, M NN,

which gives

I(i, MNN®) = I(i, N\Mo, M N N®) + I(i, A, M N N") (5)

Now, I(i,N®\Mp, A) = I(i,A, M N N°) because A is finite and Kirchhoff’s current law
holds at all n € M. Thus, (4) and (5) give I(i, M NN®) = I(i, MyNN®). A rearrangement
of this argument shows that, if I(i, M N A°) exists, then I(i, Mo N A'®) exists and has the
same value. |

Let us now drop the assumption that M C My and merely assume that M € Uy with
(M) NAY = f, as stated in the hypothesis of (a). Take My = M N My. Then, the above
argument shows that I(i, Mo N N°) = I(i, M; N N°). Also, I(i, M N N°) exists and equals
I(i, M; N N). Note that, by taking My = B(f,¢) with cl(B(f,¢)) NN = {f}, insuring
that M* is open and closed and (M*NAN?) is connected, we see that I(¢, M N A®) exists for
M C My in U*(f). Thus, limpgeye(ys) I(4, M N N?) exists. By Definition 3.10, I(¢, f) exists.

(b) Again suppose M C My, as well as M € U*(f). Since (K/\O'ncl(Mo))\M is compact
with no limit points, it is finite, and so (Mo\M) nf\f\ﬁ' = {e1,...,€eR}, say. Since the e;
are in the exterior of M, we can take neighborhoods U; of e;, which are all disjoint and are
subsets of Mo\ M. By compactness, My is the disjoint union M U (Ufil U;)U A, where A is
a finite subset of A'°. Thus,

(N\Mo, Mo NN = (NP\Mo, M N N°) U (UL (M\ Mo, U;)) U (N°\ My, A).
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Arguing as in (a), we obtain
R
IG, Mo N®) = I(, MON®) + 3 I(i,e;j).
j=1

(¢) This follows from (b) and Definition 3.10.

Definition 3.13. In this paper we shall define a 1-node to be a set of s-terminals. This
can be construed as a generalized kind of node obtained by electrically shorting together
a nonempty set of s-terminals. If every s-terminal is assigned to a 1-node, that is, if the
set of all s-terminals is partitioned into 1-nodes, the set of 1-nodes will be denoted by
N1. Furthermore, the triplet (B, V% A1) will be called a 1-graph; it will also be called a
1-digraph when all branches have assigned orientations. (B, A% A1) will be called locally
finite when all nodes in A° have finite degrees and when all 1-nodes are finite sets.

Remark 3.14. In Example 2.2 there are two s-terminals e and f in the single end; call

that end g. Given 7 satisfying Kirchhoff’s current law at all nodes n € A'°, we have
IG,e)+ 16, f) = I(i,g). | (6)

The question arises: Given a connected digraph (B,N?) with s: B ~+ (0,00) and just two
s-terminals e and f in the end g, does (6) hold? Consider the counterexample illustrated
in Figure 5. Let s, = 1 for all branches except for those in the top and bottom horizontal
paths, wherein s, has the values indicated. Take ¢; to be 1 for every branch b in the central
horizontal path; all other branch currents are 0. Then, I(¢,e) = I(i, f) = 0, but I(3,9) = 1.

Proposition 3.15. Suppose (B,AN?) is a digraph, s: B ~ (0,00) is given, g is an
isolated end, and there are just K s-terminals ey,...,ex in g. Suppose for ¢ > 0 there is a
finite branch set £ C B such that, for allz € Vg(£), ds(z,e) < € for some k € {1,...,K}.
Suppose i: B ~ R satisfies Kirchhoff’s current law at all z € N°, and I(i,e;) ezists for
k=1,...,K Then, I(i,g) = LK, I(i,ex).

Proof. Take a finite branch set F such that g is the only end in g(F). Take € > 0 such
that, for 1 < k < K, NN B(eg, €) are disjoint subsets of Vg(F). Take £ C Eg(F), € finite,
such that Vg(€) C UK, B(ex, €). Since there is only one end in g(F), g(£) is the only infinite
component of (£g(F)\E, Vg(F)), and there are only finitely many nodes of g(F) that are
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not of g(£). Thus, A = Vg(F)\ UK, B(ek,¢€) is finite. Since I(i,A) = 0 and Vg(F) is
the disjoint union of A and the B(eg,¢), we have I(i,Vg(F)) = XK, I(i, VB(ex,€) N N)

because these exist according to Proposition 3.12(a). That is, I(3,g9) = Y I(3,ex). O

Definition 3.16. Let (B,N° A") be a locally finite digraph, let n! € A}, and let
i: B~ R! satisfy Kirchhoff’s current law at every n € N°. We shall say that ¢ satisfies
Kirchhoff’s current law at n! if I(i,e) exists for each e € n! and if T¢,1 I(4,€) = 0.

We should point out that our present 1-nodes are specialized cases of the 1-nodes defined
in (18] and [20]. According to that earlier definition, a 1-node n! is any set of equivalence
classes of one-ended paths along with no more than one node of A'°, called the embraced
0-node of n!; also, two one-ended paths are considered equivalent if they differ on no more
than finitely many branches. Thus, n! as defined earlier can be chosen quite arbitrarily
by choosing (finitely or infinitely many) equivalence classes of one-ended paths. On the
other hand, in this paper an s-terminal is a certain set of one-ended paths as indicated
in Corollary 2.4, and therefore our present 1-nodes are more restricted. In particular, the
s-terminals are determined by the graph and the chosen function s. It is only the graph,
the function s, and the assignment of the s-terminals to the 1-nodes that we can choose
arbitrarily.

Moreover, if n! € ! and n° € A°, we have not in this paper allowed n® € n!. In 18],
[19], and [20}, this was allowed, and n® was called an embraced 0-node. Nonetheless, we can
now append (no more than) one n° € A’ as an embraced 0-node of any n! = {ej,...,er} €
N1 through the artifice of appending a one-ended path P of shorts (i.e., branches not in
B) connecting n® and f, where f is the limit of the nodes of P. Each short has a current-
voltage characteristic that coincides with the i-axis (v = 0). Then, the s-terminal f given
by P can be added as another member of nl. In this case, Kirchhoff’s current law is taken

to be

R
Y I(i,e;) + 1(i, f) = 0,

i=
where P is in the s-terminal f.
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4 Existence of an Operating Point

In this section we establish tle existence of an operating point through Theorems 4.4, 4.6,
and 4.8; these are modifications of each other. We will start with a monotone network M
on the digraph (B,N7?), and shortly we will review the concepts we shall use. Then, we
form the R-terminals, where R represents for each branch b the Lipschitz constant R, on a
certain interval of the branch’s (i,v) characteristic curve M;. Next, from the R-terminals
we form 1-nodes as in Section 3. A! will denote the set of 1-nodes. Our definition of a
solution will impose Kirchhoff’s current law at all nodes and 1-nodes, as well as Kirchhoff’s
voltage law through a potential function whose continuity will extend that law from A
onto AU N1,

We have the conflicting desires of giving simple results or giving general ones. Let us
present three examples to motivate and illustrate our results in a very simple way.

Example 4.1(a). Refer to Figure 6(a). The component on the left, (i.e., the endless
path to the left of the small circles representing the 1-nodes n! and n}) has linear resistances
as shown and two ends e and f contained in n! and n}. The component to the right of
the small circles contains a source branch consisting of a voltage source of 1 volt in series
with a 1 ohm resistor; that branch, by the artifice described at the end of the last section,
is connected to n! and n} through two one-ended paths of shorts. Theorem 4.4 gives the
existence of a solution here.

Example 4.1(b). Now, consider Figure 6(b). The component on the left is a ladder
with resistances as shown. Note that the horizontal resistances are summable and that there
are two R-terminals e and f. Theorem 4.5 now gives the existence of a solution since the
vertical conductances are summable. In this figure we have chosen to show the component
on the right as a branch with its extremities (i.e., its elementary tips [20, page 9]) shorted
to e and f, as in the diagrams of [18] and [20].

Example 4.1(c). In Figure 6(c), the component on the left of n} and n} has resistances
as shown. Note that the top vertical conductances are summable. Here, the R-terminals ex
and fi are shorted to give the 1-node n} for each k. Note that f, — f as n — oo; f is not

isolated. A solution exists according to Theorem 4.8.

22



Let us mention that, although we will consider only monotone networks in this paper,
our results can be extended to nonmonotone networks through the results of [2].

We now give some definitions concerning a nonlinear monotone network, which are a
little simpler than those given by Calvert in [1] and by Minty in [13] because we are aiming
at simplicity. For example, we rule out a pure voltage or current source.

We say that a monotone network M on a digraph (B, A°) is a function that assigns to
every b € B a maximal monotone function My: R ~» 2B, or equivalently a subset M} of R2.

We recall that a function f: R ~» 28 is monotone when

(f@) - f) ) z-y) 20
where f(z)* is a number in f(z) and f(y)* is a number in f(y). We may write (z,y) € f to
mean y € f(z). We define f~1: R ~» 2F by the statement: For (z,y) € R?, (y,z) € f~'if
and only if (z,y) € f. We say that f: R ~» 2R is maximal monotone if the two conditions
(z1,91) € R? and (y — y1)(z — z1) 2 0 for all (z,y) € f imply that (z1,3) € f.
We will say that M satisfies (A) to mean that the following three conditions hold.

(1) For all b € B, there is at least one y with (0,y) € M; (i.e., 0 € Domain(M,)), in which
case we set

85(0,0,My) = min{[y: (0,y) € Ms}.

(2) For all b € B, there is at least one z with (z,0) € M; (i.e., 0 € Range(M})), in which

case we set
65(0,0, M) = min{|z|: (z,0) € M}}.
(3)
I =) 6(0,0,M) < oo (7)
beB
and,
V =5 §(0,0,M) < oo. (8)
beB

We now state the form of Minty’s theorem that we shall use.
Minty’s Theorem [13]. Let M be a monotone network on the finite digraph (8, V).
Suppose that, for all b €B,0 € Domain(M,) and 0 € Range(M,;). With I and W given by
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(7) and (8), there exists a (i, v) € M, for each b € M, with 7 satisfying Kirchhoff’s current
law, v satisfying Kirchhoff’s voltage law, and with |¢5| < I and |v] < V for all b € B.

That R, and G are given by (B) is understood to mean that the following two conditions
hold.

(1) Ry is the Lipschitz constant of M; on [T, I]if M, is a Lipschitz continuous function;

otherwise, Ry = oo.

(ii) Gp is the Lipschitz constant of M;! on [-W,V] if M; ! is a Lipschitz continuous

function; otherwise, Gy = oc.

Definition 4.2. Let M be a monotone network on the locally finite digraph (B8, N7?),
and let N'! be a partition of the set of s-terminals, where s: B ~» [0, ¢] is given. We call
each element of A'! a 1-node.

We will refer to triple (B, N°, N'!) as an s-terminal generated 1-digraph or simply as a
terminal generated 1-digraph when s is understood. When every member of every 1-node
is an end, we say that (B,N° A1) is end generated. As was stated in Section 3, we call
(B,N° A1) locally finite when every node in A'° has finite degree a.nvd every 1-node is a
finite set of terminals.

Note. We will take s to be 0 in Theorem 4.4 and s = R in Theorems 4.5 and 4.8.

Definition 4.3. Let M be a monotone network on the locally finite digraph (8, A°).
Let s: B ~» [0,00] be given. Let (B, N° A7) be s-terminal generated and locally finite. A
solution of M on (B, N N1) consists of an ordered pair (i,v), where i: B ~» R satisfies
Kirchhoff’s current law at all n € N° U A1, and there is a continuous p: N°UN?! ~ R
with p restricted to A'® being a potential for v such that, for all b € B, (i, %) € Mj.

Theorem 4.4. Let M be a monotone network satisfying (A) on the locally finite digraph
(B,N°). Let (B,N°,N?") be end generated and locally finite. Suppose all ends are isolated
and, for each end e and ¢ > 0, there is a finite branch set £ such that, for n € Ve(E), there
is a one-ended path P connecting n and e in e(£) with 3", p Ry < €, where R, is given by
(B). Then, there ezists a solution (i,v) of M with |iy] < I and |vs| < V for every branch b.

Note. Making the set of ends finite will slightly simplify the result. Furthermore, if

R were summable, every R-terminal would be an end, and our condition on P would be
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automatically satisfied; this would be another simplification. We omit the proof of Theorem
4.4 and the next Theorem 4.5 because they are just modifications of the proof of Theorem
4.8.

We continue to aim for simplicity, and therefore in Theorem 4.5 we give an existence
result in which (B, N?,N'!) is R-terminal generated and locally finite and A’ is finite, i.e.,
there are only a finite number of R-terminals.

In a later result, Theorem 4.8, we allow elements of /\’[\0”, but require that KFOM =0.

Theorem 4.5. Let M be a monotone network on the locally finite digraph (8,N?),
satisfying (A). Let Ry and Gy be given by (B). Let s, = R} as in Definition 2.14.

(i) Suppose each component G of (B,N®) has (V(G),d,) totally bounded.

(ii) Assume there are only finitely many R-terminals. Let N be a partition of the set of

those terminals.

(iii) Suppose that, for each R-terminal f, there is an € > 0 such that € < d(f,f\f\ol\{f})
and a cofinite subset C(f) of (N°\B(f,¢€), B(f,€) N N°) such that ¥yec(s) Gb < 0.

Then, there is a solution (i,v) of M with |iy| < I and |vy| < V for every branch b.

Proposition 4.6. There exist monotone networks satisfying (A) and also (i) and (ii),
but not (iii), of Theorem 4.5, where Ryand G} are given by (B), for which a solution does
not ezist.

Proof. Consider the linear network sketched in Figure 7. Let ig be the indicated current
in the source branch and thereby in the shorts as well. Then vy = 7o — 1 is the indicated
voltage drop from n} to nl. There are just two possibilities we have to consider.

First, assume that vg = 0. Then, if Kirchhoff’s laws are to be satisfied within the
ladder, all the branch currents and branch voltages therein must be zero because there are
no sources within the ladder. Now, choose 0 < € < 1. Then, B( fo,€) consists only of fo
and nodes along the lower horizontal line of the ladder, and I(4, fo) = 0. On the other
hand, B(fi,€) consists of f; and all the nodes along the lower one-ended path of shorts,

and I(3, f1) = ip = 1. Thus, Kirchhoff’s current law is violated at nl.
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Secondly, assume that vg # 0. Then, if the potential function is to be continuous at n}
and nl, the current flow out of B(fy,€) with € < 1 again (that is, the sum of currents in the
branches of (NP\ B(fs, €), B(fo,€)NA}), where AT is the set of all ladder nodes) is infinite.
So again, Kirchhoff’s current law is violated at nl.

Altogether, no solution for this network exists. O

Remark. We do not have uniqueness under the setup of Theorem 4.4. For example, let
(B, N9 A1) be as sketched in Figure 8; it is a series connection of infinitely but countably
many disjoint endless paths Py connecting the 1-nodes n} and ni41. Suppose the sum of
the resistances in all the branches is finite. Then, any current (the same in all branches)
gives a solution. Thus, any such solution is not unique. However, uniqueness will hold at
least under the next hypothesis. |

Theorem 4.7. Under the conditions of Theorem 4.5, suppose that, for all b, M} has no
vertical or horizontal segments (i.e., if (z,z*) € My, (y,y*) € My, and (z* —y*)(z—y) = 0,
then z = y and z* = y*). Then, there is only one solution.

Proof. Suppose (i,v) and (i + Ai,v + Av) are solutions. Orient every branch so that
Av > 0. By the strict monotonicity of every M, either Avy, > 0 and Aty > 0 or Av, = 0 and
Aty = 0. Also, Ai satisfies Kirchhoff’s current law at every member of A°UN?!. Moreover,
there will be a potential function Ap that generates Av.

Suppose there is a branch a with Av, > 0 and A¢, > 0. Let fi,..., fu be the finitely
many terminals of the network. We can choose neighborhoods U( fi) around each f that are
so small that they are pairwise disjoint and do not contain the nodes of a. Choose the real
number A such that A € (Ap(8%a), Ap(8~a)) and A # Ap(fi) for all terminals fi. This can
be done because there are only finitely many terminals. Let M = {z € N°UN: Ap(z) <
A}. The flow I of Ai into M N AN? from AN°\(M N A7) is defined according to Definition
3.10 becapse M is the union of finitely many disjoint neighborhoods U( fi) and a finite set
of nodes. By Kirchhoff’s current law, / = 0. On the other hand, if branch & is incident
to a node n; in M and a node n; in A°\M, then i, > 0 because Ap(n;) < A < Ap(ns).
Consequently, I > ¢, > 0. We have a contradiction. O

Theorem 4.8. Let M be a monotone network on the locally finite digraph (B, N°)
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satisfying (A). Let Ry and G, be given by (B). Suppose (B, N°,N'!) is R-terminal generated
(i.e., s = R*; see Definition 2.14) and is locally finite.

(i) Suppose each component of (N?,d,) is totally bounded.

!
(il) Suppose NO  is empty. Suppose also that there does not ezist a sequence {f,}32, of
)
isolated terminals converging to a terminal eg € N0 with another sequence {€,}32, C
]
NO  such that, for every n, e, and f, are in the same I-node (i.e., are shorted

together).

(iii) Suppose that, for each isolated terminal e, there is an € = e(e) > 0 with ¢(e) <
d,(e,xf\ol\{e}) such that

Gee = Y _{g5:b € (N°\B(e,¢), B(e,e) NN} < oo.

(iv) For each terminal e € N there is an € = €(e) € (O,d,(e,Xf\""\{e})) and a cofinite
subset D of (N°\B(e,¢), B(e,e) N N°) such that 3"ycp Gb < 0.

—
(v) Foreg € N® and {e,}32; a sequence of isolated terminals converging to ey with e, in

the 1-node z, for each n, we have

o0

2. 2 Gegy < o0

n=1e€xn\{en}

where G, () is defined in (iii).

Then, there ezists a solution (i,v) of M on (B,N°,N?) with |is| < I and || < V for
all branches b.

Note. To sum the currents into the e, in (v), we assumed (iii), and so this is not
quite a generalization of Theorem 4.5 since we can’t just sum over a cofinite set in (iii).
Nonetheless, as was noted above, Theorems 4.4 and 4.5 require only small modifications of
the proof of Theorem 4.8.

Proof. We may assume that (B, N° A1) is what we call 1-connected, that is, for any
terminals e and f there is a finite sequence {G},...,Gk} of distinct components of (B, V')

with e a terminal in Gy, f a terminal in Gk, and, if K > 1, there is a terminal r; in G,
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and a terminal /j in Gj41 in the same l-node for j = 1 to K — 1. (Corollary 2.6 is the
motivation for this.) We will say equivalently that e and f are 1-connected by the sequence
{r1,01,72,..-,1x}. Now, a solution in each maximally 1-connected subgraph of (B, N, N')
gives a solution in (B, N?,A1). (The definition of a subgraph is straightforward.)

Take a ground node ap € V Gy, where (1 is some component, and let G = Uf:IGj be a
finite union of components, which is 1-connected. Since VG is compact and has no limit
points, it is a finite set A. For each y € A take U(y) € U*(y), mutually disjoint. By the
compactness of VE"\ U{U(y): y € A}, since this has no limit points, it is a finite set B. For
each y in B take U(y) in U*(y) such that the members of {U(y): y € AU B} are mutually
disjoint. By the compactness of 17@\ U{U(y): y € AU B}, since it has no limit points, this
too is a finite set C' of nodes. Let U stand for the set {U(y): y € AU B} or the function
taking y € AU B to U(y). Accordingly, we write A = A(U), B = B(U), and C = C(U).

We form a finite digraph (By, Ny) as follows. We take My = VG/S, where S is the
equivalence relation on VG given by zS5z for all z and zSy if there are terminals z; and
y1 in the same l-node with z € U(z;) and y € U(y1). For By we take all branches in
EG incident to C (each branch being incident through one of its ends but not necessarily
both). We define an incidence relation (8f,8;) from By to Ay by 8%b = §(8*b) and
Ogb = §5(07b).

We may assume that (By,My) is connected by taking U(y) small enough for each
y € AU B. We define a monotone network My on (By,Ny) by taking (My), = M, for
b € By.

By Minty’s Theorem there is a solution (iV,vV) of My with |i¥] < I and |vf'| < V for
all b € By. Take pV as the potential for vV on My with pY(a0) = 0. We define PU: N~ R
by PU(z) = pU(Sz) for z € VG and PU(z) = 0 for z € NO\VG.

Let A be the set of U as above, i.e., for which there exists a subgraph G = G(U) =
G1U...U Gk that is 1-connected, and, for each y € va", U(y) € U*(y), and, for all
Y€ VE‘I\U(VE'”), U(y) € U*(y), these all being disjoint, and any terminals in G can be
connected by a sequence in VG U (173',\(] (‘73'”)).

In order to obtain a solution (3%, v°), we will use the Arzela-Ascoli Theorem [5]. For this
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purpose, we claim:
(a) foreach v € N0, the set {PY(v): U € A} is bounded, and
(b) the family {PV: U € A} is equicontinuous on N,

We first establish (a). For v € Kf\o, by l-connectedness there is a sequence {ry,l,79,13,...,Ix}
of terminals such that, for j = 2,..., K —1,!; and r; are terminals in a component G;, r, be-
ing in the component G, with ag € VG and {k being in the component G with v € V?K.
Here, r; and lj41 (j = 1,...,K — 1) are in the same 1-node. Indeed, according to Corollary
2.6, we have an endless path P; connecting /; and r; for 2 < j < K - 1, with Py connecting
ag and r; and Pk connecting lx and v. Before bounding |PY(l;) — PY(r;)|, we bound vf,
where b € By. Now, (if ,v¥) € M, and (£6}(0,0, M;),0) € M. (Here, we use either the +
or — sign according to whether the graph M, passes to the right or left of the origin.) Also,
Ry is a Lipschitz constant for M on (—I,T). Hence, |[v/| < Ry|i¥ F 60,0, My)| < 2IR,.
Thus, for j=2,...,K -1,

[PULy=PY(r)l < X0 Wl < 2l Y Ry < 21y s < 20d,(l,1)),
beP;NBy beP; bePp;

and likewise for j = 1 and j = K. Thus, we may write

|PU(a0) -PY(w)| < o (d,(ao,rl) + 3:1 ds(lj,r;) + d,(IK,v)) .
j=1
This establishes (a).

For (b), we wish to show that {PV: U € A} is equicontinuous at any terminal e, i.e.,
given € > 0, there is a § > 0 such that, if d,(z,e) < 8, where z,e € V H for some component
H, then, for all U € A, we have |PY(z) — PU(e)| < €. Take 6 = ¢/2I, and, for z € N° with
ds(z,€) < 4, take a path P connecting z and e with }_,cp 3s < 8. Let w be the first node

of Pin If(e); thus, wSe and PV(e) = PV(w). Then,

PU(e) - PU(a)| = [PY(w) - PU(2)| < T f) < 2T Y < ¢,
beP

and likewise, for z € ./\’/7’,, taking P to be an endless path connecting z and e.
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Extend i¥: By ~ R to B by setting if = 0 for b ¢ By, giving iV € I, I]5. By the
Ascoli-Arzela Theorem, the set {PU: U € A} is relatively compact in the compact open
topology on Rﬁ . Now, A is a directed set, where U < W means that Gy C Gw, and
moreover W(y) C U(y) for y € VG orye 175"\U (VE’”). Hence, there is a continuous
potential P°: N ~» R such that the corresponding net P: 4 ~» R accumulates at PP.
First countability [5, Theorem XII.5.2] and the existence of a countable cofinal subset of A
gives a subsequence { PUs} converging uniformly on VG for each component G of (B, N'®) by
[5, Theorem XII.7.1]. According to Tychonoff’s Theorem, by taking another subsequence,
we may assume that {iU»} converges pointwise on B to i® € [I, I]5. Since the coboundary
v% of P%|yo satisfies vU» — v pointwise, [vf] < W for all b € B. Since each M, is closed,
(22, 00) € M, for each b.

Let n! = {f1,..., fr} be a 1-node, where the f; are terminals. Let U° € A be chosen such
that n! C A(U°) U B(U?), i.e., all the f; not in VG/(\UO)” are in V@o)l\ Uyeaws) U°(y)-
For U € A with U® < U, PY(f;) = PY(f;) for f; and f; in n!, and hence P? is constant
on n!. This gives P® defined and continuous on N /R in the quotient topology, where eRf
means e and f are in the same 1-node.

Now, we have only to show that i satisfies Kirchhoff’s current law. For z € A, since
iJ" — i) for each branch b incident to z and since iU satisfies Kirchhoff’s current law at

z, 1% does too, i.e.,

Yoo = Y .

9tb=zx = b=z
We claim that, for z an isolated terminal, 1(i°, z) exists. Take ¢ < d(z, ‘73’,\{2:}) Since,
for b € (N°\B(z,€),N° N B(z,¢)), we have (0,%6/(0,0,M;)) € M, (here, we use the +

(resp. —) sign if M, passes above (resp. below) the origin) and (i, v7) € M, it follows that
lig] < Gslv) F 60,0, My)| < 2V Gy,

Hence,
Z{lz’g: be (N\B(z,¢6),N°N B(z,¢))} < VG, < o
by hypothesis (iii). Hence, since 3" {i9¢: b € (N°\B(z,¢), N° N B(z,¢€))} converges abso-

lutely, I(:%, B(z,€) N N°) exists. (Here, ¢ = +1 (resp. ¢, = —1) if b is directed into (resp.
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out of) B(z,¢).)
By Proposition 3.12(a), taking M to be B(z,¢€), we see that I(i, z) exists and equals
1(i®, M N A°) for all M € U*(z); moreover,

|1(:% 2)| € 2V G,,. (9)

We first show that Kirchhoff’s current law holds for i¢ at a 1-node n!, whose elements

are all isolated terminals, and that, for y € nl,

|I(iory)| <2V Z Gz,c(z)' (10)
zent\{y}

The inequality (10) follows immediately from (9) and Kirchhoff’s current law. We need to
show that 3 ¢.1 1(i% B(y, «(y))NN®) = 0. But, i® = lim,_.o0 iV pointwise on (N°\ B(y, ¢(y)), /N
B(y,€(y))) for each y € n!, and Ic',[,j"l < 2V @G, with

Z E{2VG6: b€ (N°\B(y,e(y)),N°n B(y,e(y)))} < oo.

y€nl

Therefore, by dominated convergence,

i

> I, By, (y)) N NV°) lim Y 1%, B(y, e(y)) N N?)

y€n! yen!
= lim Z I(i%, U,(y) N M)  (by Proposition 3.12(a))
y€n!
= 0.

We now claim that, for y € Kf\"", the flow I(i% y) of i® into y exists. Take 0 < € <
d(y,N® \{y}) with Gy((D) = T4epGs < oo by hypothesis (iv). Then, Syep i8] <
2VG, (D) < co. Hence, I(i% B(y,€) N N°) exists since 3" {ides : b € (N°\B(y,¢€),N° N
B(y,¢€))} converges absolutely (¢, = +1 as before). By Proposition 3.12(b), taking My to
be B(y, ¢), we have that I(i% M n N?) exists for m € U*(y) such that M N N = {y}.

Now, we want limpeps(y) 1(:% M N N?) to exist. By Proposition 3.12(c), this follows
if 3 I(i% z) converges absolutely, where the summation of over all isolated terminals z in
B(y,¢€). But, by (10), for any such z, |I(i%2)| < 2V 2 zent\{y} Gz(z)» and so, by hypothesis

(v)y Xze By, 1 (1% z)} < 00, where again the summation is over all isolated terminals z in
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B(y,€). This proves our claim. In addition, by Proposition 3.12(c), for B(y,¢) € U*(y),
I°9) = 12 B(y, ) NA®) = T{I(%,2): 2 € B(y, ) n (WO \{g})}.

Next, we show that Kirchhoff’s current law holds at a general 1-node n! = {z;:j €
JYU {zk: k € K}, where z; is not isolated for j € J but z is isolated for k € K. By local
finiteness, J and K are finite sets. We have I(i%, z) existing for all z € n!, and we claim

that ¢ jux (1% z;) = 0. We need to show, knowing that the following limits exist, that

> lim IEOMON?) + > lim )I(iO,MnN°) = 0.

jes MeU (=) kek MEU*(x
So, we need only show that
dim 371, Un(z) NN®) + lim 3 I(%, Un(2x) NN®) = 0. (11)
Jed keK

As in the proof of Kirchhoff’s current law for a 1-node containing only isolated terminals,
the second term is limp—o0 3 xex I(iY", Un(2k) N N°). Consider the first term. For j € J,
we claim that I(iU», U,(2;) N N0) — I(i% Un(2;) N N'°). Now,

I(#°, Un(2;) N N©)
= I( B(zj,) NN®) = S°{I(,4;) : 95 € (B(2;,)\Un(2)) N NV}

= 1(%, B(2;, )N N°) - > X3\ Uz W 9)- (12)
YEB(2},) W \{z,}

by Proposition 3.12. (Here x denotes the characteristic function.) Similarly,

I Un()0N) = I, BN = L Xgayg @I (13)
yE€B(zj,e )NV \{2;}
Now,
I(i° B(zj,€) N N°) = Lim I(:"", B(z;,¢) N N°) (14)
by dominated convergence since Iig]"l < 2VGyforb € D and |i§’"| < I'for b € (N%\B(zj,¢), N'n
B(z;,€))\D. To prove our claim we need only use dominated convergence to show that the

sum in (13) converges to the sum in (12). For y € B(zj,¢) ﬂ/’\fT”\{z,-},
I(9) = limxg,p, . OIE,9).
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This is dominated by 2V 3,1\ (4} Gz,(z) By (10). By (v), this is summable over z. Hence,
the sum in (13) converges to the sum in (12), and together with (14) this proves our claim.

Thus, the first term in (11) is equal to limy, 3_ ;¢ I(iY%, U,(z;) 0 ). Since

Y I Un(2) NN®) + Y 16U Un(z)NN®) = 0

JEJ keK

for large n, (11) holds. O

References

[1] B.D. Calvert, Infinite nonlinear resistive networks, after Minty, Circuits, Systems, and

Signal Processing, (in press).
[2] B.D. Calvert, Unicursal resistive networks, (submitted).

(3] D.I. Cartwright, P.M.Soardi, and W.Woess, Martin and end compactifications for non-
locally finite graphs, Trans. Amer. Math. Soc., 338 (1993), 679-693.

(4] V. Dolezal, Monotone Operators and Applications in Control and Network Theory,
Elsevier, New York, 1979.

(5] J. Dugundji, Topology, Allyn and Bacon, Boston, 1965.

(6] H. Flanders, Infinite networks: I — Resistive networks, IEEE Trans. Circuit Th., CT-
18 (1971), 326-331.

[7] H. Freudenthal, Uber die Enden diskreter Riume und Gruppen, Comment. Math.
Helv., 17 (1944), 1-38.

[8] R. Halin, Uber unendliche Wege in Graphen, Math. Ann., 157 (1964), 125-137.

[9] H.A.‘Jung, Connectivity in infinite graphs, in Studies in Pure Mathematics (L. Mirsky,
Ed.), Academic Press, New York, 1971.

(10] D. Konig, Theorie der endlichen und unendlichen Graphen, Akademische Verlagsge-
sellschaft M. B. H., Leipzig, 1936.

33



(11] T. Lyons, A simple criterion for transience of a reversible Markov Chain, Annals of

Prob., 11 (1983), 393-402.

[12) M. Iri, Network Flows, Transportation, and Scheduling. Theory and Applications, Aca-
demic Press, New York, 1969.

[13] G. Minty, Monotone networks, Proc. Royal Soc. London, 257 (1960), 194-212.

[14] N. Polat, Aspects topologiques de la séparation dans les graphes infinis. I, Math. Z.,
165 (1979), 73-100.

[15] P.M. Soardi, Approximation of currents in infinite nonlinear resistive networks, Cir-

cuits, Systems, and Signal Processing, 12 (1993), 603-612.

[16] P.M. Soardi, Potential Theory on Infinite Networks, Lecture Notes in Mathematics
1590, Springer Verlag, New York, 1994.

[17] W. Woess, Random walks on infinite graphs and groups — a survey on selected topics,

Bull. London Math. Soc., 26 (1994), 1-60.

(18] A.H. Zemanian, Infinite Electrical Networks, Cambridge University Press, Cambridge,
England, 1991.

[19) A.H. Zemanian, Connectedness in transfinite graphs and the existence and uniqueness

of node voltages, Discrete Mathematics, 142 (1995), 247-269.

[20] A.H. Zemanian, Transfiniteness for Graphs, Electrical Networks, and Random Walks,
Birkhauser, Boston, 1996.

34



Figure Captions

Figure 1. The illustration for Example 2.2. A ladder network without sources. The num-
bers designate branch resistances. With s, being the resistance of branch b, e and f

are s-terminals.

Figure 2. The illustration for Example 3.2. This is a quarter-plane grid to which is ap-
pended a ladder network extending downward and a one-ended path extending to
the left. The upper dotted curve denotes the cut (Veo(F), N°\Veo(F)). The lower
dotted curve denotes the cut (Vb(F), NO\Vb(F)).

Figure 3. The illustration for Example 3.6. The numbers indicate currents; the letters

ends.

Figure 4. The illustration for Example 3.11. Nodes p,, » = (27™,27") are indicated only
for 0 < m,n < 4. The points (2™,0) and (0,2™") are s-terminals, and (0,0) is an
s-terminal that is a limit point of the other s-terminals. B, and B; are the balls

mentioned in the text.

Figure 5. The illustration for Remark 3.13. Here, we have a two-way infinite grid. The
branch numbers represent resistance values. All unmarked branches have 1 ohm resis-
tances. e and f are s-terminals to the right, and g is the end to the right. A current

of 1 ampere flows along the middle horizontal path, and current is 0 elsewhere.

Figure 6(a). An illustration for Example 4.1(a). This is an endless path with two ends
e and f, to which is connected a 1-volt source through a series resistance of 1 ohm.
That source branch is connected to e and f through two one-ended paths of shorts —
the artifice mentioned at the end of in Section 3. n! and n} are 1-nodes consisting of

the ends as shown. The other branch numbers are branch resistances.

Figure 6(b). An illustration for Example 4.1(b). Here, the endless path of Figure 6(a) is
converted into a ladder by appending vertical resistances of 2¥ ohms (k = 0,1,2,...).
Now, the two ends e and f of Figure 6(a) become R-terminals, where R is determined

by the resistances.
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Figure 6(c). An illustration for Example 4.1(c). Here, each vertical branch of Figure 6(b)
is augmented by inserting two one-ended paths in series with that branch, the paths
being shorted together at their ends through a 1-node. Again the branch numbers

denote branch resistances, except for the 1 volt source.

Figure 7. A ladder network connected through two 1-nodes n! and n} to an endless path,
all of whose branches are shorts except for one source branch. All branch numbers
other than the 1-volt source represent resistances. eg, €1, fo, and f; denote r-terminals.

Also, nl = {eo,e1} and n} = {fo, f1}. The arrows denote branch orientations.

Figure 8. An illustration for the Remark before Theorem 4.7. This is an endless path of

series-connected endless paths.
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