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LEARNING, ADAPTIVE C U R .  FI'ITING . 

AND STOCHASTIC TRACKING j 

- ' Sheldon S. L. Chang . 
State University of New York at  Stony Brook ' 

l\ro basic and related problems i n  learning systems are 

studied with optimum fi l ter ing and coitrol methods. The f i r s t  

problem is how to approximate 'a curve or .  surface accurately with 
- - 

-. a minimum number of parameters. A solution is given using general- 

ized paximum principle?'21he second problem is optimum tracking 

of a changing parameter or parameters f r m  noisy data using random - __- _ 
samp16~ theory. The well h o r n  sto&astic approximation methods i 

3 4 of Robbins and Monroe and Kiefer and Wolfowitz track 'stationary 
t 

parameters only and are shotm to agree with special cases of the 

present stochastic tracking theory. 
-- 

- 
,.- 

Previous studies of learning and adaptive system usually 
.- - 

describe devices and systems which accomplish certain goals, and 
- -  - 

relatively fewer papers are addressed to  the problem of the fastest  

or best way of accomplishing these goal$?l'hese la t te r  group 
. . 

presents many diversified methods with few links in between. In 

addit ion to  developing useful methods towards the l a t t e r  objective, 

the present paper also gives a unified theoretical link to  the 

various d i v e r s h e d  methods .* 
C 

%resented a t  I E E  International Convention March 21, 1968. The work 
reported herein was sponsored by the Office of Scientific Research 
and- Developnent C o m d ,  Washington, D. C., under Grant AF-AFOSR-542- 67. 

r 



I 

- 7 

-2- 
.- . 

ADAPTIVE CURVE FI?TING F, SUBOKTIF.fIZATION . . 
, . In a given problem, the gain curves etc. are  usually best 

approximated by a number of arcs such that each individual arc 

sat isf ies  a certain differential eqyt ion though the gain curve does 

not?3 One such example is piecewise linear approximation. Each . 

individual arc is a straight line which satisfies the equation 

vhere ii' i s  a constant slope, but the curve to  be approximated does 
- 
-- not satisfy (1). The problem of approximation i s  t o  choose ai and ti. 

An attractive feature of adaptive m e  f i t t ing is that-the duration 

covered by an arc is 'autmatically shortened a t  places where the 

curve is more curly. 
*-- - - - 

The problem of adaptive curve f i t t ing can be formulated as  

. . '"follows: 

where x and u are n- and rn- dimensional vectors, m a ;  y(t) is a scalor 
* 

function; xl(t) is the f i r s t  component of x; and A and B are constant 

matrices; the constants t and tN are given; al, a2...aNand tl, t2...tNe1 
, 0 



are to be selected so that % is minimum. 
Sometimes the problein is not of finding the.closest approxi- 

- .  

mation to a given curve y(t) but to minimize some functional of the 

. curve x(t). However the problem is different from a straight calculus ' 

of variation problem in that x(t) is to be made up by N arcs as 

specified by (3) and (4). Then (2) is replaced by . . 
4 = jfN g(x,u,t) dt = minimum 

- 
(5) 

", The expression (5) includes (2) as a special case. 

A generalized version of Pontryaginrs maximum principle 
-- 
. gives the following condition to be satisfied by oi and ti: 

where is an . . n-dihensional row vector, and 

. . = for all variations bucut) satisfying 

& K is anyY f inlte constant. 
F 

One way of varying u is changing.ti in (4) by c while keeping - 



.ai, and tj, j # i the same. As ti can be made to  vary i n  one direction . 

and then the opposite, inequality (7) gives 

H(Y (ti) ,x(ti) s ail = '(*(ti) ,x(ti) ,ai+l 1 i=1,2,**-N-I (9) 
- 

~;king variations of ai in both directions, inequality (7) gives 

If' 1 H((,x,oi)dt = 0 i = 1 , 2 , , , N  aai 
' 4 

-- It can be readily verified that other ways of varying u do not introduce 

any new condition which cannot be derived from (9) and (10). If x( to )  
- 

and x($) are unspecified, the transversality conditions give : 

~h& are N-1 + mN + 2n conditions in (9), (10) , and (11). These allow 
. - -- * - 

the h i t i a l  values of y ', x, and the constants ei, and ti t o  be 

completely determined. 
I.. 

Example I; Curve Fitting by Straight Lines. We have n = 1, 

x P  xl, andx = us A = 0 . 
- 4  

\ 
* - H = $u - i ly - X I ]  

.. 
Equations (61, (9) , (10) , and (11) give respectively 



Substituting (12) into (13) and (14) gives 

Let i :  
. . 

Then -- 
- a - Ilr - xIl = x t t )  .- y(t) # 

- ax (17) 

Eguations (15) and (16) have a simple geometric interpretation. 

~ e $ e r r i n ~  . , to  Fig. 1, the value x(ti) and ti are assumed known. ' We 

chodse a slope for  the straight line segment and integrate out to  a 
\ - - 

..-- . - point P so that  the net area between the curve and the straight l ine is . 
< '. zero (Jo = 0). If 'the selected slope is. too small o r  too large, Ji>O 

as shorn by the l ine segements RP1 and ?21t. There is one l ine segment 

RP which gives simultaneously Jo = J1 = 0. ?he values of ti+l and 
\ 

~ ( t ~ + ~ )  are given by the position of the end point P. Thus given x(to), 

i the subsequent points tl, x(tl), tt, x(tZ). .. etc. are completely 

I - determined in this  step by step manner. 

If the i n i t i a l  point x(tJ is selected closer t o  y(to), the 
! - approximat'ion is better but the required nmber of line segments is I 



. . 

I - - 6- . 
I a 

P &o increased. By choosing the vklue of x(to) , we can control the 
I 

number of l ine segments or the accuracy for approximating a given 
- 

m e .  . - 

Example 11. Curve Fitting by Parabolic Segments with 

Continuous x( t )  and dx/dt a t  ti, i-l.. .N-1. 

We have n = 2, m = I, and 

-- 
- - -  3 2  = - .  - . - 

In the solution, Equations (13) and (14) are replaced by, i = 0, 1.. .N-1 

} . - where '.. , 

Once xl(to) and xZ(to) are selected, the subsequent ti,xl(ti) and 

I xZ(ti) are completely determined. The freedom in the choice of the 

M t i a l  slope x2(t,) i s  necessary for meeting the condition- 



Example 111. 'Subopthization Consider 

problem of minimizing 

but only piecewise linear functions are allowed: 

the  classical 

I with to = 0, '5 = T, where bi and ti, i = 1,2.. .N-1, are to be chosen. 

The Hamiltonian is - 

----.- Then ( 6 ) ,  ( 9 ) ,  a d  (10) become 

Equation (25) gives . . 

Equations (24), (26),  and (27) taken together constitute the "Euler-Lagrange" 
* 

equations in crude form. The relation . 

is replaced by (26)and (27) for the suboptimized solution. 



I Stochastic Tracking 

I General Model 

1 In stochastic approximation, t he  unknown parameters are 

as'kmed constant. If the parameters vary in  some random fashion, it 

becornes important t o  keep track of the parameter variations. Figure 

2 gives a model of ,an adaptive'control system in which the tlplantl' 

I in i t s e l f  represents a closed loop system with varying cond.ition F C 

( and adjustable parameteis y. The . to ta l i ty  of a l l  possible plant 

conditions is represented by the s e t  C which may or may or  may not 

be f in i te .  A t  any one time the condition of the plant is < tz 2 .  

Measurements n ( t)  , t = 0, 1 . *. are made on the plant and the con- 

I ditional probabilities q(6,t) a t  time t f o r  each E C is give by 

1 .  - The best values of the  adjustable parameters y are calculated from the 
f 

set of conditional probabilities q ( ~  , t) 
However, (28) is very d i f f icu l t  to  use as  t becomes large. The 

following theorem gives a simpler but equivalent method of calculating 

t Theorem L e t  the  transit ion probabilities of the plant and measuring 

system be specified by p (E ( t ) / t  (t -l)l, and p (n ( t)  /( (t) ) 
I 





- (35) 

m a t i o n  (35) is the same as (29) and (30) when (29) is regarded as  a definition 

. of r ( ~ ( t + l ) , t + l ) .  
I 

Optimum Adjustment .. -. 

The optimum sett ing of adjustment parameters ; is obtained by - 
minimizing the expected penalty fmction : 

t 

. where F(V,E) represents the penalty if the plant is in corldition {, and the I I - - 
I 7 .  

se?.tiilg y is used. 

1 -. i For each s t a t e  5 there is a s e t  of-best  parameters y = (yl,yZ-*yn). 
'I . - ' .  i 

i Let  y ( ~ )  be the best y for  the s ta te  5. I f  the penalty function F is 

1 +,, F = I I Y ( ~ I  - T I  I ~ Q  

I 
2 - k*ere Q is an nxn positive definite matrix, and 1 la 1 1 Q represents the 

r '\ 

scalar  a'@.  hent the best y which minimizes the probable penalty is 
I "- 1 . - - -  - Fw- -L ~ ( c ( t ) ) q ( ~ ( t ) , t )  

r (t) 
In the above section, the number of states can be infinite, and C * 

is a continuous vector o r  scalor. The surmoations a r e  then replaced by 

integrals, 

Relation t o  Kalman Filter'' 
F 

In KalmanTs optimtrm f i l tef ing problem, the s t a t e  and observed 



I 
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variables a re  assumed t o  be generated by 
- 

~ ( t + l )  = A(t) [ ( t )  + w(t)' (37) 

n(t1 = H(t)  € ( t l  + v(t) (38) 

where F and I-I are of dimensions n and m respectively and w and v are 

white Gaussian random processes. It is readily shown that (37) and 
b 

1 ' (38) lead to a Markov process with . 

I 1 p (6 ( t + l l / S  ( t )  1 = 

, (39) 
-- --. 

1 
~ ~ n ( t l l ~ ~ t 1 )  = 

(40) 1 '. i - 1. 

I - * 

i where 4, = b m  , (y = ~ ( t )  vC(t) . -- a, 
-.- . -  

I t  w i l l  be shown that with the transit ion probabil-ities (39) 1 1 l 
and (40), (29) and (30) reduce t o  the two s tep updating process of the 

I 

-1s Kalman Fil ter .  The f o l l o i h g  algebr'aic identity is readily verified! 
r I 

I -1 
1 

i (X - BY)# M-'(x - ~ y )  + y4~-1y E X*K x + (y - (x) ' i1 (y - (x) 
8 - 1 

t 
- .  

I where x and y are column vectors, and B,C, K, L, M, N are matrices: 

4- 

From €42) and (43) the following expressions are derived: ' 



H 
&re +(t) = [ E  ( t )  - r ( t ) )  [ ~ ( t )  - z( t ) ]  ' and b is the determinant of . 

* 

E 
Iv 
#<t) 

I -. 
- -- Substituting (39) and (47) in to  (29) ,  the resulting integral 

I - 

1 has an exponent - -Z E . . . 
b 8 

Let  ly =E(t) - i ( t ) ,  and x = ~ ( t + l )  - A(t) i(t) identity (41) gives 

1 

1 
\ 2 -1 2 -1 1: 

I I E =  [ I ~ ( t + l )  - ~ ( t )  i ( t l [ l  K + I ls ( t )  - i(t) - bll L 1: 1. 
The second t e n  disappears by integrathg with respect t o  ~ ( t ) ,  and the 

I 

t . . fir+t term gives A(t) i ( t )  as.  the best estimate of ~(t+l) and 
N '> 1 .. K = A ~ ( t )  A' + , & the error covariance $it+l, t) before measurement 

I - 

* (491 . 
. Substituting (40) and (49) into (30) and making use of (41) ,- (44) and 

F 
I (46) the second step in Kalman f i l t e r  is obtained. . . 

. . 
. . -- 

C 
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Quasi-Equivalent Generating Process i 
i I 

A quasi-equivalent generating process is a generating process + I 
: 4 

in the form of (37) which gives the same. covariance matrix 
- .  - 

o ( ~ , T ) . Z  E(t) E(.r)' 

though not the same transition probabilities p ([ (t*l) /t ( t )  ) . Consider the 

following example in  which [ is continuous, I E 1 5 I : 
1 

p(s(1)) = z 

.,., The sape 4 ( t  , T) can be obtained by the following process r 
- .  

L *  I; 
~(t+l) = v E (t) + ~ ( t )  - (53) : !  

.- 

.where w(t)  is white. - But (SO) and (51) cannot be obtained from (53). The 
I 

first step in Xalman f i l t e r  is still valid: 
. 

1 '  
t +  1 = q(r (t)', t) [v -6  (c(t+l) - c ( t ~  + p] d i  ( t ~  

-1 



The second step in Kalman f i l t e r  . . gives a different expected value of 
. . . - 

t e(t+l) from tha t  obtained from (30) but the resul t  is very close. 

1f a Markov process has a quasi equivalent generating process, 

Kalman f i l t e r  f o r  the l a t t e r  gives an 'approximately optimal estimate 

f o r  theformer. 

Kalman Fi l ter ,  Stochastic Tracking, Stochastic Approximation 

Kalman f i l t e r  establishes a l ink between stochastic tracking 

of a stationary process and Robbins and Monroe stochastic approximation. 
-- 
. -  ' If f (t) varies randomly and the process is stationary, Kalman f i l t e r  

g i v e r t h e  same steady s t a t e  solution as the author's previous stochastic 
- 2 

tracking soluti&18 If 5 (t) is a constant (A(t) = 1, u(t) = 0 in (37), 

Kalman f i l t e r  gives - -. -. 

i - &ere K t  approaches a constant as t approaches infinity. The result is 
3 in agreement with Robbins and Monroe stochastic approximat ion. 

I Stochastic peak tracking 

i: - A stochast ic peak tracking problem is given as follows: 

1 
I - where m is a merit parameter, x is an adjustable parameter, and ~ ( t )  i s  
I I. 

h the best  setting f o r  x a t  t. It varies with t r a n M y  as follows: 

-r(t+l)-= ~ ( t )  + w(t) 

The measured merit is y 



where w(t) and v(t) are  white with covariance functions ~w and +v 

I . -  

respectively. In order t o  determine 6 - x, x is s e t  at i(t) '+ C 

I and i(t) - C fo r  each t, where i ( t )  is the best estimate of 6 a t  t, 

l and the resulting measurements yield y (t) and y0 ( t )  : 

t Kalman f i l t e r  solttion t o  the above problem yields: 

- 
2 where i ( t )  is the expected valae of [c ( t )  - ~ ( t ) ]  , and 

- A +v i (t) 
$(t+l) = - 

- - - 2a2c2+ ( t )  + +v + +w 

- Detennination of c (t)  

One basis fo r  determining c (t) is t o  maximize the expected value 

of m(t) : 

The cr i te r ia  is 

I '  - -. 
I 

1 -  - A variable* J ( tO)  is defined as the above sum from t = O  t o  t = t' - 1. Then - . . 
. (62) is 

. . . . - . 



J(T+l) = min . - (64) 

Equations (61), (63), ind (64) can be treated as an optimal 

discrete control problem with . 2  [ ) as the s ta te  vector and u = ac 

as the control variable. The Hamiltonian function is 

~(q ,+;u , t )  = - (J + a; + u) + 

1, 

1 and u is determined by maximizing the Hamiltonian. In the l i m i t  of large 
I I -. T, and constant a a@ A, the solution agrees- with previous result on 

8 stochastic peak- seeking. 

I ., Stochastic Approx&a t ion 

If {(t) and a( t )  , . are constants, the problem reduces to that 

I,.-? of stochastic approximation. ' Let. A(t)  = 1, and +Jt) = 0. Let a new 

I state  variable z(t) be defined as l/q(t). Equations (61) and (63) become: 

z(t+l) = z ( t )  + (65) 

The Ibmiltonian function is 



$[t-1) = - aH = a + ) (t) az .7 

. From (67) and (68), $ (t) is seen to  be a positive but monoton~usly 

decreasing function which decreases t o  zero a t  t = T. Equation (69) 
. - 

I gives the following solution: 

+v (1) t < tl , and q , Zi 

( 2 )  t > tl and $ < .. '% . 2z 
. . 

u = O  

. and u(tl) is equal t o  the value required t o  reduce r (tl+l) t o  1 
t 

(701 

1 ,  .c 
/ 

f The solution is a bang-bang solution which requires reduction of ((t) to 

I ,. ' . 
( '/z (tl+l) and then let c (t) equal to  zero' afterwards. The criterion (62) 

I 

does not lead t o  Kief er-wol£owitz stochastic approximation. - 
- .  An alternative criterion is to  require ( (t) and c (t)  to 

approach 0 a t  the same l o g r i t h i c  ra te  as t* : 
- 



Therefore a - 1 = - a, a = z  . It is readily verified that  the result  

I 4 
I agrees with Kiefer-wolfo~iitz stochastic approximation. 

I One essential  significance, of the above resul t  is that  the 

t o t a l  error, T(t) + c(t)', reduces atmost a t  the r a t e  t -1/2 as t-t-, 

and cannot be any faster .  

Conclusion 

I Two problems in 'learning and adaptive systems .are studied In 

t h i s  paper: 

1. EIow t o  approxinlate a curve most accurately with a given nmber 

I -, of arcs? In case the curve is horn, .  a step by step method is derived 

from the generalized maximum principle. The method is readily reducible 
j .  
I 

! 
to computer algarithm. In case the curve is not known, but a certain 

. . -. . 

functional of the curve is t o  be minimized, the method gives a necessary 

I ,  condition h%ich can be called a discrete version of Euler Lagrange equation. -. 
+- 

I . - 
In many applications, the approximated curve is unhorm, o r  tine 

varying or  both. Then ai and ti.are determined for a nominal curve in i t i a l ly ,  

F and the subsequent variatio of ai or  improvements on the estjlaation of 

a can be'detennined by a stochastic tracking method. 
. is 

2. What is the optimal way of  tracking an unho~m or  varying, 
. . 

L parameter from noisy data? A general stpchastic tracking problem is  
r 

.? 



. 
I . formulated in terms of a bkrkov process with noisy measurements. The. 
I . - 
I 

i parameter estimation problem is simplified by tha t  a l l  the 
. . .  
apr ior i  information and information obtained from past measurements are 

contained within a se t  of conditional probabilities, The calculation of 
I I 

the conditional probabilities can be'done by a two-step updating process 

I which reduces t o  Kalman f i l t e r  i f  the distributions are Gaussian. , 

I 

I 

In many applications the random variations of the parameters 

t of a system cannot be described by s t a t e  variable equations, The 

, general procedure reduces t o  a Kalman f i l t e r  i f  there is a quasi-equivalent 
I 

- 
process (same covariance but different distributions) whose parameters i h 

1 ' can be described. by s t a t e  variable equations, and 'reduces further t o  
, 
I . Robbins and Efunro stochastic approximation i f  the parameters are fixed * 
I .  

.' but unknown. -. 
. . 

The peak tracking problein can be reduced t o  the stochastic 
. . r tracking problem with the additional variable of the excursion amplitude 1 

L . - 1 
6, which is then obtained by maximizing the expected peak. In the special 

I I 

case that the parameters do not change, the method yields two tracking 

i -  ; I 
procedures depending on the cri terion used: 3 .  

i i 

(a) Tracking for a limited time and then s6 t t l e  fo r  the parameter i i 
i 

A .  

value so determined. It is shown that  the expected error is  proportional , 

* ? 16 
to to', where t is the tracking time. 

f 
I 

@) .A  procedure which agrees with the ~ i e f e r - ~ o l f o w i t z  stochastic 
I 

i 

approximation method. It is shown further that the expected to t a l  reduction / / 



-1/2 - is peak value (due t o  error and hunting loss) is.proportiona1 t o  t . 
Achoxiledg ement 
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~ i s t  of Figures 

Fig. 1. Choice of slope and length of the l ine  segments approximating 

-- Fig. 2 ,  Model of a Stochastic Adaptive System. - .  
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