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LEARNING, ADAPTIVE CURVE FITTING
AND STOCHASTIC TRACKING
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’ '_I’wb basic and related problems in 'leaming systems are
»studi'ed with optimum filtering and control methods. The first
ﬁroblem is how to approximate a curve or. surface accurately with
".a minimun number of parameters. A solution is given usi_r;g general-
ized maximum i)rinciple.l ’ZIhe second .problem is optimum tracking
of é changing parameter or parameters from noisy data using random
samplmg theory. The well known stochastic approximation methods

4

of Robbins and Monroe 3:;Lnd Kiefer and Wolfowitz ‘track 'stationary

parameters only ;nd are shown to .agree with special cases of the
present stochastic tracking theﬁry. ‘

'Preﬁéus s%udies of learning and adaptive systems usually
describe devices and systems which ach;nplish certain goals, and
'relatively fewer papers are addressed to the problem of the fastest
or best way of éc_c_omplishiné these goal-g’ . 12"Ihese latter group
‘ présents many diversified methods with few links in between, In
addition to developing useful methcds towards the latter objective,

the present paper also gives a unified theoretical link to the

various diversified methods.

*pi'esented at IEEE International Convention March 21, }9@8. The work
Teported herein was sponsored by the Office of Scientific Research

and Development Cormand, Washington, D.C., under Grant AP-AFOSR-S4?.-67.
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ADAPTIVE CURVE FITTING & SUBOPTIMIZATION |

In a given problem, the gain curves etc. are usua.lly kbest
approximated by a number of arcs such that_ each individual arc
setisfies a certain differential equation though the gain curve does
no.t.ls One such example is piecewise linear approximation. Each .
individual' arc is a straight line whicfi satisfies the equation

X = ai . ti‘1.< t < ti ' . -. (1)

where di’ is a constant slope, bu;c the curve to be approximeted does
not satisfy (1). The problem of approxi;ﬁation is to choose « i and ’c1
;An attractive feature of adaptive curve fitting is that the duration

covered by an arc is ‘automatically shortened at places vhere the
curve is more curly.

The problem of adaptlve curve flttlncr can be formulated as

"~ follows: .
Ry = rN ||y(£) - x;(1)]] dt = pinimm | ' €3)
. | — .
0_ D - .
x = Ax + Bu(t) I o (3)
u(t) = a4 1 gttty . (4)

where x and u are n- and m- dimensional vectors, m<n; y(t) is a scalor

[ 4

function; x l(t) is the first component of x; and A and B are constant

, matnces the constants t and tN are given; o 12 82ee-0y and tl, 20+ Iy 1
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are to be selected so that RN is minimum,
Sometimes the problem is not of finding the closest approxi-
mation to a given curve y(t) but to minimize some functional of the
. curve x(t). However the problem is different from a straight calculus’

of variation prob}em in that x(t) is to be made up by N arcs as

specified by (3) and (4). Then (2) is replaced by
t
N . .
Ry = J g(x,u,t) dt = minimm o (5
o .

e e

— .The expresswn (5) includes (2) as a special case,
A generalized version of Pontryagin's maximum pr1nc1ple

I

givés the followmg condltlon to be satisfied by ai and ;e

HQp,x,u) = §'Ax + 7B - g(x,u 9 T (sa)

w=-wAh§g@uw | O

where §' is an n-dimensional row vector, and

Lin 2 rN[M%LNMJ+H®Jdet§0 o
0 ) .
t —
o -

.= . for all variations Ausd(t) satisfying
tN . . S ) . N
: I |lau (t)]|dt < e K . ' ®)
t € . .
o . _ : : i

and XK is any. flmte constant,

" One way of varying u is changlng t, in (4) by ¢ while keeplno

.
.
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the mltlal values of ¢', x, and the constants a,

-4

oy, and tj’ j # i the same. As t; can be made to vary in one direction
and then the opposite, inéquality (7) gives
H(‘i’(t ),X(t )» a. ) H(‘P(t ) WX (t; ) al"’l) i=1,2,-++N-1 (9)

'I‘ékmg variations of a i in both dlrectlons, 1néquality (7) gives

t a» L
I S Hpxe)dt=0  i=1,2,,N o)
‘ 1

It can be readily verified that other ways of varying u do not introduce

any new condition which cannot be derived from (9) and (10). If x(to)

and x(t&) are unspecified, the transversality conditions give:

v'(t) =0 . v(tN) | _ Q@

'Ihere are N—l + mN + 2n condltlons in (9), (10), and (11) These allow

i and ti to be

complet_ely determined.

Example I, Curve Fitting by Straight Lines, We have n =1,

X =X, anc.\lx.=u,A=0

-
g .

T H=vu- |y - x|

Equatlons (6) 9, (10), and (11) glve respectlvely

Hy(t)-xct)ll N €

W(t ) =0 i=0,1,2..K a3y
i+l - ’ - _ ‘
g v(t) dt = 0 i=0,1,2...N-1 (14)

i i Sk
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»Substitutino (12) into (13) and (14) gives

ti+l a 4 E : : .
DR SRR CIERE N 55
i - |
= :ti+1 3 ~ L | T '
J; = I tox [ly(t) - x(t)[[dt = O - (16)
t.. . - '
- 1
Let o .
lly -xl1 =30 -0" - .
Then A | . -
Ly - x|| = x(®) - y(t) “ o oan

Equations (15) and (16) have a simple geometric interpfetation.
Referrmg to Fig. 1, the value x(t ) and t;are assumed known. We
choose a slope for the straight line segment and integrate out to a
) pomt P so that the net area between the curve and the straight line is .
Zero (J = 0_); 1f the selected slope is. too small or too large, J. >0
as shown by the line segements RP' and XP". There is one line segment
RP whlch glves simultaneously J Jl = 0, The values of t. 341 and
x(t 1) are given by the p051t10n of the end pomt P. 'I'hus given x(t ),
the subsequent points t» x(tl), 29 x(tz)... etc, are completely
‘determined in this step by step manner.

If the initial point x(to) is selected closer to y(t ), the

approximation is better but the required number of line segments is
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' also increased., By choosing the value of x(to) , Wwe can control the

mmber of line segments or the accuracy for approximating a given
curve,

Example II. Curve Fitting by Parabolic Segments with

Continuous x(t) and dx/dt at ty, i-1...N-1.

Wehaveﬁ=2,m=l, and

X1 7%
] ) :
S X, =u | . ,
] In the solution, Equations (13) and (14) are replaced by, i = 0, 1..,.N-1
! : ti41 ' : o
S ¢1(t) dt =0 . Lo (18)
! LY '
e \ e
" - Y
\ T ,ti+1 ‘ o ’
- » t‘i)l(t) dt =0 . ' 19)
t.- - . . . - .
1 T -
where
n@ = E o - xolle | (20)
- tg 1 - ’ .

Once xl(t 0) and xz(to) are selected, the subsequent tiXg (ti) and
xz(ti) are completely determined. The freedom in the choice of the

initial slope X, (to) is necessary for meeting the condition-

- ¢1(tN) =

e ey —-—v—nw-.-—wm——w‘—v
i
¢ ' .
. - ¢ .
.
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Example III. ‘Suboptimization Consider the classical

problem of minimizing

T' . . . .
- J(X) =’J g(x,x)dt . ' ' L . (21)
: 0 ' e T )
but only piecewise lineaf functions are allowed: A
x(t) = bi’ | tiq < b <t - (22)

with t, = O,ZtN = T, where bi an§ ) i-= 1,2...N—1, gre to be chosen.

The Hamiltonian 1is

H(y,x,u) = fu - glc,w B | - (23)
Then (6), (9), and (10) become
= - =2 ek | o (24
HG,x,b)| = HE, va1+1)| @8
‘tl 1
t .
1 ? 2 o

J v - 55— g(x,b;)] dt = 0 (26)
t..1 1

Equatlon (25) glves

P g(x(t;),bs,1) - BO(E,),5;) | an
i Biag ~ 05 -

Equations (24), (26), and (27) taken together constitute the "Euler-Lagrange"

‘equations in crude form. The relation

Ly = 2805x)
ax

- 1s feplaced by (265‘and (27) for the suboptimized solution.
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Stochastic Tracking

General Model

In stochastic approximation, the unknown parameters are

assumed constant. If the parameters vary in some random fashion, it

becomes important to keep track of the parameter variations. Figure

2 gives a model of an adaptive control system in which the "plant"

in itself represents a closed loop system with varying condition § -
and adjustable parametefs- v. The totality of all possible plant
conditions is represented by the set I which may or may or may not

be finite, At any one time the condition of the plant is & e L.

Measurenents n(t), t=0,1 ... are made on the plant and the con-

ditional probabilities q(a,t) at time t for each £ ¢ I is give by
s 5%1) s%Z)u';. e(i-lj p(E(D), £(2) =-+ £(t), n(1), n(2) <+« n(t))
C{(E(t),t) = T T p— 1 .

§(1) £(2) gy PG, £@) -+- &(1), n(1), n(2) -+ n(t))
T | | . (28)

. The best values of the adjustable parameters y are calculated from the

set of conditional probabilities q(g,t).
However, (28) is very‘difficult to use as t becomes large, The
following theorem gives a simpler but equivalent method of calculating

ats,v). .

- Theorem  lLet the transition probabilities of the plant and measuring

system be specified by p(£(t)/£(t-1)), and p(n(t)/£(1)).

r
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Then _ |
T(g(t+l), “1”"5’{ ;l(E(t) ,t) p(e(tﬂ)/«:(t)) @
t . )
. Cr(E(t1),t+1 t+1)/£ (t+1) _
a(&(t+1),t+1) "{.](r ¢ (_t+1) St 7 )y - G0
£(t+

In other words, every ‘bit of 1nfomat10n in p(()), n(1), n(2) - n(t)

is represented in the dlstrlbutlon q(g (t),t).

. Proof Tq prove the theorem, it will be shown that (28) is equivalent to
(29) and (30). Let the following short npf.ations be defined: 4

P(z,n;i) and P(n;t) denote joint probabilities - - K
P(E,n,t) = p(i(l), £(2), +++ &(t), n(1), n(2) -~ n(t))

P(n,t) z p(n(1), n(2) +-+ a(V))

and ""-,: X denote the multiple sum I «es £ . Then
£(1,1) - £(1) &(2) AR
P(n t) =t -  P(gn;t) - o - (31)
- i(l t) : o
c;(t) 9= Ple,nit) | (32)

(l,t’l) P(ﬂ;t)
By definition of the transition probabilities

P(e;,rs;tﬂ) P(E,n t) p(e(t+1)/£(t)) p(n(t+1)/E(t+1)) (3

; P(g,n,t \ E(t+1)/e(t ) ( t+1)/£(t+1)
q(a(tfl) ,t41) = E(t) {s(i ¢-1) PG&m [ pEE( )) pla( )

z(t+1) ) { £(1,t-1) P(Evn»t)} p(a(t+1)/e:(t))p(n(t+1)/s;(t+1)
4 -

18
L2

Pividing both the denominator and numerator of (34) by P(n,t) gives:

E
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Cmp——

- - | | (35)
quatlon (35) is the same as (29) and (30) when (29) is regarded as a deflnltlon
of r(g(t+1) t+l).

Optimum Adjustment

Thé optimum setting of adjustment parameters y is obtained by ~
minimizing the expected penélty function:

I F(y,8) q(E(t),t) = min,
&(t) -

where F(Y,E) Tepresents the penalty if the plant is in condition £, and the
settlng y 1is used.
R For each state g there is a set of‘best parameters Yy = (yl,yz--'yn).

\
Let y(g) be the best y for the state £. If the penalty function F is

' ) 2
. F = []v(&) - v[I™Q
where Q is an nxn positive definite matrix, and l[a[le represents the

scalar o’Qa. Then the best y which minimizes the probable penalty is
Y = I y(E(®) aE(D),t) IR - 6)
E(t) :
In the above section, the number of states can be infinite, and g

is a continuous vector or scalor, The summations are then replaced by

integrals,

Relation to Kalman'filter14

In Kalman's optimum filtering problem, the state and observed

4




. .
variables are assumed to be generated by " : | |
L E(tD) = AQY) E(D) +wE) - oD
n(t) = H(E) E£(1) + v(O) S e

where £ and n are of dimensions n and m respectively and w and v are

white Gaussian random processes. It is readily shown that (37) and

(38) lead to a Markov process with '

= 1 o -1 '+ _ 2, -1
. P(E (t+1)/8(t)) WZ exp. ’2‘1 ‘E(t 1) - A(t) &(t) [ I ¢W
' (39)
- (.A (t)/i(t)) = 1 € | - 1” (t) - H(t) E(t)llz -1 ;?-
F__________ p n - (21{)m72 A3_r72 ! Xp. ‘2‘ n J 4)\7
' | | (40)
(:'  vhere ¢ = WOWTE , ¢4, = VO VO . - .

It will be shown that with the transition probabilities (39)

[ e
P P

and (40), (29) and (30) reduce to the two step updating process of the

Kalman Filte:f.15 The following algebraic identity is readily verified!
}

x - By)” Mg - By) + y Ny s xKx+ (y - )’ L' (v - )

. Ay T T g T
‘ '
i

| G
vhere x and y are column vectors, and B,C, X, L, M, N are matrices: '
| ttepwlpent L — - - )
] Coxt- v - arlp 1 sl SR S (%))
: and C=LBM (44)

From (42) ‘;nd (43) the following expressions are derived:’

4



K=BNB +M @5)
.L=N..NB'[BNB'+M]’IBN , | (46)
To derive Kalman filter, Gaussian distribution is assumed for

q(e(1)).

aE®,0 = —F— ep. (Ui -TlBmT ) @)
, (2x) AE 2 ,

is the determinant of _

~ E — — :
“where ¢(t) = [g(t) - E(t)][e(t) - E(t)]” and A
o~ ) - .
¢(t). .

- Substltutlng (39) and (47) into (29), the resultlng integral
has an exponent - 7 E.

VE= (150 - T 1B (e - NORICTIRCHENCD
Let y =g(t) - &(t), and x = g(t+1) - A(t) E(t) identity (41) gives

\ - -
E=|]e(t+1) - A B[+ [le(o) - Eo) - ox| |27

The second term dis'appears by integratihg with respect to g(t), and the

e e D
_ AR A

first tem givés A(t) £(t) as the best estimate of g(t+l) and
K=A ¢(t) A’ + ¢w as the error covariance ¢(t+1 t) before measurement

n(ti—l) is made'

- T(E(t41)) = exp. 3 |16(t+)) - A) E0) |1 %01,

(49)

(Zw)n/Z A172

. Substituting (40) and (49) into (30) and making use of (41), (44) and

(46) the second step in Kalman filter is obtalned
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' Quasi-Equivalent Generating Process

A quasi-equivalent generating process is a generating process

in the form of (37) which gives the same covariance matrix

¢(t,7) = E(t) e(x)”
. though not the same transition probébilities p(e(t+1)/&(t)). Consider the

following example in which £ is continuous, |£]| < |[:

p(EL) = & i | | (50)

PEQHI/E) = v 8(EED) - §(8)) + LY e
Then | | | .

RICOEE: Jlt-tl (52)

‘The sépe é(t,t) can be obtained by the following process

si;§+1) = v E(t) + w(t) , - (53)

7‘-ﬁhere w(t) is white. But (50) and (51) cannot be obtained from (53). The

" first step in Kalman filter is still validl:

: s : 1 ‘ . # " -y -
r@aﬂxvn=J qauxn[»udvn-sun+%¥]““)
- o el ~ o ,

Y q(s(t+i).t) s 1Y

- 1 '
g(t+l,t) = J g(t+1l) r(gft+l),t+1)d g(t+l)
- 4

- 1 ' .
R = v,I "€ q(E,t)dE = v E (1) ' ' (54)
' -1

o

S
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The second step in Kalman filter glves a different expected value of
E(t+1) from that obtained from (30) but the result is very close.

If a Markov proc:ess has a quasi equivalent generating process,

 Kalman filter for the latter gives an‘approxi.mately optimal estimate

for the former.

Kalman Filter, Stochastic Tracking, Stochastic Approximation

Ka]man filter establlshes a llnk between stochastic tracking

' -of a statlonary process and Robbins and Monroe stochastic approximation.

] "7 'If g(t) varies randomly and the process is stationary, Kalman filter

gives_the same steédy state solution as the author's previous stochastic

i

tracking solu‘cio‘n,8 If g(t) is a constant (A(t) =1, w(t) =0 in (37),
4 | Kalman 'filte_r“gives__ . ) .

E(t+1) = E(t) + K(n - H E(1)) o f
where Kt approaches a constant as t apﬁroaches infinity. The result is |
in agreement with Rf-abbins and Monroe stochastic approximation?

¥

Stochastic peak tracking

. A stochastic peak tracking problem is given as follows:
28 ) - x)? N ) '

vhere m is a merit pérameter, x is an adjustable parameter, and g(t) is

n(t) =m (t) -

b o the best setting for x at t. It varies with t randomly as _fol'lows:‘ |

? e =AM @ W 56)

: The measured merit {s y B | .
YO =m@®) +ve) | (s7)



(62) is equivalent to:
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respectively. In order to determine § - x, x is set at E(t) + C
and £(t) - C for each t, where E(t) is the best estimate of £ at
and the resulting measurements yield y(t) and y’(t):

Cy() S yt(t) = - 2ac [E(D)-E()] + v - v

Ka]man filter solution to the above problem yields:

E(t+l) = A E(t) + K(t) [}’(t) -y (t)]
. K(t) = acA ¢(t)
' 2a%c? () + by

where ¢(t) is the expected value of [E(t) - s(t)] , and

" 1) A, 8(t)
¢+ < + ¢
2a2c2¢(t) * 9, W

Detemination of c(t)

where w(t) and v(t) are white with covariance functions ¢ - and by

t,

(585

(59)

(60)

(61)

One basis for determining c(t) is to maximize the expected value

of m(t) ;

m() =n () -2 (E-F-02 -2 -E+ )

=m_(t) - % Lca -5% cz—_[

The criteria is
t=T .

L J= Z a(t) Eb(t) + c(t)% = min.

A variable J(t”) is‘ defined as the above sum from t=0 to t = t*

v

(62)

- 1.

Then
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flﬁf N
J() = 0 |
J(e+1) = J(0) + a(t) [3(0) + (] - (63)
J(1+1) = min ' | S (64)

Equations (61), (63), and (64) can be treated as an optimal

-~

J
as the control variable. The Hamiltonian function is

- : Ay¢ ;
HQ,¢,u,t) = - (J + ap +u) + w[ﬁag!‘q——* 2
v

discrete control problem with ( ¢) as the state vector and u = aéz

vie-1) = Es)

v@ =0
and u is detemmined by maximizing the Hamiltonian. In the limit of large

T, and constant a and A, the solution égrees-with previous result on

stochastic peak-seeking. 8

Stochastic Approximation

If g(t) and a(t),.are constants, the problem reduces to that
of stochastic approximation. ' Let A(t) = 1, and ¢w(t) = 0. Let a new

state variable z(t) be defined as 1/%(t). Equations (61) and (63) become::

2(t+l) = z(t) +(%3) u(t) o (65)
v _
1) = I(0) + 3y +uC® . (66)
The Hamiltonian fu1_1ction is : | o
H(q;,z,u,t) = ' (J + %"’ u) + "(Z + %_3;1_1) - (67)
. B § . v . ) ’

@) = 0 o (69)



e

¥(t-1) = == 7z + y(t) | o (69)
" From (67) and (68), ¢ (t) is éeeﬁ to be a pdsitive but. monotonously

decreasing function which decreases to zero at t = T. Equation (69)

~ glves the following solution:

¢V
@ t<ty, and v > o
u=um

. -A¢v
@ t> Y and Y <

33) t=_1t

B <>

vt) = —2— (T-1t) =
K e v

and u(tl) is equal to the value required to reduce z(tl+1) to

—
2a”(T-t,) : | |

2(t;+1) = _f_T_.l_. » (70)

' 'S .

p—

The solution is a bang-bang solution which requires reduction of ¢(t) to
‘ 1/ z(t +1) and then let c(t) equal to zero afterwards. The criterion (62)
does not lead to Klefer-holfomtz stochast1c approximation.

An alternatlve criterion is to requlre ¢(t) and c(t) to

approach 0 at the same logrlthmc rate as tre :
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~ ) -a ‘ 2 _ -a
o(t) = Clt c = CZt .
2a%c* - 1 1 -C o t° 1, ...
oy T(t+1) r163) 1 |
Therefore @ - 1= -a, a= -21- . Itis réadily verified that the result
' agrees with Kiefer-Wolfowitz stochastic approx:‘umtion.4

One essential significance, of the above result is that the

total error, $(t) + c(t)z, reduces atmost at the rate t-l/ 2 as tre,

’ ~ and camnot be any faster;

- _ Conclusion
f Two problems in learning and adaptive systems are studied in
this paper: | .

1.. How to approximate a curve most accurately with a givén nunber

|~ . of arcs? In case the curve is known,.é step by step method is derived
from the generalized maximum principle. The method is readily reducible
to computer algarithm. In case the curve is not known, but a certain

- functional of the curve is tb be minimized, the method gives a necessary
éondition which can be called a discrete version of Euler Lagrange equation.

" In many applications, the approximated curve is unknown, or time

e ——
1

varying or both. Then ay and ti= are determined for a nominal curve initially,
and the subsequent variations of « i or improvements on the estimation of
a;, can be determined by a stochastic tracking method.

2, What is the optimal way of tracking an unknown or varylno

~ pirameter from noisy data" A general stochastlc tracking problem is
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~

~ formulated in terms of a Markov process with ﬁoisy measurements, The.

parameter estﬁnation'problem is simplified by proving that all the

“apriori information and information obtained from past measurements are

contéined within a set of conditional probabilities. The calculation of
the conditional probabilities can be done by a two-step updating process
which reduées to Kalman filter if the distributions are Gaussian.

In ﬁany applications the random variations of the parameters

of a system cannot be described by state variable equations. The

general procedure reduces to a Kalman filter if there is a qﬁasi—equivalent '

process (same covariance but different distributions) whose parameters
can be described by state variable equations, and reduces further to
Robbins and Munro stochastic approximafion if the parameters are fixed
but unknown.

The peak £racking problem can be reduced tg the stochastic
tracking problem with the additional variable of the excursion amplitude
8, which is»fhen obtained by maximizing the expected peak., In the special
case that the ﬁarameters do not change, the method yields two tracking
brﬁcedures dependihg on the criterion used:
| (a) Tracking for a limited time and then settle for the parameter
value so determined. It is shown that the expected error is proportional
to t°1, where t is the traciing time.16 - '
| (b) 'Afprocedure which agrees with the Kiefer-Wolfowitz stochastic

approximation method. It is shown further that the expected total reduction

I
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~

is péak value (due to error and hunting loss) is-proportional to t°1/2.
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