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"DIGITAL LINEAR PROCESSOR THEORY and OPTIMUM
MULTIDIMENSIONAL IMAGE RECONSTRUCTION

Abstract

This ~aper introduces frame recursive image processing as a new

algorithm for processing of blurred or unblurred pictorial information with

additional noise. It gives improved image which approaches optimum in

least mean square error sense. The method represents a new direction in

two dimensional digital filtering from the current trend of using generat-

ing equations and Kalman filter which requires artificial introduction of

a causal order of data points.

Applications include two dimensional image processing, three dimen-

sional image reconstruction from two dimensional projections and from two

dimensional cross-sections, and real time image processing of a moving

obj ect. In all cases the optimum linear processor utilizes all available

information on second statistical moments to give least mean square error,

and is realized by frame recursive processing in successive approximation

with exponentially decaying error.
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1. Introduction

Image enhancement and restoration is a subject of broad interest

because of its potential in improving the quality of a picture which has

been blurred or contaminated by noise or both. The improved picture is

"then used either as an end product or as an interncdiate step for further

computerized processing and identification. Important theoretical and

experimental progress has heen made in recent years as the consequence of

a linear assumption: that the light or gray level at each point is

representable as a signal, blurring is representable as two-dimensional

convolution or sum, ~ld the picture noise is additive. Exact analysis

is then further facilitated by an invariance assumption on the blurring

and noise processes. [1] - [;l~].

The above mentioned linear assumption places the image enhancement

problem right into the domain of classical optimum linear filter theory

with the consequent natural branching into Wiener and Kalman filters.

With the Wiener filter or spatial frequncy domain approach, derivation of

the optimum filter is a complete parallel to the knovffitemporal case.

However realization of the optimum filter is not as straightforward. It

c an be done in t,'lOways: (i) optical

..
realization [9J, [lQ], and ('1-1-)

Fourier transform from image to spatial frequency domain, filtering, and

Dverse transform back to image domain [4], [5]. Optical realization

requires elaborate laboratory setup and very high grade experiDenta1

skill. Fourier transform realization requires extensive computation

[13) and is also open to the criticism that while deblurring and image

enhancement are usually local operations, Fourier transfrom back and

forth involves every point in the picture dOMain, aYld quantization

"



.- , ~ _.~~~" '-.~--c_--= A-.. - ~~--~ -",. >-."",',j
_.- Y. -., y-. -"" Y'P'" H' ,-.. ,.,. -" y , H" ,'. ., -'U'Y--' "y"""y,,,y,.U'Y","pn- uP' -~'--~"~~-Y"""-- '''W'' _. "'Y 'H-'w" -' - YO y-

2.

errors are accumulative. The Kalman filter approach leads directly to

a recursive digital filter which is easily implementable [1]-[3], [8].

But it requires artificialintroductionof a causal order of data

points. The filter is not oDtimal as information contained in the~

artificially assigned future data points are already known but not

utilized. The sub-optimality can be improve~ but not removed by averaging

output levels obtained by filtering \Yith various causal directional

assignments. Rocsser in the concluding section of his work [8] stated

as number one future research obj ective geneT!:::.l~zation to bilateral

models, meaning models without causality. The difficulty is that point

by point recursive processing implies point by point causality, unless

the newly cornnuted value of a.data point is not used in cornnutin~ tIle. ~"-~~ -- -. "

values of other data points.. . ~ ~ ~ However there is not causality constraint

on using computed values of all data points for a succeeding round of

computationon all data points, which will be referred to as recu:c.sive

irame proccssin~.
& .'"..;;-

The present paper gives a fr~ame~r~c~sivc method for realizing

\'iiener filter. A si2plc finite impul~e response filter (FIR) is ottained

readily from the optil'mm Wiener filter, and ,,rillbe referred to as

frame processor (FP). 3y repeated operation of FP on the multi-dincnsior.al

signal, optimaility can be approximated to any desired degree, and the

additional mean square error (in excess that of the optimum Wiener

filter) decreases exponentially with the number of repeated operations.

An integral expression for the additional mean square error and its upper

bound are dcrived in the paper. ~~lilcany finite number of operations of -"'~

the FP is equivalent to another FIR, the number of cOf.lputing operatio;1S

---

...
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with frame recursive processing is an order of magnitude 1m-leI' than that

of the equivalent fIR.

In addition to image e~lancement, the paper also gives solutions to

two other significant applications: (i) optimum reconstructionof a three

dimensional object from two dimensional slices, which is of high interest

to microbiology and medical sciences, and (ioi) optimum detection or

reconstructionof a J110ving obj ect from a succession of t\vo-dimensional

pictures. Solution to (i) is an extension of the classical z-transform

theory with multiple sampling periods. Solution to (ii) is a combination

Wiener-Kalman filter. Both optimum solutions can be realized by the

franc recurisve method in the successive approximation sense as discussed

above.

The mathematical basis of the frame recursive method is an algebraic

expansion theorem which states that if a polynomial D(~) is Teal and

non-zeTa on the unit circle product spac.e c(~d zil = 1 }, then a unique

and conveTgent series expansion of l/D(z) exists, ",hichcan be successively;

approximated term by term by expanding l/D(z) in a prescribed manncr. The

first part of the theorem on the existence of a convergent expansion has

been proved by Justice and Shanks [1~ using a Tauberian theorcm due

to Wiener in a more general context. However, nowhere in Justice and

Shanks' proof is an indication of how the expansion is to be made nor

how the speed of convergence is to be calculated. Proof of the present

version of the theorem is given in the paper as an Appendix.

't
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Section II gives the main results of linear p!~ocessor theory

in t\'iO-dimensioils. Section III gives its application in tV/o-dimensional

image pr'ocess ing, and demonstra tes frame recursive process i ng scheme

for a numerical example. Section IV generalizes linear processor to N

spatial dimensions with a signal vector on each spatial point. It

gives a solution to the problem of optimum reconstruction (least mean

square error) of a three dimensional object from its two-dimensional

projections or two dimensional cross-sections which can be blurred as

well as contaminated with additive noise. Section V gives optimum

real..time processing of successive images of a moving object. Section

VI gives concluding remarks, and mathematical development of the linear

processor theory is given in Section VII.

. In the paper, t, a, p, ~, r, and s represent spatial coordinates

and z, and w represent transform variables. Signal and observed signal

are denoted by x and y ~'ihile noise and other random processes are

represented by ns u, and v. The impulse response function of linear

processors are represented by f, g, and p. The corresponding trans-

formed variables and functions are represented by capitalized letters.

An arrow over head !, 1, etc, represent spatial vectors while bold

face symbols x, X, f and F etc represent signal vectors and matrices.
'" ,." m

An overhead bar represents zi~ zi -1, i = 1, 2, ...N, in a functi 011, and

upperscript T represents transpose of a matrix or vector, while t re-

presents bot~ operations.

functi ens \'/ith z on' c.
It is the Hermitian adjoint syGbol for matrix

Symbols are introduced as they are used except in Section VII,

where the synbols introduced in Section IV are assumed.

"
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II. Two Dimensional Z-transfo~u

Let x(r~s) be defined for integer values of rand s.

Z-transform of x(r~s) is defined as

The

r=oo
X(z~yl) = I-

r= -00

s=oo

I x(r~s) z-r w-s
s= -00

(1)

Capital letters are used to denote corresponding transfot~ed variables.

A linear processor (L.P.) is a noncausal filter.

of x(r~s) vlith invariant L.P, f(p~Ci) is g.iven by

The processed output

p=oo a~oo

y(r,s) = L I f(p,a) x(r - p, s - 0)
p= -00 0= -"',

(2)

In terms of t1~ansformed variables, (2) can be expressed as

Y(z,w) = F(z~w) X(z,w) (3 )

A L.P.f(p,a) is said to be stable if there a!~e constants A and y such

that A>O, 0 < y < 1, and

I f (p ,a) I < 1\'( I p I + I (j I

In the product space of the complex planes of z and w, the pro-

duct of the two unit circles: {(z.w); Izi = Iv1\ = l};s denoted as C.

The open set {(z,w); l-s < Izi <1+ s, l-s < !wl < l+s}, s > 0 ;s re-

ferred to as E - neighborhood of C, Nc(c), or simply Nc'
The existence

of some c > 0 is then implied. For "a stable L.P., the inverse of (1) is

x(r,s) = 1 2 1£ X(z,w) zr-l wS-l dzdw
(2 " )

};

7fJ (z,w) on C

(4)

The following theorems are proved in Section VII,

Theorem ~ Evet'y stable L.P. is convergent unconditionally, absolutely

in Hc'

Theorem 3 Let O(Z,\'I) be a polynomial of z and w, and O(z,w) is real

"
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and positive (non zero) on C. Then the following:

(;) There exist Du) and Di > 0:

Hax0 '" + C D(z) w)u zs ,

!.4. (D ::: ~ 1n D z) \'J)
t zeC

(ii) The expansion

1 1:::

O(z,w) A-[A-D(z,w)]

::: 1
A

n=co

I (1 - !?i~&)n
n:::O A

(5)

0

where A > -i ) conver-ges far every z on C.

(i i 1) Let f(r)s) and fL(r,s) be defined by

f(r,s)::: 1 Ji zr-l wS-l
(2nj)2 ~J --D(z,w) dzdw

(z ,\'J)sC

f ( ) C ff
' . . -r -s 1 n~L (1 D(z,w)

)
n

L r,s = oe lClent of z w in A L - An=O

'";c-

Then

lim fL(r,s) + fer,s)
L+oo

\i v) Let F(z,w) be defined in terms of fer,s) following the convention

expressed in (1). F(z,w) is the unique, stable, expansion of l/D(z,w) in Nc'

.,/'""-

_/

"'It
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"

Theorem 4 A L.P.of finiteterms is stable. Let F(z,w) and G(z,w) be

stable L.P.'s. Then the L.P. F(z,w) G(z,w) is stable.

Theorem 5 Let Nand 0 denote polynomialsof z and \" such that

D(z,vJ) t 0

for (z,w) on C. Then the rational function

,
A N Z,\"

p(z,V:) :: D 2,\'1

has a unique, stable expansion.

Let x(r,s), y(r.s) be stationary random vat'iableswith zero

mean, a correlation function ~Xy(p,a) can be defined:

~Xy(P,0) = E{x(r.s) y(r - p, s - a)}
(6)

The Sp,ectral densit J\1 function <\.> (, z,w) is the transfomed <t>

xy . .xy

2XY(Z,VI) = I I ~Xy(p,a) z-P \A!-ap a
(7)

Theorem 6 Let x, y denote processed output of stationary signals u, v

with invariant stable L.P. IS f and g:

x(z,w) = F(z,w) U(z,w)

V(z,w) = G(z.w) V(z,w)

Then

~Xy(z,w) = F(z,w) G(z,\</)tPuvwhere G(z,w)~' (z-l,w-l),

Let [11]. denote the constant tem in the series expansion of H(z,l'l). Then0

(8)

E[x2] = ~ (0,0) = [0 1 > 0xx xxd0
(9)

..
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III Optimym Image Proc~ssing

Let y be observed x with mask M and linear additive noise n:

Y = riX + N
(10)

where n is uncorrelated to x.

A linear processor P is to be constructed to estimate x from y with least mean

square error:

A

X = PY
(11)

~ 2 -2
E(x-x) = E x = minimum (12)

From (10) and (11)

X - X = (l-PM) X - PN

From ( 8)

(13)

p-- = (l-PM) (l-PM) ~ + pp pxx - -xx nn (14)

= ~ - PM ~ - PM ~ + pp ~
xx -xx J'xx .-yy

Let P denote the processor M ~ /~ .
0 "XX -yy Equati on (1 4) can be rewritten as

;;.

PXx = fyy (P-p ) (15-15) + 2xxP-nn
0 0 9i.yy

., '
(IS)

from (9)

- -~ ~
J

-
E i = r . xx nn + [(P-P )( P-P ) ~ ]l fyy. 0 0 0 -yy 0

The first term on the RHSof (16) is positive and

: (16)

represents the minimum error

to be obtained with P = P .
0 The second term is also pos iti ve if PiP) and re-o

presents the additional mean square error len a processor other than Pis0

used. P is the Optimum Drocessor.0 . ....--

...
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Approxir.ate Rea~ization of Po by Frame Re~ur~sive Pro.cessinp,

In general P is of the form0

p = ~~,~w)
0 D(z,w) (17)

where D(z) is real and positive on C. F ( 1:"
) P . . 1 1rom:>, can De eXDanc.:ec. as0 J:

p - N( z .,r )
' n='"

0 - --r:"'- L
n=O

Q(z,w)n (18)

where

Q(z,\v) = 1 - DJz,w) (19)

and, for (z,w) on C:

IQ(z,w) I :: Qm< 1 (20)

Equation (20) defines ~ as th~ rEodulus of Q(z,w). I':hile (20) is
D

satisfied by choosing any A greater than U2 ' the 10'"est 0 is obtained'm
with

1
A =- (D + D )2 u t (21)

and the resultant ~ is:

D - Dtu

~ = D + ~Dtu
(22)

Let P be defined by

p ( )
fj, N( )

R, Z, H = '- z.'~

n=£.
L Q(z,w)n

n=O
(23)

Then

Po - Pt = Q(z,w)t+l P0 (24)

Equation (24) shOl'/s that the optimum processor Po can be approximated

to any desired degree with Pt by choosing t sufficiently large. From (16)

,.
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10.

a.."1d (24), the additional mean square error t9.,with P£, is given by

- £.+1 p.p]
t = [(QQ) Po a yy 0t (25)

-
Since P P ~ is real and non-negative on C, it is readily sho\ffifrom0 0 yy

(20) and (25)

t < 02i+2 [P P ~ ]i - 1n a 0 vv 0, ,/
(26)

Obviously P is a finite impulse response filter (FIR), and can

be realized as such. An alternative method which requires. considerably

less computation is the fr~e~r~c:!.r2.i~e.proccss~ng (FRP) method which

consists of the following steps:

N (zl \\1)
(1) XO+ . ~ Y

(2) YI + Q(z, "J) Xo (27)

(3) X + X + Y

(~ 0 0 I

(4) YI + Q(z,w)Yl

In the first step, N(z,w)Y/A is entered into the memory space for XO'

<.
':.-
~'

In the second step Q(z,w)XO is entered into the memory space for Yl'

the third a..~dfourth steps Xo is replaced by XO+Yl' and then YI by Q(z,w)Yl'

In

The last steps are repeated Q, -1 times or until no fUTther improvement is

noticeable.

The savings in com;:utationcan be quantified as fo11O\;s: Let nultiply-

ing hiO numbers and adding the product to a third number be defined as one

computation. The number of computations per data point with FRP is

CFR = TN + t TQ
(28) ..,"--

"'

"""'~'
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where TN is the numter of terms in N(z,I',), and TQ is the number of terms

in Q(x,w). The mimber of computations per data point \d th FIR is equal to

the number of terms in Pn (1') which is usuall v Eluch larQer.
h p ."

As an cXaDple, let Q(z,w) be a polynomial \'lith powers of z betHcen

~nl and nl' and powers of \V'between -n2 and n2' Similarly, let N(z,w) be

a polynomial \.:i th powers nl and n2' Then

TQ = (2nl + 1) (2n2 + 1)

TN = (2n1 + 1) (2n2 + 1)

and from (28)

C"'PV ::: (2n 1'" + 1) (2n~ + 1) + 9.(2n l +1) (2n" +1)r." <- 4.
(29)

The number of computations for each data point \lith FIR realization is

equal to T
P

CFIR ::: (2(ni + £111)+1] (2(E2 + £112)+1] (30)

As a t)~ica1 example, let 111 ::: 112 = 1, n1 = n2 = 2, and 2., ::: 40. Then

CFRP ::: 9 + 40 x 25 ::: 1,009

CFIR ::: 1632 ::: 26,569

In addition to the numerical difference,frame recursiveprocessinghas

the following advantages in computation:

(i) Its repetitiousness in instruction steps and operand locations

can be utilized to save computation time

(ii) M does not have to be selected beforehand. Steps (3) and (4)

can be repeated until no further improvement is noticeable. It

is a natural adaptive systen.

"
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Example 1 [3], The signal x(r,s) is generated by the following process:

x( r+1, s+1) = p 1 x (r+1, s) + P2x( r, s+1) - p 1p 2 x (r , s )

2 2
+ I (-p 1)( 1-p 2) u (r, s ) ( 31)

The observed signal y is

y(r,s) = x(r,s) + v(r,s)

where u, v are white processes with zero mean and mean square values Sand N

respectively. Determine the optimum processor P .0

Solution The spectral functions for u and v are f = Sand f = N.-uu vv Equa-

tion (31) can be written in terms of transformed variables:

.' 2

l(l-pf)(l-PL_l
F(z,w) = (1-Pl z-l)(l-P2W )

X(z,w) = F(z,w) U (z,w)

from '(8 )

Pxx =

2 2
(l-p l) (1 -p 2) S

(l-Pl z-1)(1-P2w-l)(l-P1Z)(l-P2w)

= B

[l-al(z-l+z)] [1-a2(w-l~w)]

where 2 2
)(1 -P 1 )( 1 -p 2 S

B = ~
( 1 +p ~ ) ( 1 +p 2 )

P1 ,2
a 1 2 -, 1+ 2 .

, Pl,2

and M = 1. The optimum processor is

..
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<P

P - xx
0 - ~ =

yy

B
-1 -1

B+[I-al(z +Z)][1-a2(w +w)]N

(32)

Let N(z,w) = 1 in (32), then,

N -1 -1
D(z,w) = 1 + ~ [1-al(z +z)][I-a2(w +w)]

From (19) and (21)

N
A = 1+ ~ (1+ 4ala2)

-1 -] -1-1
N[4ala2+al(z +z) + a2(w -+w)-ala2(z +z)(w +w)]Q(z W) -

, - B + N (1+4a a 11 2

2N(al+a2)

Qm = B+N(1+4ala2)

The processor P can be approximated to any desired degree by steps (i) to (iv) of (27)0

For a t)~ical nwnerical illustration,

let

Pl=P2=O.726

S = 6.61, N = 9

Then B = 0.634, al =a2 = 0.475

Q = 0.963, and Q(z,w) is given by the array of Table 1:m

'"
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Table 1: Array Q(z,w)

"-~=t°
~ I -.1144 I .2407

0 r2407 I .4574

r-. 1

~44
I

.2407

1 - .1144 .2407 --.1144
---

The mean square error from the optimum processor is calculated from

(4) and (16 ) ...6thl'== S ::: 0 and P - P ::: O. Its value is E ::: 1.964.
0 0

The mean

square error from FRP is Eo+/::'£ with 1:.'),calculated from (25).

then plotted as the solid curv.e in Figure 1 versus the number of recursive

The result is

operations 9.+ 1. The upper bound of the mean square error is obtained from (26)

and is plotted as the broken curve in Fig. 1. It is noted that (i) the mean

square error from FRP converges to within 1 db of the optimum with '),=24,and

(ii) the broken curve gives a close upper bound to the solid curve for all

value of 9...

Example 2 A picture is blurred with

y(r,s) ,= O.5X (1',s) + O.5X(r+l,s) +u(r,s) (33)

where ~ == S, and Q == N.xx uu Determine the optimum processor for the following

cases:

. N
(1) S ::: 0, and (ii)

N
S = 0.1.

'"
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Solution Equati on (33) is trans formed into---

y = t'1X + U

where M = 0.5 (l+z). The optimum processor is

(
-1

P :: --9.5 l+z )5
0 0.25(I+z)(I+z-l) + N

Case (i) N = 0

2
Po :: 1+z

There is no convergent expansion in the neighborhood of the unit circle. How-

ever, we can use the following approximation:

1p = ----
oa ,\z+1 + Z+),

:: (1+z-1) (
-2

)
?

(
2 -3

)A z+z + A- z +z --- (34)

t'
Case (ii) ~ = 0.1

p = 0.5(I+z-1)
0 0.25(1+z)(1+z-1) + 0.1

- 0.6985
- z+6~536-7-

J.. 0.6985
, l+0.5367z

( -1)= 0.6985\1+z 0.3749(z+z-2)

2 ~3 3 - 4
+ 0.2012(z +z ) - 0.1080(z +z ) +... (35)

Equation (34) and (35) provide anintet'es,ting contrast. t.Jhile the optimum

deb1urring filter without noise is not convergent, it converges rapidly in the

presence of noise.

'"

where A = l-E, and E is very small but positive.

-1 1D Z
- ---:r

+ ---. oa
1+),Z 1+),Z
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IV Generalization to N-Dimensional

The generalization will be in two ways: (i) ins tead of tvlO-

dimensional coordinates rand s) the coordinates will be N-dimensional

~l' t2 ... ~N' and (ii) the signal is an n-component vector on each

space point:

~(!) =( xl (t)

x2 (t)

!

\ ~n (t) I (36)

In (36), an overhead arrow is used to denote a space vector and bold

face letter x is used to denote signal vector. The z-transform of
-,,,

-r
X (~) is
".1

(37)

-t -~2 nz ...z2 n

Let UM denote the cube -M < ~. < M) i = 1,2...N.- 1

the products

-+

Let Z ~ and dz denote

i=N
II

E;.
1

zi and dZr dZ2...dzni = 1

respectively. The definitions of C and N are now generalized to thec

N-fold complex space. Equation (37) can be written simply as

"

E;l= 2= t,t 0> .-E;-+
L I " e , C I ; (t) zl 1X(z) =

""
E; = -co = -co = -co

1 2 N
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x Cz) :::+L X
t;SU -

00

..>0.

(t) .Z-t

The linear Dfocessor F is C\ !11xnmatrix, \-yith each element F.. bein g
, 1J

an N-di

mensional linear processor:

F.. Cz)::: L f (
'+ \.)- -'t

1J -~ .. E; ) Z
SEU 1J

00

Output of F is an m-dimensional vector y (!) with its transform given by

the matrix equation:

+ '7 +
y (z) ::: F (z) X (z)

Equation (5) is replaced by the matrix equation
+

9 Cz)::: L: (
,)-

)
-+-E;

m xy -+ 9Vy
E; 4

!;t:U ..n"U)

(38)

where the i,jth elements of ~ and ~ are the correlation function
:...,xy mXY

~ Y , and spectral density function ~ respectively. Equation (6)x. . x.y.
1 J 1 J

becomes

~XY Cz) ::: : Cz) ~uv Cz)G Cz) 1-
(39)

where

-)- -i- (-1 -1 -l )
T.

G (z) ::: ~ \ Z1 ' z 2 ' ... zN

It is the Hermitian adjoint of

+
G(z) on C. Theorems 1 to 6 remain valid. In fact, they are proved in the

Appendix for the N-dimensional case.

For N-dimensional optimum processing (10), (11), and (14) are replaced

by

'"
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Y = 1'1X + N (40)
1'''

~ .

X = P Y
(41 )m "'1 '"

.L ~

4>ir= (1 - P r'1)~ (l-p (Ij) ) + P 4> pI
~ m ~ m mXx m "'1 m mnn m

= 4> - P M ~ - ~ Mtpt+ P ~ pt
",xx m m mXX mXx m "'1 ~ ~y m

(42)

where

~ = M ~ M' + ~
mYY m mXx m mnn (43)

The optimum processor is given as

P - MT-1
0 - 9XX . <P y\!

m m' WI m J
(44)

Equation (16) becomes

[

IV IV f

J [
!'"t'" - 1 1,' <D

JE x~x = <j) - ~ I') "'YY . xxftxx mXx ~ '" m mm '" r + [(P - P ) ~ (p - P )t]
m "'10 n.YY m mO

(45)

-;--

The two terms on theRHS of (45) have the same signifances as the corres- .>
.L

pondingterms on the RHS of (16). The matrix (p - Po)! is the Hermitianm m

conjugate of P - Po on C. Any processor other than Po gives a positive
m m m

second term and adds to the error matrix

The Projection Operator IT.
. 1

An N-dimensional signal can be projected onto an (N-l) dimensional

mani fo 1 d:

(n. X)( ~
1 ' ~2""~i-1'~i+l"'~N)1 .....

t;i=oo

= I . X (~1' ~2""~i"'~N)
~ =-ro At<l
i

(46)

"
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In terms of z-transform it is

C;.:;: 00
1 - -C;.

IT'::: E z" 1
1 .

, C; .=-00 1
1

(47)

As (47) cannot be written in closed form, an exponentially decaying pro-

jection ITiA -is used:

C;i =00 I C; i I

IT., = L A Z.lA 1
C;.=_oo1

-c;.1 = l-A2

(l-Az~l)(l-Az.)'1 1

(48)

where 0< A < 1.
Let ITAdenote (ITlA' IT2A' IT3~s. )T.m

The problem of reconstructing a scalor signal in N-dimensional space, from

(N-l) dimensional projections can be formulated as follows:

Y = IT X + NAm '" m
(49)

Equation (44) gives the optimum processor as

(50)

,;;
,:-

(51)

II1~5ampl ing Operator*

The sampling operator samples on one dimension only, 21' and takes one

frame out of every T samples:

* -+
)X (2 =

r= 00
L L-+

r=-oo 5I

-+/

'A (rT 11 ) -rT-+'-C;
\ ,? ,21 2 (52)

,-----

...

P = <lJ IT T <p-l T (-1 )-1=IT <P <lJ
rn 0 xx ....).;iy ",A xX""yy

where

-1 T
+ <lJ-l<lJ

y = ITA ITA <Pnnxx
1)'1 m

xx '"
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where 1'and !' denote (z2' z3...zN) and (~2' ~3""~N)' The sampled signal

or processor can be treated as a transformed variable with x (!) = 0 for
m

all values of ~l which are not integer multiples of T. Consequently

* * *
(X) = X (53)

(54)

(55)

* *
Let X = F U , and Y = GV where u, v are correlated stationary random

IT> "1 m m m

processes.
+ +

Then for any ~a and,

/ +
) - L: L:

x \~a ~ r !Im
(

+/ +1 +/
f ~la-rT'~a-~)u(rT,~) m

(56)

(
+

)
T

(
+ +

(
+ I + /

(
+ + I '* I

E{x ~a v ~a-T)} = L: ~ f ~1a- rT, ~a - ~ ) ~uv rT-~la+Tl' ~/-~a +T )
m . m r t;' m m

(57)

The correlation matrix E {x VT} is a function of 1 and position- o.f ~la in
m m

"~~.-'

the sampling cycle. Averaging over t;l gives
~ =T a

+ D 1 la , + T + +

.xv (, ) = f E E{x (~a) v (~a-T)}
m t; =1 m mla

- 1 +
- T. +L:u

f (~) ~ C~-!)
t;E:'" mUv00

(58)

The transform of (58) is

~xv(1) = + F (z) ~uv(z)m m m

(59)
,...--

, '

* * * *
(X F) = X F

m m m m

* * * *
(F X) = F X

m m m IT'
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Equations (58) and (59) do not imply the invariance of the correlation matrix,

but that of the averaged correlation matrix over one sampling cycle. The

averaged correlation matrix is then defined as ~xv with its transform Ox .m m V

-As averaged mean square error is to be minimized in the data reconstruction

problem, Qxv and ~xv are the pertinent matrices to use.m

Similarly

$XY
(~) ~ 1

m T

sla=T-

(
~

)
T

(
~ ~

)I E {x sa y Sa-T}
S =1 m m1a

- (60)

It is shown in the Appendix that the transformed matrix is

(
~

)
- 1 * t

~xy z - T F ~ Gm m ...,uv m
(61)

In microscopic study of microorganisms, various sections of the three

dimensional object can be photographed by focusing the microscope at various

depths and the three dimensional object is to be reconstructed from sec-

tional photos. The sectional photos are representej by sampled planes i~ the

fo 11owin9 formul a ti on:

* * *
y = °" X) + N (62)

IV * * *
X = X - P Y =x - P [ (M X) + N ] (63)

From (59) and (61)

1 +f 1 1 * i-
<p~JV = ~ - - <P M" P - - P M 4J + - P 4J P
,.,.xX ...xx T ...xx m'" T,.,. .., n,xx T m rnYY m

(64)

where

* -'- * *

~y = ( ~ ~xx ~ J) t ~nn
(65)

"
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The optimum processor and error matrix are given as:

P = <P t.1 t <p*-1
,0 "'xx .yy

(66)

1 t *-1
(

*
<p~~ = <P - f <!J M <P M <P + P - Po) Q (P -P )~ ",xx ,.)ex m . r.-YY m ",xx'" '" ...,YY on n'o

(67)

Example 3 In a three dimensional sca10r signal reconstruction problem,

cpxx(-;) = S P (ITll + IT21 + h31) (68)

and <!J = 1. The samples are taken at 1;1 = nT where n = 3,-2,-1,0,1,2,3....nn

and M = 1, Determine the optimum processor P .0

Solution: From (65) and (66), the solution can be written as

P =

(
<!Jxx \

[
-L-

J0 4>* ) 1+4>* -1xx xx'
(69)

The second factor gives optimum processing at sampled planes while the first

factor gives interpolation formula. From (68)

2 3
4> = (l-p) S
xx i=3 1

II (1 -p z:- ) (1-p Z1, ).
1 1

1= .

(70)

*
1>xx =

2 2 2T
(1-p) (1-p )S

T T T T ;=3 1
(l-p zl- )(l-p zl ),II (l-p zi )(l-p Zi)1=2

(71)

After some simplification, the interpolation formula is given as

,
T 1 . 2(T-;)

1= - I 1-p
q,xx = 1 + L f . [ :-2f

* i =1 l-pq,xx
] (z1; + z~) (72)

...
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V Real Time Processing of Motion Related Signals.

The signals and observed signals are represented by X (z,t)and Y(z,t):
m

X ctt+1) = A Cz,t)) X (z,t) + U (Z~t)- (73)

Y (z,t) = M (z,t) X (z,t) + V (z,t) (74)
m "" m m

Equation (73) gives the kinetic relations between signals of successive

frames (different t). There is no correlation between U, V; between U (z,tl)
-+ -

and V (z,t), V (z,tl) for tl tl. At t = 0, the best estimate of X is
M

x (z,O) = Po (z) Y (Z,O)m
(75)

where Po (z) is given by (44) and the initial error matdx <PxxctO) is givenm m

by the first term of (45).

A reccursive processing procedure is developed as follows:

A-+ -+ A-+ -+ -+ A"
: , X (z, t+ 1) = A (z, t) X (z, t) + K (z, t+ 1)[ Y (z, t+ 1) - Y (2, t+1) ] (76)

m m

where

y (z, t+ 1) = M (Z,t+ 1) AJz. t) X (z, t) (77)
m m n', m

is the expected Y (z,t+l)before it is observed, and K (z,t+l) is a generalized
m m

version of Kalman gain matrix. Subtracting (76) from (73) gives
(78)

N-+ + "'+ -+ -+ -+ -+ ""-+ + +
X (z.t+l)=A (z,t) X (z,t)+ U (z,t)-K (z,t) { M (z,t+l)[A(z,t)X(z,t)+U(z,t)]+V(z,t+l)}

m m m m m m

....
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As the three random variables ~ (1,t), U (1,t), and V (1,t+l) are mutually in-
m rn m

dependent, the error matrix is given as

~ . t ~

qJ.~~( z, t+ 1) = ( 1 - K M ) A q,~f A (1- K M)I
~ ~m rnm m m r,,""

. ~
+ ( 1 - Kt1h (1 - K M)T + K q, KJuu vv

m mn'm m mm rnm
(79)

In the R.H.S. of (78), all matrices are at t or t+l as specified in (78).

The optimum gain is

Ko (z,t+l) = f (z,t+l) MT (z,t+l) f (z,t+l)-l
m mX m rrY. .

(80)

f X ct t+ 1) = A (z, t) <!J~~.{1,t) A (z, t) t + iPuu(z , t)m m m ~ m
(81)

~y (z,t) = ~ (z,t) ~x(z,t) ~ \Z,t)T + ~vv (z,t)
(82)

The ~'s are variances of x - x and y - y before the ob rvation y is made.
m m

Substituting (80) into (79) gives

iPx~(z,t) = ~x(z,t) - ~x(z,t) M (Z,t)T ~ (z,t)-l M(z,t) ~x(z,t)
m m ~ ~ r;:! m m

(83)

Example 4 The pictures are reconstructed with the purpose of tracking

an object which moves 5 units in the ~l direction every unit of t.

mine the optimum processor.

Deter-

Solution The desired relation is

( +1 1 ) - (
~I

X t;;1 ' t;; , t+ I - X t;;1-5, t;; , t)m m
(

~
)

-5
Therefore A Z.t = zl and U = O.m rn

The matrices ~x' '¥v' and ~""'Nat various t are obtained by repeated use ofm,..-,J mXx
. . .

(81), (82), and (83). The Kalman In K is then determined from (80).
mO

"
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Equation (76) gives the optimum processing equation:

X(z,t+l) = z15 X(z,t) + KO(z,t+l) [ Y(z,t+l) - M(Z,t+l)zj5 X(z,t)]m m no m m m
(84)

The optimum processed signal is the sum of two parts, a translated signal

from an earlier time, and an optimally processed part on the unexplained

portion of the observed signal.

VI. Conc1us ion'

Linear processors are noncausal filters which are easy to design and

easy to implement. In designing optimum processor to be used in a given

application, the problem is the same as optimum filtering without realizability

constraint on its poles and zeros. The processor is realizable if its

denominator polynomial is nonzero on the unit circle product subspace C which

has no interior point. When it fails to satisfy this condition, it can be

approximated by a stable processor which satisfy this condition. However,

a truly optimum stabl e processor then does not exist for the probl em.

Algebraic expansion of the optimum processor function leads to a recursive

processi ng scheme with a local ized frame processor. The speed of convergenc~

to uptimum is given theoretically, and can be observed by comparing two successively

modifi ed frames. From the standpoint of practical implementation, frame

recursive scheme has t~Q important advantages: (i) It is ideal for parallel

processing, as the same program can be executed simultaneously on all the points

in' the same frame. (ii) In an adaptive application, only the frame processor

needs to be modified, and its coefficients are readily calculated f)'om the

statistical parameters.

Theoretically, it is shown that every rational processor function

can be approximated by repeated operations with a finite impulse response

frame processor with exponentially decaying remainder

/'

"
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if its denominatorpolynomial is not equal to zero on the , unit circle product

subs pace C. Itis also shown that the convolution product of two stable

processors is a stable processor. In the frequency domain, the processor

function takes the place of filter transfer function in the new context of a

discrete N-dimensional system.

Because of its theoretical simplicity, optimum linear processors have

been obtained herein for a variety of applications, namely: two dimensional

picture processing, three dimensional signal restoration from two dimensional

projections and from two dimensional sl ices, and real time processi ng of

multi-dimensional motion signals. In each case the optimum processor gives

least mean square error while utilizing all available infonnation. The analysis

also gives an expression for the additional mean square error. if a different

processor is used.

:'
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Mathematical Development of Linear Processor Theory

Definition 1: A y - modulus funtion M(z) is defined by

-+

M(z) ~ r m(t)!-~
-+
~EUco

where. m(t) = Al yl~l.

Al > 0 , and a < y < 1.

Theorem 1:

(AI)

I~I = 1~11 + 1~21+ "'I~NI,

The infinite series M(z) is absolutelY,unconditionally, uni-

formly, convergent in N .c

Let M(Izl, L) denote the sum

-+ i =N ~ i =L I ~. ,

I m(t) Iz'-~ = A{.n r y 1 IZi I-~i
-+ 1=1 s.=-L
se:UL 1

proof:

= Al

i=N \- l-lyz.-l ,

L+l

II I 1

i=1 Ll-ylZi ,-I

In N (e:) with a < E < 1 - y:c

Therefore

lim f1(I~I, L) = AlL-+ro

L+l
y I Z . I-I yZ . I

{

+ 1 1

1-y I Z i I ...

IYZi-ll<I,IYZil<J.

;=N
IT

2
1 - y

(l_~~I)(I-YIZi I)i=1

M(z) converges absolutely, then it converges unconditionally, uniformly

inN. U j- ]c

Definition 2: A linear processor F(z) is said to be stable if it has

a y-modulus:

If(~)1 < Alyl~1

....
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Tileorem Z:

'..'.-- . '.

If F(z) is stable, then the series

~ ~

F(z) = L f(t) z-~
-,.
~t:u ro

converges absolutely, unconditionally, uniformly in N .C

Proof: [1 SJ.Theorem 2 follows from Theorem 1 and Weierstrass M-test.

Definition 3: A polynomial of z is a sum of finite number of terms, and
., ~l ~2 ~N.

eaCh term 1S of the form Ci zl z2 ...ZN where ~1' ~2~ ...~n are real

integers (positive, negative, or zero). The po\'{er of each term is defined

as I~I = I~ll + Is21 + ... I~NI. The power of a polynomial is the largest

power of its terms.

Theorem 3 Let D(!) be a polynomial of z, and D(z) is real and positive

(non zero) on C. Then the following:

(iii)

Then

(i v)

(i) There exist D , and Do > 0:u "

(i i)

D = ~ax D(z) D = lji n D(z)
U Zt:C j 9- Zt: C D

The following expansion converges on C if A > ~
1 -'-- -

D(z)

1 n=ro
= A L (1- D(z);

n=O A
(A 2)1

A-[A-D(z)]

Let f(!) and fL (t) be defined by

~

1 r.~ z~ -1 ~

-r"J D(z) dz
~
z E C

f(t) =

(
-+ . . -+ 1 n=L nf"t\ n.

fL ~) = Coeff1c1ent of Z in A L (1': ~ )n=O A

1im f (
+

)
-+

L-+<x> L t;, -)- f (t;,)

Let F(z) be defined in terms of f(t) follo'lJing the convention

expressed in (Al)# F(z) is the uniqu~, stable, expansion of l/D(z)

tn Nc' "
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Proof: (i) Since Cis a closed set and O(z) is a continuous mapping of

~ onto the complex plane, its mapping of C, D(C), is also closed. D(C)

is a closed subset on the real line and contains its superior and inferior

1imi ts. 0 Q. > 0 fo 11O\'/S from 0 i 0(c) .
0 O£

11 - AUI, 11 - AI(ii) Let a denote the larger of the t\'JO positive numbers:

The.n
-+

11 - 0lz) I ~ a < 1

and the expansion (ft2) converges absolutel y uniformly inN. c

(iii)Let J(L,t) be defined by

~ 1

f f
{

' n=L -+ n

}

-+-:t

J(L,EJ = . N ... F(z) - ~ I (1 - o(z)) -Z(t,:-l) dz
(2iTJ) ) n=O A.

-+
Z £ C

(A-3)

Then

-+ 1

f f

n=oo

I

n -+

IJ(L,EJ I $ . N . ... L (1 -~) z~Iz-l dz
(2iTJ) A n=L+1 A

-~
Z £ C

L+la
~ A(l-a)

Let NO denote the power of polynomial O(z).

(A-4) -

Let L denote the integer which

satisfies

NOL < It I $ NO(L + 1)

-+ n=L 0 -+ n
There is no term of the form z-t,: in the sum I (1 - -iz))

n=O

latter is a polynomial of povler NOL. Equation (A-3) gives

(A-5)

since the

-+ -+
J(L,t,:) = f(t,:) (A-6)

Condit ion (A-4) gives kl
t'

If(t)l: 1\(11~\. a to < A" )t,:1

" ,
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1
N

where A" > "/11) , and y = a 0 < 1. Therefore F(z) is stable 0

+ -

Let f(t, n) denote the coefficient of the term z-~ in the polynomial

k (1 - 0iz) )n

With values of L no longer restricted by (A-5), equation (A-3) gives

n=L
L f(t, n)

n=O

.~ -+
J(L,~) = f(~)

ConditionlA4)gives

n=L
\ -+ -+
L f(~, n) I ,-' f(~)

n=o

(i v ) Let

1

o(i) = r f' ct) z-t~

Theorem 4 A linear processor of finite terms is stable.
" -+

Let F(z) and G(z)

be stable linear processors. The linear processor F(z) G(z) is stable.

P(1) =

A linear processor P(z) of N terms can be represented as
-+ p

i =N ~.
p -+ -+ 1I p(t;.) z.

1 1
1=

any y, the constant A can be selected ~o satisfy

Proof

Given

A >. -Max "

(

Iii(! i) I

)

"

1-1,2...N --rmp . 1Y

,

be a stable expansion of
1

Then
-+

.

O(Z) -+ -'>

f'(!) =
1

r..J
-+(-l) -+ -+Z

dz = f(t;)
(2nj)N O(z)
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T6 prove the second part of the theorem: Stability of F(~) and G(~) implies

existence of a y-mOdUlus function for each:

f(t) < A y I ~ I1 1

g(t) < A y I ~ I2 2

Let Ml(~) and M2(~) denote the two y-modulus functions

H(z) = Ml(~) M2(~)

Then

h(t) > I (f*gHt) I

Ho\'/ever, H(Z) in closed form can be expressed as l/O(z) satisfying condition

of Theorem 3. A y-modulus function exists for l/O(~) and it is also a
-~ -~

y-modulus for F(z) G(z)'

-+ -+ . -+ -+
Theorem 5 Let N(z) and O(z) denote polynomlals of z such that O(z) t 0

on C. Then the rational function N(z)/O(z) has a unique, stable expansion.

Proof
Nq) = N(~)BCz)
O(z) O(~)O(~)

The polynomial O(z) O(z) is positive real on C. From Theorem 3, its reciprocal

1

F(~) =O(z)OCz)

has a unique stable expansion~ From Theorem 4~ N(~)D(z)F(z) has a unique

stable expansion.

Theorem 6 Let x, y denote processed output of stationary signals U,v with

invariant stable L.P. 's f and g:

X(~) = F(l) U(z)

(
-+

)
-+ -+

y Z = G(z) V(z)

(An

(AS)

,
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~~~~.~~~~
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Then ~ (1) = F(1) ~ (1) G(l-l)
xy uv

Proof Equations (A7) and (A8) can be rewritten as

-)- -+ -+ -+
x(~ ) = L f([, -0) u(o)a -+ U a

OE
<X>

(
-)-

)
-+ -+ -+

Y tb = -+L g(~b-T) V(T)
TEU

'<x> -+-+

-(~ -~ )
Multiplying (A1O) and (All) and z a b and summing over! givesa

1>xy Cz)

(
-+ -+

-+ -+ ~ -T) (
-+ -+

.c
(
-+ -+

)
-+-(£:-0) (

-+ +
)
-1 b

(
-+ +

)
- a-T)= I L: LIt;, -0 z -a 9 [,b

-T Z 1>
V

O'-T Z
-+-+-+ a u
t;,aO T

Equation (A9) follows from the above equation.

Proof of Equation (61)
* -+ +

Let U denote the set {rT, ~'} with r and each component of CA
00

ranging over all integers. Equation (56) can be rewritten as

(
-+ -+ -+ -+

X t;,a) = +L * f (t;,a-a) u (a)aEU
<X>

Multiplying (~6) with a similar expression for yT(! -;) gives
m a

(
-)-

)
T -+ ~)-

) (
-+ -+

(
+ +

)
T

(
-)- -+ -+

)E {x t;, y (c;, -T } = L * I * f [, -O')Q a-A g ~ -T-A
~ a a ~£U tEU m a mUv a

00 00

One way to prove (61,) is to check its correctness by expanding the RHS

product:

F - T
(

1 "1 - -+ )
1> Z =- a -)- -)--+- -+
mXY ) T (E t =1 -+L * f (E; -a) Z (E;,a- 0 ), 1a osU m a

<X>

-)-, -)-

( L * ~ (~t)'2-(a A)) ( L gT (t b-~) -+- (l - t) )-+ uv" -+ z1>
A£U m E;b

sU ....
00 00

"

~.~~."'''''''' . ..

:;2

(A9)

(A1O)

(All )

(A12)

(A13)
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Since F, ~ , and Gt are stable, their product is also stable by Theorem 4.
m mUv m -

Theorem 2 states that the infinite series on the RHS of (13) converges

absolutely, unconditionally and uniformly in NC'

are then moved to the front:

All the summation signs

~la=T (A14)

~;y(z) = +- 2: 1 -+2:* -+2: * -+2: f(ta-;)<Puv(; 1)gT (-: 1)-~-(! - t )
~ ~l = asU ASU ~bE::U""'" m ~ C,b - z a b

a 00 00 00

-+
-+-1

( )
-+ -+-+

The z term on the RHSof A14 is given by ~b = ~a-T .
~ =Tla

(
-+ 1 -+ -+ -~ -+ T -+ -+-+

~xy 1) = T 2: -+2: * -+2:* f(~a-a)~uv(a-A)g (~a-T-A)
m ~ =1 asU ASU m m m

la 00 00

Therefore

(A15)

Equation (A15) checks with (60) and (A12).

"
'."" '-1
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