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"DIGITAL LINEAR PROCESSOR THEORY and OPTIMUM
MULTIDIMENSIONAL IMAGE RECONSTRUCTION

Abstract

This paper introduces frame recursive image processing as a new
algorifhm for processing of blurred or unblurred pictorial information with
additional noise. It gives improved image which approaches optimum in
least mean squarc error sense. The method represents a new direction in
two dimensional digital filtering from the current trend of using generat-
ing equations and Kalman filter which requires artificial introduction of
a causal order of data points.

Applications include twa dimensional image processing, three dimen-
sional image reconstruction from two dimensional projections and from two
dimensional cross-sections, and real time image processing of a moving
object. In all cases the optimum linear processor utilizes all available
information on second statistical moments to give least mean square error,
and is realized by frame recursive processing in successive approximation

with exponentially decaying error.
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I. Introduction

Image enhancement and restoration is a subject of broad interest
because of its potential in improving the quality of a picture which has
been blurred or contaminated by noise or both, The improved picture is
‘then used either as an end product or as an intermediate step for further
computerized processing and identification, Important theoretical and
experimental progress has been made in recent years as the consequence of
a linear assumption: that the light or graf level at each point is
represcntable as a signal, blurring is representable as two-dimensional
convolution or sum, and the picture noise is additive. Exact analysis
is then further facilitated by an invariance assumption on the blurring
and noise processes. [1]- [12].

The above mentioned linear assumption places the image enhancement
problem right into the domain of classical optimum linear filter theory
with the consequent natural branching into Wiener and Xalman filters.
With the Wiener filter or spatial frequncy demain approach, derivation of
the optimum filter is a complete parallel to the known temporal case.
However realization of the optimum filter is not as straightforward. It
can be done in two ways: (i) optical vrealization [S], [10], and (1)
Fourier transform from image to spatial frequency domain, filtering, and
verse transform back to image domain [4], [5]. Optical realization
requires elaborate laboratory setup and very high grade experimental
skill. Fourier transform realization recuires extensive computation
f13] and is also open to the criticism that while deblurring and image
enhzncement are usually 1$cai ﬁperations, Fourier transfrom back and

forth involves every point in the picture domain, and quantization
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errors are accumulative, The Kalman filter arproach leads directly to

a recursive digital filter which is easily implementable [1]-[3], [8].

But it requires artificial introduction of a causal order of data

points, The filter is not optimal as information contained in the
artificially assigned future data points are already known but not
utilized. The sub-optimality can be improved but not removed by averaging
ocutput levels obtained by filtering with various causal directional
assignments, Roesser in the concluding section df his work [8] stated

as number one future research objective seneralization to bilateral

&

models, meaning models without causality, The difficulty is that point

by point recursive processing implies point by point causality, unicss

the newly computed valuc of a.data noint i

4]

not used in computins the

values of other data points., However there is not causality constraint

on using computed values of all data points for a succeeding round of
computation on all data points, which will be referred to as recursive

frame processing.

The present paper gives a frame recursive method for realizing
Wiener filter, A simple finite impulse response filter (FIR) is obtained
readily from the optimum Wiener filter, and will be referred to as

frame processor (FP). Zy repeated operation of FP on the multi-dimensional

signal, optimaility can be approximated to any desired degree, and the
additional mean scuare error (in excess that of the optimum Wiencr
filter) decreases exponentially with the number of repeated operations.
An integral expression for the additional mean square error and its upper

bound are dcrived in the paper. While any finite number of operations of

the FP is equivalent to another FIR, the number of computing operations

‘4
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with ?:amc recursive processing is an order of magnitude lower than that
of the equivalent FIR,

In addition to image enhancement, the paper also gives solutions to
two other significant applications: (i) optimum reconstruction of a three
dimensional object from two dimensional slices, which is of high interest
to microbiology and medical sciences, and (ii) optimum detection or
reconstruction of a moving object from a succession of two-dimensional
pictures. Solution to (i) is an extension of the classical z-transform
theory with multiple sampling periods. Solution to (ii) is a combination
Wiener-Kalman filter. BPoth optimum solutions can be realized by the
frame recurisve method in the successive approximation sense as discussed
above,

The mathematical basis of the frame recursive methed is an algebraic
expansion theorem which states that if a polynomial Df;} is real and

= -
non-zero on the unit circle product space C{z:}z.|= 1}, then a unique

i

and convergent series expansion of 1/D{z) exists, which can be successively

Lty

approximated term by term by expanding 1/p(z) in a prescribed manner. The
first part of the theorem on the existence of a convergent expansion has
been proved by Justice and Shanks [14] using a Tauberian theorem due

to Wiener in a more general context. However, nowhere in Justice and
Shanks' proof is an indication of how the expansion is to be made nor

th the speed of convergence is to be calculated. Proof of.the present

.

version of the theorem is given in the paper as an Appendix.
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Section II gives the main results of linear processor theory
in two-dimensions. Section III gives its application in two-dimensional
image processing, and demonstrates frame recursive processing scheme
for a numerical exampieT Section IV generalizes linear processor to N
spatial dimensions with a signal vector on each spatial point., It
gives a solution to the problem of optimum reconstruction (least mean
square error) of a three dimensional object from its two-dimensional
projections or two dimensional cross-sections which can be blurred as
well as contaminated with additive noise. Section V gives optimum
real-time processing of successive images of a moving object. Section
VI gives concluding remarks, and mathematical development of the linear
processor theory is given in Section VII.

In the paper, &, o, p; Ay Ty and s represent spatial coordinates
and z, and w represent transformvariables. Signal and observed signal
are denoted by x and y while noise and other random processes are
represented by n, u, and v. The impulse response function of linear
processors are represented by f; g, and p. The corresponding trans-

formed variables and functions are represented by capitalized letters.

+ . .
An arrow over head £, Z, etc, represent spatial vectors while bold
face symbols x, X, f and F etc represent signal vectors and matrices.

m ™m m Ll

-+ —-.[ - - . .
An overhead bar represents 4+ z; 1= 1s 25 sosly 0 & Tonctions and

upperscript T represents transpose of a matrix or vector, while t re-
presents both operations. It is the Hermitian adjoint symbol for matrix
functions with Z on C.

Symbols are introduced as they are used except in Section VII,

where the syrbols introduced in Section IV are assumed.
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11. Two Dimensional Z-transform

Let x(r,s) be defined for integer values of r and s. The

Z-transform of x{(r,s) is defined as

r=eo §=e

) x{r,s) 27" w

00 §= =oo

Y(z,w) = i ()

r

W~y H

Capital letters are used to denote corresponding transformed variables.
A linear processor (L.P.) is a noncausal filter. The processed output
of x(r,s) with invariant L.P. f{p,s) is given by
pEe  g=w

ylrss) = 1 I flpso) x(r -p, s =0) (2)
In terms of transformad variables, (2) can be expressed as

Y(z,w) = Flz,w) X{z,w) (3)
A L.P.f(p,0) is said to be stable if there are constants A and y such
that A>0, 0 <y < 1, and

[£(p20) | < aylel * 1ol

In the product space of the complex planes of z and w, the pro-

duct of the two unit circles: {(z,w); |z| = |w] = 1} is denoted es C.
The open set {{z,w); 1-e < |z] <1+ e, 1-¢ < |w| < T+e}, € > O is re-
ferred to as e - neighborhood of C, Hc(a), or simply N_.. The existence

of some ¢ > 0 is then implied. For-a stable L.P., the inverse of (1) is

x(r,s) = L s §§ X(z ,w) 2" WS 1 dzdw (4

213)

(z,w) on C

The following theorems are proved in Section VII.

Theorem 2 Every stable L.P. is convergent unconditionally, absolutely
in Nc.

Theorem 3 Let D{z,w) be a polynonial of z and w, and D(z,w) is real

|
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and positive (non zerc) on C. Then the following:
(i) Thers exist Du’ and D, > 0:

I o
Du ~ zeC Dz, w)

_ Min D(z,w)

DL zelC

(ii) The expansion

1 g 1

B

D(z,w) A-[A-D(z.w )]

n:c.-.:
- _ D{z,w)yn
néU . A

b R

D
vihere A > —%—, converges for every z on C.

(iii) Let f(r,s) and f (rss) be defined by

! -1 s-]
: N 1 27w
f(r,s) = = 4} SIFET dzdw
(2nj)
(z,w)eC

n=L n
v g B ] il Q&Eﬁﬂl_)

fL(r,s) = Coefficient of 2~ w “in A 24
Then

lim fL(r,s) + f(r,s)

L+-x\

(5)

"

iiv) Let F(z,w) be defined in terms of f(r,s) following the convention

expressed in (1). F(z,w) is the unique, stable, expansion of 1/D{z,w) in N_.
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Theorem 4 A L.P. of finite terms is stable. Let F(z,w) and G{z,w) be
stable L.P.'s. Then the L.P. F(z,w) ¢(z,w) is stable.
Theorenn 5 Let N and D denote po]ynomiafs of z and w such that

D(z,w) # O

for (z,w) on C. Then the rational function

A Hlz,w
P{z,w AR
(zw) z D(z,w

has a unique, stable expansion.

Let x(r,s), y(r,s) be stationary random variables with zero

£

mean, a correlation function @yy(ﬁ,ﬁ) can be defined:

@Xy(p,a} = E{x(r,s) y(r = p, s ~ a)} (6)

The spectral density function ¢xy(z,w) is the transformed .

Zoy(zom) = g g 4y (p59) 2% wo (7)

Theoren 6 Let x, y denote processed output of statiocnary signals u, v
with invariant stable L.P.'s f and g:

x(z,w) = F(z,w) U(z,w)

Y(z,w) = G(z,w) V(z,w)
Then

o (z,w) = F(z,w) ﬁ(z,w)@uv where G(z,w)ﬁ‘(z—],w"])‘ (8)

4 §

Let [H]O denote the constant term in the series expansion of H(z,w). Then

ELx“] = ¢,,(0,0) = [¢,,] >0 (9)
. |

i
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IIT  Optimum Image Processina

Let y be observed x with mask M and linear additive noise n:

Y = MX + N (10)

where n is uncorrelated to x.
A linear processor P is to be constructed to estimate x from y with least mean

square error:

i = PY ) i : : (11)

E(X-£)2 = E x° = minimum : a2

From (10} and (11)

X - X = (1-PM) X - PN a3
From ( 8)
@;; = (E“PM) (1—§ﬁ) §XX + PP ?nn (14)

Let P0 denote the processor M éxxléyy‘ Equation (Y4) can be rewritten as

[ 3
- 5 5 S ¥x<nn ; _
Bgx = By (P-Py) (P-P() + =XXDD - s
=Yy
From (9)
5 9,0 '] -
2 TXXenn 5 = 3
E x° = | =— |+ [(P-P )(P-P ) % L5 Es)
l dyy .JG[ PR 3]

The first term on the RHS of (16) is positive and represents the minimum error
to be obtained with P = Pe' The second term is also positive if P#PO, and re-
presents the additional mean square error ien a processor other than Py 1S

used. P0 is the optimum processor.

‘4



Approxinate Pealization of Po by Frame

Recursive Processing

In general P, is of the form

_ N(z,w)

= D(z,w)

where D(z) is real and positive on C.

n=w

N(z,w) n
P = —*—_—-’_--v-.—. oF "l
‘0 ‘g, z Q('—'s"‘}
n=0
where
Blz,
Qlz,w) = 1 - _iﬁ_ﬂl

and, for (z,w) on C:

lQCz,w)| < q <1

Equation (20) defines Qm as the modulus of Q(z,w).

satisfied by choosing any A greater than

with

Let P Dbe defined by

n=4%
A N(z,w n
N RO IO EERY
n=0
Then
2+1
PO - P2 = Q(z,w) Po

Equation (24) shows that

-

to any desired degree with P2 by

choosing £

(17}

From (5), P_ can be expanded as
o

(18)
(19)

(20)

While (20) is

D
: , the lowest Qm is obtained

2

(21)
(22)

(23)

(24)

the optimum processor p, can be approximated

sufficiently large. From (16)

‘4
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and (24), the additional mean square error ai with Pg is given by

= 9+1 '
[(QY) P By QYY]O (25)

Since Po P ny is real and non-negative on C, it is readily shown from

(20) and (25)

2242 =
éi’. b Q‘El {Po Po é}'y]ﬂ (26)

Obviously P is a finite impulse response filter (FIR), and can
be realized as such. An alternative method which requires.considerably

less computation is the frame recursive processing (FRP) method which

consists of the following steps:
N(Zl‘n‘)
1) X, ————
1) X%, ry ¢ Y

(2) ¥, + Qz, W) X (27)

3) X F X

g @ O

(4) Y Q(z,u)k
In the first step, N(z,w)Y/A is entered into the memory space for XO'
In the second step Q(z,ijO is entered into the memory space for Yl. In
the third and fourth steps XU is replaced by X0+Y1, and then Yy by Q(z,w}Yl.
The last stens are repeated £ -1 times or until no further improvement is
noticeable.
The savings in computation can be quantified as follows: Let multiply-

ing two numbers and adding the product to a third number be defined as one

computation. The number of computations per data point with FRP is

‘4
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vhere TN is the number of terms in N(z,w), and TQ is the nunmber of terms
in Q(x,w). The number of computations per data point with FIR is equal to
the number of terms in Pp (TD} which is usually much larger.

As an example, let Q(z,w) be a polynomial with powers of z betwecen

fnl_and N and powers of w between -, and n,. Similarly, let N(z,w) be
a polynomial with powers ni and né. Then
= n 1

TQ (Lul + 1) (.,_.2 + 1)

] = - - 1 -~

TN (¢n1 + 1) (2n2.+ 1))
and from (28)

CFR? = (2n£ + 1) (2né + 1) + ﬁ(Rnl +1) (2n2 +1) (29)

The number of computations for each data point with FIR realization is

D N
Ciyn = [2(n£ + o )+1] [2(n] + &n))+1] (50)
As a typical example, let my =nj =1, n) =n, =2, and £ = 40. Then
“
Cppp = © *48 & & = 3,008
C.p = 163 = 26,560
FIR ;

In addition to the numerical difference, frame recursive processing has
the following advantages in computation:
(1) Its repetitiousness in instruction steps and operand locations
can be utilized to save computation time
(ii) M coes not have to be selected beforehand. Steps (3) and (4)
can be repeated until no further improvement is noticeable. It

is a natural adaptive systen.

‘4
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Example 1 [ 3], The signal x(r,s) is generated by the following process:

x(r+1, s+1) = o1 x{rtly 5) ¥ oox(r, s+1) - pypy X(1S)

7/ (-03)(1-05) u (r,s) - (31
The observed signal y is
y(r,s) = x(r,s) + v(r,s)

where u, v are white processes with zero mean and mean square values S and N

respectively. Determine the optimum processor PO.

Solution The spectral functions for u and v are = § and §vv = N. Equa-

I
Luu
tion (31 ) can be written in terms of transformed variables:

/(1-05)(1-05)

F(z,w) - =
(T-py z ) (T-ppu"")

X(z,w)

Flz,w) U (z,w)

from (8 )
(1-69) (1-05) S
(1-04 2"1)(1—92w"1)(1—o12)(1-92w)

it

ijXX

B
[T»al(z—1+z)] [1—az(w—1+w)]

where
(1-09)(1-5)S

(1405) (1495)

:.___.__._._.._.p‘! 3 2
2
}+p]’

“1,2 _
2

and M = 1, The optimum processor is
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13-

o
p o AR o B (32)

q’yy B+[1~al(z_1+z)][l%xz{w_1+w}]N

Let N(z,w) = 1 in (32), then,

D(z,w) =1 + %—[l—al(z'1+z}][l—uz(w_1+w)]

From (19) and (21)

o g 2
A=1+g (Ot daja,)

-1 -1 i 5]
N[4a1a2+ul(z +z) + az(w +1) -alaz(z +z2) (w T+w)]

Qzsw) = g N{T+dala, 3

2N(a1+a

2)
Q =
m E+N(1+4ala2)
The processor PO can be approximated to any desired degree by steps (i) to vy of {27)
For a typical numerical illustration,

let

Py = p2 = 0.726

S =6.61, N

n

9

Then B = 0.634, @ =a, = 0.475

= 0.963, and Q(z,w} is given by the array of Table 1:
= b



KA = - B e

Table 1: Array Q(z,w)

g

S =] 0 1

~1 -.1144 .2407 -.1144
0 . 2407 .4574 .2407
1 -.1144 .2407 ~.1144

The mean séuaro error from the optimum processor is calculated from

(4) and (16 } with r = s = o and P - P, = 0. Its value is E_ = 1.964. The mean
square error from FRP is E0+ﬁ£ with A, calculated from (25). The result is
then plotted as the solid curve in Figure 1 versus the number of recursive
operations 2+1. The upper bound of the mean square error is obtained from (26)
and is plotted as the broken curve in Fig. 1. It is noted that (i) the mean
square error from FRP converges to within 1 db of the optimum with 2=24, and
(ii) the broken curve gives a close upper bound to the solid curve for all

\ralue gk L.

Example 2 A picture is blurred with
y(r,s} = 0.5X (r,s) + 0.5X(r+1l,s) +u(r,s) (33)
where ¢ = S, and o N. Determine the optimum processor for the following
cases:
o N e s N
(i) g= 0, and (ii) 5 Qs

‘i



Solution Equation (33) is transformed into

Y =X + U

where M = 0.5 (1+z). The optimum processor is

. 0.5(1+z71)s

P =
0.25(1+z){1+z" ") + N

Q0

Case £i) N =0

ir\)

Po T

There is no convergent expansion in the neighborhood of the unit circle. How-

zZ

-4

ever, w2 can use the following approximation:

T 1
Pow = 53T ¥ 550

where X = 1-e¢, and ¢ is very small but positive.

i .
CJ S
oa ]+kﬁ—? 1+)z
= (1+z"1) " (z+z"2) oo i {22+z'3} - (34)
. N
Case (ii) T = 0.1
0.5(1+z"]
P w L)
©  g.25(1+z)(1+z"1) + 0.1
. 0.6985 . 0.6985
z+0.5367 - 140.5367z2
-~ -r e ._‘_-I —2
= 0.6985(1+2"1) - 0.3749(z+z"%)
+0.2012(2%47°) - 0.1080(z%+2"%) +... (35)

Equation (34) and (35) provide an interesting contrast. While the optimum

deblurring filter without noise is not convergent, it converges rapidly in the

presence of noise.

‘4
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IV Generalization to N-Dimensional

The generalization will be in two ways: (i) instead of two-
dimensional coordinates r and s, the coordinates will be N-dimensional
£1 52 o gN, and (ii1) the signal is an n-component vector on each

space point:

\x, @ | (36)
i
In (36), an overhead arrcw is used to denote a space vector and bold
face letter x is used to denote signal vector. The z-transform of
re

x (Z) is
At

(37)

Let Uy, denote the cube =i < &, <M, i =1,2.-+. Llet 2 © and d7 denote

the products

i=H £y

) ? z, and dz} d22=--dzn

i=1

respectively. The definitions of C and NC are now generalized to the

N-fold complex space. Equation (37) can be written simply as

‘4
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¥ u’?
X (z) = 2 x (22"
- ‘gE;Um - ( = ) Z

The linear processor F is a mxn matrix, with each element Fij being an N-di

mensional Tinear processor:
> PR,
o ™ oL -
Fij (z) = 2 fss (Elz ™
cel J

oo

' ; ; ; > T .
Qutput of F is an m-dimensional vector y (£) with its transform given by
the matrix equation:

e

Y (2= F Az % (2)

m

I ™

Equation (5) is replaced by the matrix equation

->
=E
(z) = .z o, ()2 | (38)
O ey, o
where the i,jth elements of by and ny are the correlation function
@ , and spectral density function o respectively. Equation (6)
X593 Xiyj
becomes
= > 3, T
xy (2) = F (2) o, (25 (2)' | (39)
where

=1 -1 2—1)T. It is the Hermitian adjoint of
G(Zz) on C. Theorems 1 to 6 remain valid. In fact, they are proved in the
Appendix for the H-dimensional case.

For N-dimensional optimum processing (10), (11), and (14) are replaced

by

e ---‘1,7 .. ..

i



Y=MX+N ' (40)
X =Py (41)
™ (- P Miey (2 W7 4R oy,
2 _py I t
b =P g = By BB SR B P ()
where
by =W o M+ oy, ()
The optimum processor is given as
p Mt g - (44)
"\"0 mxx Y\‘: rl'.uy\yr )
Equation (16) becomes
ot | i (45)
E[X = (o - s Mgy o ]+ [ =) oy (2 -2 )]
The two terms on the of (45) have the same signifances as the corres- -

ponding terms on the RHS of (16). The matrix (P - PO)T is the Hermitian

o

conjugate of P - PO on C. Any processor other than PO gives a positive

second term and adds to the error matrix

The Projection Qperator m

An N-dimensional signal can be projected onto an (N—i).dimensional

manifold:

(H-i \xﬂ)( E]s ‘52,---5.5_] sg.i_i_‘[---gm)

£i==
(46)

n
™
&<

_—

oy
et

oy
~

-

-

[l

.

)
=

o —



In terms of z-transform it is
iy ® - N (47)

As (47) cennot be written in closed form, an exponentially decaying pro-

jection Hik is used:

g, =
i e | -Z. 2
=x  oa g Vs Lo (48)

LS i (1-x2]")(1-2z;)

: T
where O< A < 1. Let 1, denote (R]A’ My Ty )

m

The probiem of reconstructing a scalor signal in N-dimensional space, from

(N-1) dimensional projections can be formulated as follows:

Y=1, X +N ' (49)

_ T -1 _. T, - -1
Eo = Oyx EA 2yy - ix (Qxx Eyy) (50)
where
-1 _ T -1
yx 3yy - EA 2A * Wy 3nn (51)

The Sampling Operator*

The sampling operator samples on one dimension only, Zys and takes one

frame out of every T samples:

> _}-E; -
& {6l BN zasz‘ (52)
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where z7and £/ denote (22, 23"‘ZN) and (iz, 53,...£N). The sampled signal

or processor can be treated as a transformed variable with x (E) = 0 for

m

all values of &, which are not integer multiples of T. Cansequently
1

) = x* (53)
* * * *

R = F (54)
+* * +* *

(F X" = F x | i e (55)

* *
let X=FU ,and Y =GV where u, v are correlated stationary random

m m o om

processes. Then for any Ea and 1

r ) sz g Flg, -rT g -2)ulT, ¥ (56)
> T > > _ _ E 1 *j wg >/
E(x(2,) vi (&5-7)) = : %r Fley,m rTsg, - 87) o, (Mg by, 27922, +1)

The correlation matrix E {x vT} is a function of ?}gnd position of Eia in

m m

the sampling cycle. Averaging over g]a gives
Bl
la

- A1 ; i T2 -»
o (1) = ¢ 2 Elx(g) v (§-1))
1 3 > > -
=1, (&), (1F) (58)
1 _éeU A uv
The transform of (58) is
.I - e 5
G2 = 1 F(3) 0y, (2) (59)

57)



Equations (58) and (59) do not imply the invariance of the correlation matrix,
but that of the averaged correlation matrix over one sampling cycle. The

averaged correlation matrix is then defined as Oy

with its transform va‘

-As averaged mean square error is to be minimized in the data reconstruction

problem, ¢__ and ., are the pertinent matrices to use.

RN
Similarly
Eqe =T
o L P Emd T Ean (60)
Xy T ¥ al v a _

It is shown in the Appendix that the transformed matrix is

(3) =+F ¢

1 ¥
Oxy T, _uv G (61)

Lial

In microscopic study of microorganisms, various sections of the three
dimensional object can be photographed by focusing the microscope at various
depths and the three dimensional object is to be reconstructed from sec-
tional photos. The sectional photos are represented by sampled planes in the

following formulation:

Rl ) (62

(TSNP (63
From (59) and (61)

A SV A SRS S5 el
where

ff.;y = (Mo ﬁ%)t’ f:n (65)

21.



The optimum processor and error matrix are given as:

o ..l':- I*_T
o = 2 iy oo
o 4 ™l we } o
BT o T T S Mty Maac (PP by (PP \GH
Example 3 In a three dimensional scalor signal reconstruction problem,
(irql + Lol + [eg])
>y 1 2 3
by (T) = S P | (68)
and an = 1. The samples are taken at E} =nT where n = ...-3,-2,-1,0,1.2,3...
and M = 1. Determine the optimum processor PO.
Solution: From (65) and (66), the solution can be written as
a
; 1
s ==(.gg& ) [ 1++*‘:T_i] =
Pxx ¥ xx '

The second factor gives optimum processing at sampled planes while the first

factor gives interpolation formula. From (68)

53
x T i=3 Ue) 3 (70)
1 (1-p 22)(1-p z.)
. 1 1
i=]
2
* (1-02) (1—o2T)S (71)
frx T E o T B e
(l=ptz. " Ml=p"2¢' ) m (Ven 2o ) 1=p 2.)
1 b Py i i

After some simplification, the interpolation formula is given as

Qxx i=T-1 § i_DE(T-i) - i i
;;- =1+ §ﬁ1 [ ;"—?T”“*ﬂ_‘ ] (z] + zi) (72)
XX - " ;

‘4
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V Real Time Processing of Motion Related Signals.

The signals and observed signals are represented by X (z,t) and Y(Z,t):

m

X (Z,t+1) = A (E,t)) X (z,t) +U (Est)- (73)
Y (Z,t) = M (Z,t) X (Z,t) + V (Z,t) (74)

Equation (73) gives the kinetic relations between signals of successive

frames (different t). There is no correlation between U, V; between U (Z,t')

™ om

and V (Z,t), V (z,t') for t# t'. At t = 0, the best estimate of X is

m

n

(2,0)

1 D

m

Py (2) Y (2,0) (75)

N ¥ e . = . .
where P (Z) is given by (44) and the initial error matrix o__(z,0) is given

[

X)’((

by the first term of (45).

A reccursive processing procedure is developed as follows:

R (3tH1) = A (3,1) X (Z.t) + K (Lt Y (Z,t1)- Y (3,t41) 1 (76)
where
Y (Z,641) = M (Z,t41) A (Z,t) X (Z,t) (77)

is the expected Y (Z,t+1) before it is observed, and K (Z,t+1) is a generalized

m

version of Kalman gain matrix. Subtracting (76) from (73) gives (78)
: 78

AL oy -+ "~ - > > - > -~ - ,
X (z,t+1)=A (z,t) X (z,t)+ U (z,t)-K (z,t) { M (z,t+1)[A(z,t)f(z,t)+urz,t)J+v(z,t+1);
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As the three random variables X (Z,t), U

m

(z,t), and V (Z,t+1) are mutually in-
dependent, the error matrix is given as
ogy(3,t41) = (1 - KM ) A o A” (1= kM)7

3

+(1-K M)@uu (1 -KM7" + 5 ﬁvv K (79)

m m m m Lagl m m

In the R.H.S. of (78), all matrices are at t or t+l as specified in (78).

The optimum gain is

ﬁo (Z,t+1) = i;(%,t+1) E* (Z,t+1) ty (E,t+1)_1 L B (80)
v, (L,tH1) = A (4,t) app(E,t) A (E,t)'*f 8 (2:1) (81)
vy (2,8) = H (2,8) v (2,0) M (2,0) + 6, (2,t) (82)
The i's are variances of X - i and Y- i before the ob- rvation y is made.
Substituting (80) into (79) gives
oy3t) = v, (50 - G G0ty GoT gy @ @

Example 4 The pictures are reconstructed with the purpose of tracking
an object which moves 5 units in the £ direction every unit of t. Deter-

mine the optimum processor.

Solution The desired relation is

X (51,21, t+1) = x (51-5, gl,t) Therefore A (Z.t) = 2{5 and U = 0.

m m

The matrices Voo iy, and éqf at various t are obtained by repeated use of

(81), (82), and (éS). The Kalman gzin K is then determined from (80).

m

‘4
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(8]

Equation (76) gives the optimum processing equation:

K(E.01) = 23° X(E0) + K (Fe41) [ YE,141) - H(E0)2) RE01 (8)

The optimum processed signal is the sum of two parts, a translated signal
from an earlier time, and an optimally processed part on the unexplained

portion of the observed signal.

VI. Conclusion
Linear processors are noncausal filters which are easy to design and
easy to implement. In designing optimum processor to be used in a given

application, the problem is the same as optimum filtering without realizability

constraint on its poles and zeres. The processor is realizable if its

denominator polynomial is nonzero on the unit circle product subspace C which

has no interior point., When it fails to satisfy this condition, it can be
approximated by a stable processor which satisfy this condition. However,
a truly optimum stable processor then does not exist for the problem.

Algebraic expansion of the optimum processor function leads to a recursive

processing scheme with a localized frame processor. The speesd of convergenc¢

to optimum is given theoretically, and can be observed by comparing two successively

modified frames. From the standpoint of practical implementation, frame
recursive scheme has two important advantages: (i) It is ideal for parallel
processing, as the same program can be executed simultaneously on all the points
in the same frame, (ii) In an adaptive application, only the frame processor
needs to be modified, and its coefficients are readily calculated from the
statistical parameters,

Theoretically, it is shown that every rational processor function
can be approximated by repeated operations with a finite impulse response

frame processor with exponentially decaying remainder
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1t its denominator polynomial is not equal to zero on the unit circle product
subspace C, Jtis also shown that the convolution product of two stable
processors is a stable processor. In the frequency domain, the processor
function takes the place of filter transfer function in the new context of a
discrete N»dimensipna] system. -

Because of its theoretical simplicity, optimum 1inear processors have
been obtained herein for a variety of applications, namely: two dimensional
picture processing, three dimensional signal restoration from two dimensional
projections and from two dimensional slices, and real time processing of
multi-dimensional motion signals. In each case the optimum processor gives
least mean square error while utilizing all available information. The analysis
also gives an expression for the additional mean square error, if a different

processor is used.
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VII Appendix: Mathematical Development of Linear Processor Theory

Definition 1: A y - modulus funtion M(Z) is defined by

mz 4y w@ 7t (A1)
_>
gel_
where m(Z) = A Y{g]. lel = lgg| + le, |+ wes [ 8 [

Theorem 1: The infinite series M(z) is absolutely, unconditionally, uni-

formly, convergent in NC.

Proof: Let M(|Z|, L) denote the sum

i B
B =N Si=L | |
) m(e)|z| E=A’ 1 Yoy L |Z.]'gi
3 by misdl ‘
gEUL i
. . - + +
=N \ 1_1Y21 llL 1 YlZiI_IYZi]L 1
= Al B! -3 (
i=1 | 1-v|z, | 1-y|z, | .
In N (e) withO<e<1-y: [yz;7' <1, |vz;] < L.

Therefore

_
1
=

1 - Yz

151 (I-leil_l)CI—Y]Zi{)

[
==

Tim W(’;’, L) = A

Lo !

M(Z) converges absolutely, then it converges unconditionally, uniformly
in Nc. Lis ]

Definition 2: A linear processor F(Z) is said to be stable if it has

a y-modulus:

If(g)l " A1Y|5|

Sty S bt S
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Theorem 2: If F(z) is stable, then the series

F@ - 1R 3T

converges absolutely, unconditionally, uniformly in NC.

Proof: Theorem 2 follows from Theorem 1 and Weierstrass M-test. []5].

Definition 3: A polynomial of z is a sum of finite number of terms, and
gl gZ---z N where ¢ ves are real
52 N e R S

n
integers (positive, negative, or zero). The power of each term is defined

each term is of the form Ci Z4

as |g] = |£l| ¥ [ ¥ wd ley|. The power of a polynomial is the largest
power of its terms.

Theorem 3 Let D(Z) be a polynomial of Z, and D(Z) is real and positive
(non zero) on C. Then the following:

(i) There exist DU, and D, > O:

o - Min D(Z)

u_ zeC 770 7eC "
(ii) The following expansion converges on C if A > ?E~;
n=e -
“”:‘1“"= —‘*“]—T:“}]{ Z'U-Déz {AZ)
D(z) A-[A-D(z)] n=0
(i11) Let f(Z) and f (£) be defined by
;e
f(2) = 1. N}Q"‘\% 2 dz
(273) D(z)
z e
. n=L > n
£, (£) = Coefficient of 3 inx 3 (12 22l )
n=0

Then

11 > _ -+
s T (8) =¥ (§)

(iv) Let F(z) be defined in terms of f(Z) following the convention

expressed in (A1), F(Z) is the unique, stable, expansion of 1/D(z)

in New

‘d
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Proof: (i)SinceC s a closed set and D(z) is a continuous mapping of
z onto the complex plane, its ﬁapping of C, D(C), is also closed. D(C)
is a closed subset on the real line and contains its superior and inferior
Timits. D£ > 0 follows from 0 £ D(c). " ;s
(ii) Let a denote the larger of the two positive numbers: |1 - ﬁgd, 11 - I;q
Then

-2 ca <t
and the expansion (A2) converges ebsolutel y uniformly in Nc.

(iii)let J(L,Z) be defined by

- : - A n=L =g WL (£ = &
J(L:E) = i e (F(Z) _%" Z (1 - %E)) }Z(g f:l dz (A"3)
(2n3)" i n=0 :
ZeC '
Then
n=e n >
-y D £ |o=1 >
|J(L,€)|5_‘—%T # ) (1——,;(@) 4 dz
(2nj) A | n=L+1
g e C
aL+1 g
2 A(1-3) (A-4)
Let ND denote the power of polynomial D(z). Let L denote the integer which
satisfies
NpL < [g] s Mp(L + 1) - (A-5)
e n=L D(i’) n _
There is no term of the form 775 in the sum yo(1 - 'TT_") since the
n=0

latter is a polynomial of power NpL. Equation (A-3) gives
I(L,E) = f(E) (A-6)

Condition(A-4) gives 1£]

I
D < A’ Ylgl

[f(E)Jg ml—%‘)ﬁ + d

‘4
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where A” > KTT%E) ,and y =a -~ < 1. Therefore F(Z) is stable,

-+ —>—+ ‘
Let (¢, n) denote the coefficient of the term z & in the polynomial

(7).
x (- 3Eh

With values of L no longer restricted by (A-5), equation (A-3) gives

. N n=L
JL,g) = f(&) - I f(&, n)
n=0
Condition{A4)gives
n:L =3 -»>
I (g, n) Y i f(¢)
n=()
(iv) Let
;(* -1 @)
Z) g
be a stable expansion of - Then
D(z) e
: 3 3(e-1 > >
f(g) = “—lf“ﬂ' J--:! i dz = f(&)
(27§) © D(z)

Iﬁgoreh 4 A linear processor of finite terms is stable. Let F(Z) and G(2)
be stable linear processors. The linear processor F(z) G(z) is stable.

Proof A linear processor P(Z) of Np terms can be represented as
N i=N = £
PE@ = 3 ° pE) 2 ‘
'l:
Given any y, the constant A can be selected to satisfy

A > Max A IpED]
=28y | el
- Y



To prove the second part of the theorem: Stability of F(z) and G(z) implies

existence of a y-modulus function for each:

) f(E) < A] Y} lgl

5]

g(é) < AZ Yz

Let M1(E) and MZ(E) denote the two y-modulus functions
H(z) = M}(z) Mz(z)
Then

-

h(Z) > |(fxa) (@)

However, H(z) in closed form can be expressed as 1/D(z) satisfying condition
of Theorem 3. A y-modulus function exists for 1/0(3) and it is also a

->

y-modulus for F(z) G(z)"

Theorem 5 Let N(Z) and D(Z) denote polynomials of 7 such that D(zZ) # O
on C. Then the rational function N(z)/D(Z) has a unique, stable expansion.

Proof

N(z) . N(Z)D(Z)
D(z)  D(Z)D(zZ)
The polynomial D(z) D(z) is positive real on C. From Theorem 3, its reciprocal

F(3) =t
D(z)D(z)
has a unique stable expansion. From Theorem 4, N(Z)B(Z)F(Z) has a unique
stable expansion,.
Theorem 6 Let x, y denote processed output of stationary signals u,v with

invariant stable L.P.'s f and g:

X(2) = F(Z) U(2) B (A7)

Y(Z) = 6(Z) V(2) (A8)
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KN 5 > | .
Then Vg (z) = F(2) buv(z) G(z ") (A9)
Proof Equations (A7) and (A8) can be rewritten as
x(2)) = .z f(£.-3) u(a) _ (A10)
a - a
m:Uﬂu
y(Z) = 5 g(g,-7) v(3) (A11)
tel o
4 ; 47(Ea_gb) . - .
Multiplying (A10) and (A11) and z and summing over ¢_gives
> B ' > > -1-—(2—3) e -a(gb“-[) ' > > -(3..?)
¢xy(z) € 31rz f(ga-c)z a g(;b—‘}z Guv(G-T)Z
an T

Equation (A9) follows from the above equation.

Proof of Equation (61)

_:.-
S

* 4 X
Let U_ denote the set {rT, £7} with r and each component of

ranging over all integers. Equation (56) can be rewritten as

-5) u (o)

-

i

g

R T

Multiplying (56) with a similar expression for yT(Ea—?) gives

E (x(Z,) ¥'( 30, G o' (E,#-0) (A12)

il

> -+
£ -1)} = %, I, f(E
g el xel = a

==} o

One way to prove (61) is to check its correctness by expanding the RHS

product:
£, =T > +)
] *la . i U (F; - O
= = 2 RS § -
2)()’ (Z) T ( E]a=] ZSU* : (Ea O’) Z a )
(A13)
S +-(§'){) , T o ¥ _,_(+ - K
( e 6,y (c X) ) ( = i (8,-X) 3 -(§ - 2)y
3 bV
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Since F, (T and G' are stable, their product is also stable by Theorem 4.

m m

Theorem 2 states that the infinite series on the RHS of (13) converges

absolutely, unconditionally and uniformly in NC' A1l the summation signs

are then moved to the front:

T (A1)
g e B - By Fe ¥ f(Z_-a)o (6 X)gTyz _+y2-(2. - )
Y T £y, R A T S (ep-2)z a7 G

a == =53 b ==
The z © term on the RHS of (A14) is given by ;;’b - ?,a-‘{ . Therefore
> 1 g-la:T 5> e N et

pey () =g T 2 T fg m0)e (o-2)g (£, -1-1) (A15)
s iia—] cfaUm J‘LEUGD ™ m ™

Equation (A15) checks with (60) and (A12).

P ]
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