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1 .  INTR OD UC TION 
- 0  - -- 

Considerable emphasis has recently been placed upon use of the 

differential approximation in dealing with radiative transfer through 

media which absorb and emit thermal radiation. This method con- 

s is t s  of replacing the integral formulation for the radiation flux vec- 

tor  by an  approximate differential equation [ l - 5 1 2 ) .  For the one- 

dimensional plane layer this is  equivalent to both the Milne- 

Eddington appr oxirnation [ 1,4, 51 and the exponential kernel approxi- 

mation [ 2 ,  3 ,  51. 

The applicability of the differential approximation to the one- 

dimensional plane layer is  well known. The implied utility of the 

approximation, however, is  to more general problems, since an exact 

expression for the radiation f lux  vector i s  not easily formulated for  

1) This work was sponsored by the U. S. Air Force, Office of 
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multi-dimensional geometr ies  ?he purpose of the present note is 

to explore the applicability of the differential  approximation to geome- 

tries other than the  one-dimensional plane layer. 

F o r  simplicity a nonscattering g ray  medium having an absorption 

coefficient that is independent of temperature will be assumed. From 

the differential approximation, one has  [l-51 3) 

~7~ - ,p(zx q(,-- 
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where K, C* T and qi a r e ,  respectively, the volumetric absorption 

coefficient, Stefan-Boltzmann constant, absolute temperature, and 

radiation flux components. Equation (1) constitutes a differential 

equation fo r  the radiation flux vector, and for a given problem this 

must be coupled with an  equation expressing overall conservation of 

energy. 

It remains to  specify boundary conditions for Equation (1). This 

has been accomplished by Cheng [ 2 ] ,  and letting xl be a coordinate 

normal to  a given g ray  surface, the boundary condition a t  that surface 

3, I t  i s  worth mentioning that this three-dimensional equation 
actually follows f rom R os   el and's original derivation [6 1, even 
though his  final resu l t  i s  restr ic ted to the optically thick limit. 



where B(X x ) is the  total  radiant energy (radiosity) leaving the 2' 3 

surface. In Chengls application a black surface was assumed, such 

4 
that B(x , x  ) = T 

2 3 
x ), where T is the surface temperature. 

( X ~ 9  3 W 

Equation (2) may, however, easi ly  be applied to nonblack surfaces by 

noting that 

where E i s  the sur face  emittance. Upon combining Equations (2) 
W 

and (3), the applicable boundary condition becomes 

F o r  purposes of comparison with other results,  i t  will be con- 

venient to r e c a s t  Equations (1) and (4) in t e rms  of the optical coordi- 

nates T 1 = K 3 , and Equations (1) and ,  (6) become, respec,tively 

4, An a l te rna te  and somewhat m o r e  direct  means of obtaining 
Equation (2) i s  presented by Wang [TI. 



Furthermore,  le t  L be a characteristic dimension of the system, and 

correspondingly the characteristic optical thickness is *ro = K L, 

while T. = O(T~). 
1 

When continuum molecular conduction is included in the formula - 
tion of a given problem, the requirement of continuity of temperature 

a t  a bounding surface results in the right side of Equation (6) being zero. 

Conversely, if conduction is  neglected, the right side of Equation ( 6 )  

represents the well-known temperature jump at a surface. From 

Equation (5) i t  i s  readily seen that, with respect to the right side of 

Equation (6), the te rms  on the left side of Equation (6) have the follow- 

ing orders  of magnitude: 

2 2 
while the t e r m  8 %/&. &. appearing in Equation (5) is of O ( ~ / T ~ )  

1 J  

compared to gi* 

It i s  apparent that for T o + co Equation ( 5 )  reduces to the 



Ross eland equation 

40- 4r4  
d --- 

3 &'T (7 )  

while Equation (6) requires continuity of temperature a t  the boundaries. 

This is the conventional optically thick limit. On the other hand, if I 
t e rm s  of 0 ) a r e  retained, Equation (5) again reduces to Equation (7) 

0 

while Equation (6) becomes 

Equations (7) and (8) constitute the Rosseland equation with jump bound- 

a r y  conditions. Such a case  has  previously been considered by I 
Deiss ler  [8], except that t e rms  of 0('/-r2) were included in the f orrnu- 

0 

lation of the  boundary conditions. If only first-order terms a r e  retained 

in  Deis slert s equation, i t  coincides exactly with Equation (8 ). 

I 
I 

1 2  
When te rms  of O (  /T ) a r e  retained. Equations (5) and (6)  r e -  

0 

main  a s  i s .  These differ f r om Deissler 's second-order formulation in 

two ways. F i r s t ,  Deiss ler fs  method utilizes Equation (7)  rather than 

Equation (5): and second, the t e r m  of o (~ /T ' )  in Deissler ls  boundary 
0 

condition is 



instead of 

I /  Since Equations (5) and (6) include terms of 0( T ), it would 
0 

appear that the differential approximation constitutes a second-order 

departure f rom optically thick radiation. However, it is often stated 

(somewhat incorrectly) that Equations (5) and (6) reduce to the 

co r r ec t  optically thin limit, and if  both thick and thin limits a r e  

achieved, then the differential approximation is possibly applicable 

fo r  a l l  optical thic kne s s e s . Actually, the applicability of Equation ( 5  ) 

to the optically thin l imit  i s  quite restricted, and this will be illus- 

t rated in the next section. 

3 .  OPTICALLY THIN LIMIT 

For  optically thin conditions (T < < l)? Equation (5) reduces to 
0 

and it follows that 



7 
where G i s  a n  integration constant, One may note that Equation (10) 

is of the same  f o r m  a s  the s e n e r a 1  equation representing conservation 

of radiant energy ( s e e  f o r  example Equation (1114) of [5] ). 

It remains  to  sa t i s fy  ei ther  Equation ( 2 )  or  Equation (6)  a t  each 

~ u r f a c e ,  and substitution of Equation (1 0) into Equation (2) yields 

Recall further that f o r  optically thin conditions the radiation heat flux 

a t  each sur face  can  b e  evaluated a s  if the medium were completely 

transparent ( s e e  f o r  example Section 7 -5 of [9] ). Thus B(rZ, T ~ )  and 

q l ( O , ~  , T  ) f o r  each sur face  m a y  be determined from conventional 2 3 

enclosure theory [ 9 ] .  

F o r  a n  optically thin medium bounded by N surfaces, Equa- 

tion (11) yields N equations for  the value of G a t  each surface. 

However, in  o rde r  for  Equation (]LO)  to be the optically thin form of 

the differential  approximation, G must  be constant throughout the 

medium. This of cour se  imposes a specific restriction upon the 

applicability of the differential  approximation to opticaIly thin con- 

ditions; that is ,  Equation (1 1) must  yield the same value of G a t  

each surface.  In addition, inspection of Equations (3) and (11) illus- 

t ra te  that the su r faces  must  be isothermal  and that the radios it^ be 

uniform over each surface.  

As pointed out by Vincenti and Kruger [4]. there is one case for 
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which the differential  approximation does r educ e to the optically thin 

limit for  a l l  geometr ical  configurations. This is  the emission- 

dominated limit, f o r  which G = 0. The physical requirement i s  that 

the temperatures of all bounding surfaces be much smaller than the 

temperature of the medium. F o r  problems that a r e  not emission 

dominated, the foregoing restr ic t ion concerning Equation (11) must 

be imposed. This res t r ic t ion  will now be illustrated for the three 

geometries shown in Fig. 1, and for each of these the surfaces a r e  

taken to be isothermal .  

4. ILLUSTRATIVE EXAMPLES -- 
The first example i s  the plane layer .  Recall again that in the 

optically thin limit the radiation heat f l u x  a t  each surface is evaluated I 

a s  if the medium w e r e  completely transparent. Thus 

where the subscripts  1 and 2 now re fe r  to the specific surfaces* 

Upon employing Equation (1 1) a t  each surface, one has 

The requirement  on G is thus satisfied, such that the differential 



approximation reduces to the correct  optically thin limit. This is 

evidently the reason why the differential approximation consistently 

gives good results for the plane layer geometry. 

The second case  consists of an  absorbing-emitting medium con- 

tained within an infinitely long circular  cylinder. Since there is  a 

single isothermal surface, the restriction pertaining to Equation (1 1 ) 

is obviously satisfied. This conclusion, in fact, applies to 3 en- 

closure for which the entire enclosure surface is  isothermal. 

To give a specific example involving the cylinderical geometry, 

consider that there  i s  uniform heat generation per unit volume Q 

within the medium and that the surface i s  black. It is easily shown 

that the  differential approximation yields the result 

where Tc i s  the temperature a t  the centerline and r0 = Zur = KD. 
0 

It i s  interesting to note that this differs from Deisslerb slip solution 

only in that the l a s t  t e rm in the denomenator is '/T rather than 
0 

Deis s l e r l s  9 / 8 ~  A comparison of Equation (1 2) with Howell and 
0 

Perlrnutter 's  Monte Carlo results for  the same problem [ l o ]  is  

shown in Fig. 2 ,  and this is  quite comparable to Deissler's similar 

comparison [8]. The rnaximum departure from the Monte Carlo re- 

sults  is approximately six percent, and this lends support to the 

p remise  that when the differential approximation reduces to the correct 



optically thin limit, i t  i s  in turn a useful approximation for all  

optical thicknesses . 

The final example concerns two infinitely long concentric 

cylinders. In the transparent limit one finds from enclosure theory 

that 

and f rom Equation (1 1) 

With the exception of equal surface temperatures 5), the requirement 

that G have the same value a t  each surface is  not satisfied, and this 

i s  a n  example for  which the differential approximation does not yield 

the optically thin limit. Furthermore, it  is apparent that the difference 

between G and G increases with increasing values of r /r 
w l  w2 2 1' 

TO give a specific illustration, consider that the surfaces a r e  

black and that radiation i s  the sole mode of energy transfer within the 

medium. F o r  this case the differential approximation yields the result 

5) F o r  Twl = T one has in the transparent limit an isothermal 
~2~ A 

7 

enclosure, such that B1 = B2 = cTw. 



This coincides exactly w i t h  Deis s l e r r  s f i r s t  -order slip solution. 

A comparison of Equat ion  (13) with other results i s  shown in Fig. 3. 

The limit r /r 1 c o r r e s p o n d s  to  the plane layer, and the excellent 2 1 

agreement between the  d i f fe rent ia l  approximation and the exact solution 

of Heaslet and Warming [ll] fur ther  i l lustrates the applicability of the 

differential approximation to  the plane layer  geometry. The other 

comparisons a r e  with the  Monte Carlo results of Howell and Perlmutter 

I'lo]. As would be expected,  the accuracy  of the differential approxima - 
tion diminishes with d e c r e a s i n g  optical thickness, and this is  more 

pronounced for l a rge  r2/r  values. It is worth mentioning that 

Deisslerl s s econd-order s l i p  solution gives better agreement with the 

Monte Carlo resu l t s  than does  the differential approximation (see Fig- 5 

of 181 ). 
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