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Abstract 

( .  A perturbation 'tdchnique is developed for determining the transient temperature in  a %b, insul- 
ated on one face and subject t o  nonlinear thermal radiation a t  the other face., The slab is i n i t i a l l y  f 
a t  a uniform temperature and is assumed to  be homogeneous and isotropic; the phyeical properties are 
aarnrmed to be independent of temperature. Temperature distributions and heat flux a t  the radiating 
boundary are presented i n  a dime~mionless, graphical form for  a wide range of parameters, and the 
former are campared with previously obtahed analog computer results. 
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Das Abstrakt ' 

Eine Perturbationamethode fir die Ermittlung des Zeitverlaufa yon Tenperatur i n  einer Platte, die R .  , 
8n e h e r  Oberfl'bhe i e o l i e r t  und an der anderen einer nichtlinearen ~ h e s t r a h l ~ m g  unterworfen fa t ,  u i rd  
entwickelt . Es wird vorausgesetzt, dass die Plat te u r sp&gl i ch  sine gleichm'a'seige Tenperatur hat, und 

I dass s i e  homogen und isotropisch ist; auseerdem w i r d  vorausgesetzt, dass die phyeikalischen Eigenschaften 
8 

von der Temperatur unabha&gig sind. Me Temperaturverbreitungen und die w'a'nneatromung an der strahlenden b 

Oberflzche sind fir eine umfangreiche Parweterreihe i n  einer graphischen dimenaionafreien Fonn darges- 
t e n t ,  und jene sind m i $  den friiher an An&l.ogrechernaschinen erhaltenen R e d t a t e n  verglichen'. , i 

introduction In problems of heat transfer involv- 
ing convection, radiation, or evaporation a t  the 
surfacelof a body, the f lux of heat a t  the sur- 
face temperature is, i n  general, a nonlinear func- I t ion of the surface temperature. Furthermore, the 
thermal properties of the body may also vary with 
temperature. One commonly employed approxima- 
tion t o  the rea l  phenomenon assumes constant pro- 

P pert ies in the medium but w i t h  heat transfer a t  
. the surface a given nonlinear function of surface 

P temperature. Mathematically such problems occupy 
an Fateresting position between the classical 

the general rase  in which both 
equation and the bormdary con- 

..z:. ditions are  nonlinear. 

' 3tn heat tranafer Between sol ids  and p e s  it 

is conanonly assumed that  the rate of heat Iexchange 
across a gas-solid interface is proportional t o  
the difference between the temperature of the 
solid surface and the surrounding m e d i u m  which 
gives r i s e  to the boundary condition of the f o r d  

-k (E) = HAT 
ax 

where a~/'dx fa the thermal gradient a t  , the am- 
face; and H is a factor of proportionalit$&fre- 
quently called the film tranafer factor; k 
is the tharmal conductivity. If H is independent 
of temperature the a b m  bormdarg- c ndition is 
l inear.  For mel l  temperature dif$renoes, 6% 

$ 1  ' 
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iar, of aoursel l l ~ w t o n l a  l a w  of cooling. 



and where most of the heat transfer i s  due to con- 
duction-convection, H varies but s l ight ly  with 
temperature and may be appr&ted by some con- 
stant  mnnt)er. For Jarge temperature differences 
radiation plays a dpminant role so  tha t  the film 
transfer factor is strongly temperature dependent. 
When the conductioq and convection may be neg- 
lected, the film transfer factor i s  given by 
Stefan-Boltz~nann Radiation Law, 

. whare,Ts is  the absolute temperature of the solid 
a t  the surface, T the absolute temperature of the 

G ambient gas, E thf emissivity, and A is a con- 
. + stant  depending upon the units of measurement. 

It is clear that  when the film coefficient for the 
' radiating boundary ( i i )  is substituted in  ( i )  the 

resulting boundary condition is nonlinear. Since 
a nonlinearity i n  either the differential  equa- 
tion or the boundary condition renders the entire 
boundary value problem nonlinear, the solution t o  
the unate dy heat transfer problem with a radi- 
ating bo&ary condition i s  diff icult .  

The present problem was studied by Mann and 
Wolf (1) ; their  investigation was, hawever, pri- 
wi ly  concerned with the existence and unique- 
ness of the solution to the integral equation 
associated with the probbem and l e s s  concerned 
with a practical, method for its solution. Jaeger 
(2) solved the problem in terms of a power series 
epansion which, is adequatelv convergent only for 
early times. Chambre (3) obtained a solution i n  
terms of an a p p r b t i n g  polynumial evaluated 
by means of the "heat balancen integral. Abar- 
banel (4) presents approximate solutions for the 
m f a c e  temperature of slabs, spheres, cylinders, 
and semi-infinite solids,, for  very small and 
large values of time. Richardson (5) ut i l izes  
the Biot variational method and a polynomial ap- 
proximation t o  obtain an approximate solullion for 
a narrow range of exponents i n  the nonlinear 
boundary condition. Fairall,  e t  al, (6) present 
sane computer results  for surface temperatures. 
A great quantity of data for t h i s  problem has 
been obtained by ZerMe and Sunderland (7) who 
have obtained the numerical resul t s  by the use 
Of an analog computer and have plotted graphs 

.for a wide range of parameters. 

De i t e  the extensive amount of vork pre- 
viowly%ne on th is  problem there is yet no 
general analytical solution available. In the 

. .  - present an asymptotic solution is obtained, 
by means of a perturbation procedure, which ap- 
pears to  be satisfac tory for most engineering 
purposes. The large number of graphs provided 
by Zerkle and Sunderland provide a comenient 
atandard for demonstrating the relat ive accuracy 
of the present solution. Because the l a t t e r  is 
analytical, inportant function8 of the tempera- 

I ture distribution such as flux a t  any point and 
total heat are readily obtained. 

T I 

Sktemen%*of the Problem A slab i n i t i a l l y  a t  a 
uniform t e r m p e r a t u r ~ u d d e r i l y  exposed to radi- 

x ant heat transfer on one or both faces. It i s  

assumed, following ref. (1) that  the boundary con- 
dit ions are uniform over aach boundary surface 
( t h i s  b p l i e s  tha t  the hqat flow is one-dimen- 
sional); the environment~temperature (Te) is  con- \ 

stant; the alab is  a homogeneous, isotropic, and 
opaque, and the physical properties are indepen- 
dent of temperature; the radiation interchange 
factor ( F ~ ~ )  is independent of slab surface tern- 
perature; the slab is exposed to continual heat-, 
ing. From the f i r s t  assumption, the general. heat . 
conduction equation reduces to  I 

A solution to equation (1) mbjeot to  the 
foUciuing i n i t i a l  and boundary a o n l i t i o ~  is 
sought- 

Outlina of Perturbation Techni ue It is easi ly 
shamm there exists &state solution, 

, 
i 

corresponding t o  q = m, for the above problem, as 
f ollowa , 

Aa aT,b~ = 0, equation (1) becanes I 

Since T must satisf'y the boundary conditihns, 1 1 

substituting ( 5 )  in (3) and ( ) gives , 
i 11 g ( 0 , ~ )  A - e [B4 - %4] (6) 

The constants A and B are obtained by aolvFng 
the algebraic equations (6) and (7) s p  that [I) is 

This solution will be designated by ! 
! 

The zeroth apprmdmation in  the per tw ation 
technique is taken t o  be l a t t e r  eolution, T?O). 
Further, l e t  the f i r s t  approximation be mitt@ 

where it is aamned that* I /  I _  

Substituting (8) in to  (I)., (21, (3) and (&I, 
yielde a boundary-value probleh on R .  After 
solring for  cpl the second apprcaimat o may be 
found, in principle, by perturbing T f l f  

! b 

T(p) 9 T ( ~  9 (pp (101 (i 
I 



ln general, however, the solution for cpl. will be 
an infini te series,  where the second and subse- 

terms decay a t  a fas ter  r a t e  than the 
first. e perturbation, therefore, is taken 
.bout T(3 + which rF3d.t~ in a second ap- 

, proximation ' 

where (h' is the f i r s t  term of .' 
Assuming fur?= t h a t  1% 1 < and 1% 1 < 

Te as  previously, one obtains a boundary-value 
. pro lem on e. Proceeding to nth  apprmimation, 
a n d i n  a l i k e  manner retaining the  f i r s t  tern of 
each of the (n-1) solutions which is assumed t o  

form for each apprcgcinafion provided the func- 
tions rh: are ham, i.e., i f  one wanted the third 
approximation, it would be necessary to have 
first s o l e d  for the second and f i r s t  approxima- 
tion. The solutions for the varioua appraxima- 
tiona w i l l  now be developed. Inasmuch aa the 
specific example t o  be eoaluated in  the following 
section w i l l  be for the problem solved numeric- 
a l l y  by Zerkla and Sunderland (71, the develop 
ment w i l l  be for the boundary wlue problem con- 
sidered by them, namely: (I) ,  (2), (&), and 
a t  x = 0, 

, ' 
satisfp --- SOLUTION FOR VARIOUS APPR-EONS 1 c 

1 

la l  . ICP;-~/ < * * * * a *  < Id1 < (12) Zeroth Approximation It ii easily verified that 
m Te. 

I : 
(m) I 

yields Clearly, this Is the exact s o l u t i ~ n . ~  It is this I c 

solution which will be perturbed to obtain the 
T ( " ) " T e + d + d *  . . . . . . + ( p I : - l + ~  (13) variousapprcorimations. ( 

I 1 
to obtain cpn once d, Q' ..... d-l are known, one 
proceeds a s  follows. Let 

.Substituting the derivatives of i n  (1) 
and (2) ,  a d  realizing that each cq$ 3 Ye aatis- 
f i e s  the heat equation, the equation on q$, is 

w i t h  the initial oondition 

Flrst Apprmcimation Write - 4 ,  . , 

where it is assumed that IW(x,r)l < Tee Substi- 
tuting for Ty and i t s  derivatives from (21) in the 1 
original equation (I) and boundary conditions (2), 4 
( 3 )  and (&I gives . r I i 

= a x 0 s x 5 , T 0 , (22) 
I I 

? I 
(23) 

I 
%(x,O) s (Ti - Te) I 8 .  

3% apse (b~) = 7 [Te4 TTe + % (L,T)~I' 
I 

Subytituting the  derivatives of rp, inta (3) and 
(&) and expanding the r i g h t  hand $by means of the i 
binpmial expansion, taking (12) in to  account and 
retaining only those terms of order cp, yields, 

9 [*$ - ( T ~ ~  + &T~'R t 1 ' 

\ 
The equations (15), (161, (171, and (18) re- ,-,' Under the a priori assumption 1% 1 < T,, the fol- 

1 
Wesent a l inear  boundary-value problem on cp, lowing is valid: 

1 
with the & (k < n) appearing a s  nonhomogeneous 

r : 
i ' 

terms* This problem is readi ly  solved in closed (a)" < (%)" (a) < 1 . I  - -. Te Te Te I .  

1 
The remainder of the ser ies  reappear8 in the Hence it i s  clear that  if )%I e 5 that the *st 

--tion of %. For the numerical example con- 
sider d l a t e r  on, the terms of the series are pro- 

I 

i E  Port nal to NFO, e-ba Npo, etc., where 
I : 

fhare are act- f a  possible 80lut 0 for t Y 4  41 < 4 < ..... . ~ ( 0  since the l a t t e r  is obtained from IT O 1 , i ' 
T:. The other three roots, however, are not 1 ! a 

Thd assumptions regarding the relat i-  @- 
tudea are verffied a pdsteriori. 

phya$cally medngfld* 3 



t 
term on the r i g h t  hand s ide  of (25) will be the 
dc-&t one, and for small values of I%/T 1 a l l  
but the f q s t  term may be neglected. Thus T25) 
b c a m e s  

= - k, cpl where' kg a 4 LNrh 
problem, as it stands, is equivalent to 

the case of a heated s l a b  of thickness L which i a  
- t ial ly a t  temperature T i  and which has one 
f a c e  (x = 0)  insulated, while the surface a t  
x - L of the s lab is heated according to Newton's 
Law of heating ( l inear  radiation). The general 
solution of equation (22) is e a s i l y  obtained, 
Chapman (8)1, and i a  

I where (BL) b n  (EL) = L defines t h e  value of 
Nrh 

I 
using($p (231, (24), (261, (27), the  solu- 

tion f o r  T is1, 

. where 8, is the nth r o o t  of the equation (28), 
values of which have been evaluated and a r e  tabu- 
lated in Cabslaw and Jaeger (9). 

t Second A rox~mation Since (29) Fnvolved an ap- 
-+cPI/Tel < < 1 )  it does not r e  
p r e s e n t ,  of course a general solut ion f o r  the ' 
t r a n s i e n t  problem.' To obtain a closer  approxi- 

!J ma*ion, for  larger  values of I (PI /T, 1 , (29) is per- 
kurbed, i.e., T = Te + % + %. (30) 

A s  noted earl ier ,  because of the decay factor, 
all terms but the f i r s t  a r e  negl igible  fo r  large 
times. Moreover, since one is qu i te  f r e e  t o  

\ choose t h e  value about which t o  perturb, rather 
than include aU of cp, i n  the second approxima- 
t i o n  only its first term is retai:ed. Denoting 
t h e  first term of q+ sei'ies by , (30) becomes 

T = T , * % ' + W  (31) 

*ere it is  assumed t h a t  IR/Te < I TI ' / ~ e  1 and 
I where 

and tts derivatives in& 
yields, a f te r  s y ~ ~ ~ l i ~ g ,  

I a'Pn p aa9?a a7 ( O J X S L , T > O )  (33) ' 

Ila with t h e  first apprcaimation only the te rn  of 
order ( ~ d  a r e  retained, which reduces (36) t o  the 
l i n e a r  equation i 

where 

( 1  Sin26, )a(Ti-TeIa , 2bla@ 
6, + ~ i n b ,  Cos 6, TeLNrh zJ 

While the restr ic t ions on ,n are similar to that  
f o r m e r t  m o s e d  on % (in the discussion of the 
f i r s t  approximation), a t  th i s  point it is no 
longer required tha t  I%/Tel (orlqk ' /~e1) be van- 
ishingly small? 

Solution f o r  Second A aimation What a ears -=--T XGX@IZX ef fec t  a so  ution of E31, (3L), 
(35), and (37) is to l e t  

% *= 2 e - 8 1 a ~ ~ / ~ a  Sin 6, ~ o s ( 6 , ~ )  (Ti - 02) #(X,T) = 6 k 9 r )  ' f1 ( x ) ~ I ( T )  (38) 

I1 
61 + Sin  6, Cosdl 

a i c h  after Bubstitution gives , ' I 

-\ 
, . 

'1 I T(I) Ti w g ,  - 6 T ( ~ , ~ )  - {Olfing~ - f i i i j  
The ,miable - has been selected %o ion- 

(39)  

Te - Ti  
f o r m  (7). ~ ~ ( O J T )  + fi '(o)g1(7) rn 0 

, (lo) " 



Since f1 (x) and g1 (7) are arbitrary f ~ ~ t i o n s  
they are chosen such tha t  

gl(')Cfl '(L) + hf, (~11 * e-b  7. (lt2) 

from yhich it f o l l h  from (41) thaf 

&(L, lr) ' -h b (L9 a) 

w t$e r ,  it is convenient to let 

f lZQ) + hf l (L)  " 1 (h3) 

SO that g1(r) = - k(')e-bs (tlr) 

Furthermore choose f '(0) * 0 (IrS) 

then (40) becomea &(O, I) " 0 (h6) 

Fim&ly l e t  ufl"gl - flil = 0 (47) 

eo tha t  (39) becomes @CXX " 67 (48) 

From ehe boundary conditions on fl,  (43), 9 

and (!if), the solution for f1 becomes 

f1 (3  - .&+ where q * 02 (50) 
Cosq -qSinq (a 

Substituting (38) for  cp;, 5x1 the 
tia (3L) gives for  the ini t ial .  

initial condi- 
condition on 6 

~entke lihe completion of the solution for cpd re- 
quires the solution of 

a69c(x,~3 = GT(x37) 
I 

(52) 

c(x,o) - (Ti-Te) - k c o a ( 6 t ~ )  

+%~- (53) 
I 

CX(0$7) " 0 1 ( 54) 

c~(L,T)  = -kf (L,d  (55) 

(52)-(55) is  s i m ~ a r  to the bwndaw-due  pro- 
/ blem on % and may be solved in  an identical  

faehion, ref. (a), to yield 

where 

6 Sin 26% =-( (TI-T~)'/ 
T&Nrh 6,+8a b%(JOs dr 
(&COB ql-q Sin q3) 

%e solution for cpd is @wn by (56)) ( 5 0 ) )  (&)I 
and (38), the temperature by (311, and the nm- , 
clbansimal. temperature by 

+ , O, 6 , ' ~ ~  Sin 6 n ~ ~ ~ (  6nt) 
n=l ; bn+Sin 6nCos 6n 

I 
L 

m - 2z 6n i6$~ra s i n  &cos (M)  ! 
n=l (bl+Sin g Coe 61 1 

1 .  
6 (bn+Sin bnCos bn), 3 

m -ham cos(6 ) . , 
+ a  6 n e  t 

ra)l 

~i sin(J2 b +G - n c o s  q l l - a s b  q l l j  I- 
+ $%(? P~*]-~(%) Go" ' i4r 1 

"_r " CO; q, 1-ql s i n  q l l )  

/' (57) 

6 Sin 26 Ti -1) 
Di = I 4 +Sin 6; COB 6J (5 

(58) ' 

It was empir icaw determfned, bhed  upon 
numerical computation, that the deletion of the 
n > 1 ems  i n  the s e w r d  infinlts aeries of (58) 
caused no observable change in the temperature 
function.' Hence, an entirely sa t i s f  actor7 en- 

.' Thaf is, i p  the range where the second apprmd- 
mation may be considered inadequate, the inclusion 
of additionel t e r n  i n  each infinlta series does 
not  inq?rove the accuracy. Improvement in accur- 
acy can be obtained om ?q go- to 8 higher a p  I 1 
prazbuation of the perturbation solution. . 



6 .  
i I 

- , gineering solution ist provided when only the 
n = 1 tarma are retained, +.e. 

I This comp1Btes the eolution for  the second ap- 
prodmation. 

Proceeding as  i n  the second 

r 

lLfter Bubstitution and identifying fa and & wtth 
suitable nonhomogeneous t e h ,  it is found that  
fa id the solution of the same boundary value ' 
problem governing-fl but ?ere the coefficient 

. I(, is replaced by- 3/2 ka. The non-dimensional 

i 8 0 l ~ t i o n  ns out t o  be 9 :  

. * 

I 
+ Sin J 3  S -6 

1 

{e-3 'la N ~ " ~ ~ ~  (0 61 5 )f&)] '/, (61) 

where 

1 ' (WNrhC~dP61J2 4 W 2 ' 4 ~  , 

Sin 26 
C4 = Ibl+Sin 6,koq 6 

1 ' = W N ~ ~ C O S  ,f361-,f3 %gin J 3  el p 1 . I  

C& " I8/XrhCaCo~(/2 616) - 1 

Truncating each aeries after n = 1, givea I '* 

the engineering formula 

T(3 )-'f - - I. 1 2  %Sin h ~ o a ( q 5 )  e-'laNF0 
\ 

Te-Ti 

- G(D~)COS(J~  b5) eS6lamo , 

+ q c&c, Cos 45 B-haN~o 
I 

I 
12 

+ - C&a%,C&aG4(~i)~oa 61@~a(615) 
Nrh I 

. e-61aN~o- 2 3 %GCIC~(DI) COS(~~!) i 

1 

12 - - q%C,c,(Di) COS 6lCos(J2 615) 
Nrh 
-261aN~o 2 - e + 5 C ~ ~ C ~ ( D ~ I ~ O S ( ~  45\ 

. e - 3 ~ a ~ ~ o ]  J I (621 

_ - -  This completes the solution for the third apprd-  
mation. 

w 
1 e-6na"06n+Srj66ng) 

+ 21 '4%%c4&18n nth A r-tion  he nth approxha‘tim is ob- 
I nCos n ~ * o ~ o a  manner writing 

w - E ~ T )  + fl. + rap. + - r r - +  f631 , !  

-6naN~o 
which r e s a l t s  fn a 80% of ecpationa for  the "fi 

+ '-)}-$ , b ~ ~ g = ~ 6 n  f u n c t i ~ ~  at3 f o l l ~ ~ ~ :  I L  e i  

I 
8 

, . 
I 

I 169 i 
I 

I - 



f i ( 0 )  = 0 

f : ( ~ )  + +fl . (~)  1, where g1(r) -k(l)e-&' 
(61r) 

f i ( 0 )  = 0 4 

f i ( ~ )  +  fa(^) a 1, where &(T) a -k(a)e'3/2ka~ 
.....a..........b(65) ............................ 

fA-l!~) + % f*l(L) a 1, where 

~..~(7) = ( n - 1 ) e - ( d 2 ) b ~  (66) 

These a re  e a s i l y  solved t o  y i e l d  

cos( x f l ( x )  -(%cos r ~ d s i i  q l l l  where ql= k 
( u) (67) 

Cos fx)  
fa (x) = i&,cos Bf+h Wb2l-e %a- J& 

(2w 1 

Hence r+-i,.,(62) is  given by 

and the corresponding Mtid condition is 

The function ~ ( x , T )  is obtained in the usual 
wa3r for this new i n i t i a l  condition, thus cow 
plet ing the nth approximation. 

ref-  (7) (wfiich are quite nmerod)  most of the 
numerical calculations were performed on an DM 
7040 and the resul ts  plotted Kith the help of 
Cdcomp. 545. There are several key parameters 
and various arrangements are possible for plot- 

Purposes. The scheme chosen f o l l k  ref. (7). 
The basic parameter is Ti/Tej values are plotted 
for 0.75, 0.5, 0.25. For each Ti/Te, three sta- 
tions were chosen, x h  = 0, 0.5, 1.0. Finally fo r  a given value of Tj/Te and xh, curves of non- 
dimensional temperature (T-T~)/(T,-T~) versus now 
dimensional time a, T / L ~  are plotted for three 
values of the parameter Nrh. These are plotted 
i n  F'igures (I), ( 2), (3) . It is found that  for  
TiTe = 0.75 the f i r s t  approximation i s  quite 
accurate and the second approximation gives the 
values very close to that obtained by ref. (7) 80 
tha t  th i s  approximation may be satisfactory for 
engineering applications. As the ratio Ti/T, 
is reduced t o  0.5, it is seen that  third approxi- 
mation is quite close to the analog computer re- 
sul ts .  As expected the results for  Ti/Te * 0.25 
do not compare quite as favorably t o  ref. (7) a s  
do the higher rat ios  but, neverthelea , should be 
of sufficient accuracr for Host applJatiom. 

Conclusion It has been demonstrated foregoing 
tha t  a.perturbation technique yields a satis- 
factor? approximation t o  the nonlinear radiation 
heating problem. Numerical results computed by 
the formulas developed conpare quite favorably to 
previously obtained analog results for a Tj/Te 
a s  small as 0.25. 

One major advantage of an analytical solution 
over au andog (or digi ta l)  computer solution is 
t h a t  values of interest  may be obtained without 
the need for  interpolating between plotted values 
or chart d u e s .  To obtain the flux, for  example, 
by means of the analog computer solution i n  gen- 
eral ,  requir s oBtaining differences between two 
curves whicb$are a small distance apart. With the 
data given in  ref.  (7) however, one would have to 
interpolate between values given d t  xh 1, 

= 0.5, and = 0. On the other hahd to ob- 
tain the flux by man8 of the solution develaped 
herein requires only the differentiation of (61) 
The third apprdmation for the flux is indicated 

pelow. 

I 
' 

c ~ a r i s o n  with Analog Co u t e r  Results: By m e  
Of the for= developed?t is possible to corn- 

&(~2 6% )coS(& ){- 
Pub numerical values simply by s l i d e  rule ,  and, 
i n  fact, data f o r  several  curves were computed 
in this mmner. H&ver, became it was f e l t  
desirable t o  campare the perturbat ion solutions . 
with the .ems obtained by analog computer 



I where c6' = {18/Nrh CaCos(J3 q )-1) (72) 
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Nomenclature 

c specific heat, B t a b  deg R 
Fee ' radiation interchange factor between s lab  

and environment 
L alab width, I%. 
NFO ' Fourier npmber, crrGa, dimensionless 
N r h  ' radiation nmnber fgr  heating, k/a LY 

dimenaioriless , 
T absolute temperature; deg R 
Te ' environment temperature, deg R 
Ti ' initial slab temperature, deg R 
X " Bpdce coordsnate n o d  to s lab  faces, ft. 
Q t h e m  d i fps iv i ty ,  k/pc, ft. 
AT temperature d i f f e r h e ,  deg R 

I 

Ax distance increment i n  x-dhection, f t .  
AT - increment in time. hr. - - - -  . 
p - denaity, lb/ft3 
u Stefan-Boltpnaa conatant, Btu/hr. f ta  deg @ 
fmbacripts: 

e = refera t o  envlromnent 
.I = refers to i n i t i a l  conditions 
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