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GENERAL THEORY OF OPTIMAL PROCESSES*
SHELDON S. L. CHANGt

In the present paper a general version of the maximum principle is fo rmu-
lated and proved. Pontryagin’s maximum principle [1] and various exten-
sions [2]-[9] thereof become special cases which can be readily derived
from the general version. Of special interest are the following generaliza-
tions: (1) discrete systems, (2) systems with multiple merit criterian, (3)
restriction of the control function u to a special class of functions, and (4)
systems with bounded state variables,

Operative addition and convexity. Let ¢ denote an infinitesimal quantity
and 4(t) a given function defined on 7" = {t: 4 £ t £ t}. A functioxr 2 (¢)
is said to vary infinitesimally from «@(t) if

tg
m [t —aw) @ < ea,

where 4 is a positive constant. Obviously if u(t) is different from ¢ ( £) for
a finite amount, it can be only for an infinitesimal interval of tixme. In

the present paper, one needs only to consider infinitesimal variations of the
following form:

du(t) = u(t) — At) = ason T = {t:t] <t <t/ + erd},
u(t) = et()on T — T, 7" =UT/,

where ¢ may range from 1 to any finite number, ¢/ € T, and a; , A« and
£(¢) are finite numbers and function, respectively.

Operative addition is denoted by @ and is defined as follows: let &ue (2)
and Sus(t) denote two infinitesimal variations from 4(f). If the two sets

? . e s - -
of ¢, have no element in common, the two sets T” are disjoint for suffi ciently
small e. Then

(3) Sur(t) ® Buxlt) = swy(t) -+ dus(t).

If finite variations occur at the same instant, the variations are rearranged
in sequence in du;(t) @ duy(t). For instance, given

sw(t) = a, & St <t + e,
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dus(t) = ', S < b+ ey,
then

u(t) @ dua(t) = @, & St <b+ ety
() ® dw(t) = @’y W+ e S <t +ea + a0,
A ~ariation from a to b can be considered as a variation from b to a for a
negative interval. N ‘
A set of functions C is operatively convex if it has the following property:
given any % and infinitesimal variations du: and dus such that all three
functions u, & + ou, and u + dug belong to C, then

w + [houy ® (1 — h)dug
belongs to C for all values of h in the interval 0 < h < L.

The control problem. The controlled system is described by the following
set of differential equations:
(4:) %Eo&i:ﬁ(m,u,t), i=1,2,---,n,
where z and u are the state vector and the control vector, respec’.oivel.y, ar}d
f is a vector function having continuous and bounded first derlyatlves in
2 and being continuous in . From known existence theqrems, given z(t)
andu()onT = {t:tt £t = B}, z(¢) is completely determme('i._
The control function u(t) is required to satisfy three jsondltlons ’
(a) u(t) belongs to an operatively convex set of functlonst on T, .
(b) the z(t) resulting from u(t) stays within an allowed region X, z(¢) €
forallt € T, _—
(¢) the path terminates at a point z(s), where & may be fixed or arbi
trary, o = T. . o
Ay;e‘i u(t) satisfying (a) and (b) is called an admissible control. W l}utu
all three conditions are satisfied, u(t) is called. an allowed }iorft'rol. The merit
of an allowed control is judged by a set of variables y: , where
=12, .., N.

) uilt) = f gi(z, , ) i

An allowed control A is said to be inferior to B if

(6) yilt)]a Z vil®l
least one value of 7. An allowed control

and the inequality sign. holds for att inferior to any other allowed control

is said to be noninferior if it is no
in the sense defined above. o

The noninferior controls are generalizations
system with multivalued criteria.

optimal controls for &



48 SHELDON §. L. CHANG
First variations of state and merit variables. Due to the infinit.esimal
variation in u(f) (see (2)), x(¢) and y(¢) are different from £(t) and 27 (8):
z2(t) — &(t) = eAx(t) + O(e),
y(t) — 9(1) = eAy(t) + O(e),

where Az(¢) and Ay(t) are finite and are called the first variations of z(2)
and y(t), respectively.
Let z denote the (n + N)-dimensional vector

()

and h(z, u, t) denote the (n + N)-dimensional vector function

)

Equations (4) and (5) can be combined as

)

(8) 2= hix, u,t).
The first variation in z for ¢ ¢ 7" is readily shown to be
Ax ] 4 i/ ’
Az = = A GO w, ) — h(d 4, 87 TAL
(Ay> h““_%lk,{‘ (e Y — k(4,67 1A

W ‘ Oh(#, 1, 1)
+ f Al ) T2 B () a
ty ou

/ . . . - . .
where A(¢, ¢') is an (n + N)-dimensional square matrix satisfying

dA(L, £') k(2 4, 1) /
1 —d e T T
(10) T P 14, 1),
QAL ) s OR(E 0, L)
(11) - Ao K E
Al =1,

and 8h/dz isan (n + N)-dimensional square matrix with

oh B f’,’!
0z 1) ('):)' ’

Since the vector funetion & is independent of y, the last N columns of the
matrix dh/dz are identically zero.

The following theorem is obvious from (9).

TaEOREM 1. Let (du)1, (8u)e and (8u); represent infinitesimal va-igtzons
about 4(t) related by
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(6’111)1 @ (5%)2 = (5’211)3

Let (Az):, (A2)y and (Az)s denote the first variations in z resulting from
(8w),, (bu)sand (8u)s, respectively. Then

(A2)1(t) + (A2)2(t) = (Az)s(t).

Corornary. The set of admissible first variations aboul any terminal

Point z(ty) is convec.

General theorems on optimal control. .

TaeoreM 2. Given fized points x(t) and x(ty), and letting X b; t}:,e x-space
(wnbounded), a mecessary condition for a control and path pair u.(t), og(t)
to be a nominferior control is that there exists a set of vector functions $(t)

and H(Y, £, 4, t) satisfying

N
(12) H({, %, 9,1) = @(t)fi(ﬁ,a,t)—,;ckgm,a,t),

)
M
i

t

2

(13) 0. | H,%,0,t) dt £0,

t1
and

di(t oH .

(14:) '-lp_d’%_)=—'é?%:: 7”‘1727 y Ty
where
(15) Cr 20,

ot hold for all values of k; du is the first

ity sign i (15) cann Gu
and the equalily sin b ¢ ) due to an infinitesimal variation of u(t),

variation of the subsequent integral

awith §, £ and t considered as fized. o o .
N(fc’e that there is no restriction on the infinitesimal variation Su except

that 4 -+ su belongs to C. In this and later theorems du is interpreted in the
same way. From the definition of du, (9) can be written as

i
pz(t) = auf Aty )b, 4, 1) &'
" . N s will be
established. A point p in z-space is called accessible 1 ; f;e ‘;ime t, . The
missible (1) which brings the systern from s(x) 0 Pt SS8E F AR o )
set of all accessible points at fixed 2 and at &, = 1 are

and Q, respectively. . o
The set of allowed terminal pc_nnts is an
z = z(t,). The intersection of & with P is deno

N-dimensional plane, P, at
ted by 1.
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LemMA 1. The terminal point (&) of a noninferior control is ¢ boundary
point of I and Q.

Lemma 2. Let Q. denote the set 2(t:) + €Az for all admissible first variations
Az. Then 2(t:) 2s a boundary point of Q. .

Lemma 2 follows intuitively from Lemma 1. It has also been proven
rigorously by previous authors (1, pp. 86-106].

Lemma 3. There exists a vector 1 such that

n+N

(16) 2 1(A2); £0

=1
for all allowed first variations Az,
(17) I;£0, i=n+1Ln+2 --,n4+N,

and the equality sign in (17) cannot hold for all values of i.
Proof. Let P, denote a section in P which satisfies

zi—2(t) S0, i=a+1L,n+2 --,n+N.

Since 2(t) is the terminal point of a noninferior control, Q. and P, do not
have interior points in common. Furthermore Q. is convex because of the
Corollary of Theorem 1. There exists a support plane S which separates
Q. and P, . Let [ be the normal to S. Points on the Q. side of S are repre-
sented by (16) and all the points on P, satisfy

n+N

(18) 2 Ul — )] 20
Jj=n+1
By choosing
Zj——?:’j <0 fOl‘j = ‘[,
z; — & =0 forallj 4,
(18) Iead_s to (17). Beeause S can coincide at most with one boundary
plane of S, the final assertion of the lemma is obtained.

o . ) !
Proof of Theorem 2. Let I represent the row vector (In, b, -+, Luty)
Inequality (16) can be written as

(19) U'Az(ts) 0.
Si‘nce X is the entire z-space, the class of admissible controls is identical
with C. From (9),

t2

(20) Az(l) = 9, | Alt, )h(%,4,1) di.

ty
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Subst;tuting (20) into (19) gives
tg

(21) o, [ VAW, OR(8, 0,0 @ S0
13

1
Let ¢/ (¢) denote the row vector IA(ty,t), and let H(Y, x, u, t) be de-

fined as

(22) H(Y, z, u, 1) = ¥ (1) bz, w, ).

Inequality (21) is identical with (13). Multiplying (11) on the left by 4

gives

d\i/,<t) _ ~r Oh
(23) - Y

The first n components of (23) give (14). The last N components of (23)

give

¥i(t) = const. = li, i=n+1 --,n+N.

Let Oz = — s - Equation (22) is then identical with (12). )

TaEoRrEM 3. Given fixed points z(t) and z(t), and letting X be an n-
dimensional smooth region in z-space, & necessary condition fqr aﬁconirol fznd
path pair 4(t), £(t) to be @ noninferior control is that there ?xzst P(t), ¢ (& t)
and H({, £, 1, ) satisfying (12), (13), (15), and the following:

L IR
(24:) —(ElT = % g'( ) )ﬂz( )y
where
s L . X
25 A = 0 f £ 4s an wntertor point of X,
=) £ 0 {Z__ 0 if £ s on the boundary of X,

. . . X
and n s the normal to X at & pointing away from X. )
Proof. The proof of Theorem 3 is identical with that qf "I‘heorq? .2 u;{
to (19). Inequality (19) holds only for infinitesimal admissible variations

of . Condition (2) defining admissible variations can be written as

< !
(26) 3 (@) hzi(t) <0 on T
=1
¢) lying on the boundary of‘ X. lhus"
with the side condition \'20‘). If*t n
w vector with the n; as its thr n
N components. Inequality (26) 1%

where T" is the part of the path £(
(19) is replaced by itself together
represent the (n + N )-component ro
components and 0 for the remaining
identical with

(27) ' (£)0e(t) £0 on r.
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From a well-known result in variation calculus, (19) together with the
side condition (27) is equivalent to the existence of a {(¢) such that

(28) UAz(t) — fr c(t)n' (£)Az(t) dt < 0.

The integral is taken over periods of time in which z lies on the boundary
of X.

Lemma 4. A necessary condition for 4(t) and £(t) to be a moninferior
control and path pair is that there exists a {(t) such that (28) is satisfied by
all first variations A(z) resulting from du(t) with 4 + du belonging to C.

Let ¢(£, t) = {(¢) when £(¢) is a boundary point, and equal zero when
£(t) is an interior point. From (9),

[ con@axo @ = [ e 00 @0, [ At O, 0,000
r’ t &

ty pt
= o [ [ et 00 @A Rz, 0,8) at de
ity Yiy

Changing the order of integration but integrating over the same area gives

to pt ty ot
ff ---dt’dt=f f - dt dt
t; vty t; Ji

Interchanging the notations t and t’, one finally obtains

o) fr e (O’ (£)82(t) di
29

ty pta
- a, f ft c(8, )7 (4(E))ACE, RS, 4, 1) d db.

Substituting (20) and (29) into (28) gives

(30) 0. f, N [l'A(tz,t) - f e O (DA 0 dt'] Wt 4, 8) dt < 0.

1

Let ¢ (t) be defined as

(B) V@ =TAG) — [ 16O @AC 0 &,

and let H(y, z, u, t) be defined the same way as in (22); then (30) is
identical with (13). From (31),

Y’ (t) 1 9A(t, t) , 2 oo QA E)
0 _p 2D 400 - [ ota On'te) 200 4
(32) e
=y DD (s 0y'(2),

dz
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The first n components of (32) give (24). The last N components give
(33) \l/n+k(t) = —Cy, k=12 "> N,

and (12). . _
Tl&e c?mdition (25) is proved In a previous paper for a less generreltl 5;012-
lem (10). It also follows from the intuitive notlondtl;?t ys(te) ca
if ¢ i jon beyond X.
duced if the path z(t) is allowed an excursion ' N
The follovslr)ing theorem is the well-known transversality condition, and
i tated without a proof. o _
Wl}f{‘llijzosﬁia«;wre 4. Let u(t),lt)l <t =< ty,bean admassible contr.o.l which ;mgs{sers
the phase point from some position () € Sl. to .the posztlzlon :'l:(t2e uau'o; ;
where S; and Ss are smooth regions of points satisfying the following eq
and tnequalities:

S, : Fiz) =0, i=12 -,k=mn
Gi(z) £0, i=1,2, -, M,
S, : F/(z) =0, i=1,2 -,k =mn
G/ (z) £0, i=1,2 -, m.

In order that u(t) and z(t) yeld the solution of ‘the nonm);jzwcf; nﬁ;ﬁZZZZ
with variable endpoints, it 1s necessary that .t}jbere emst.; a non; O .
vector fumction (%) which satisfies the condztu?ns of Cl;z ezre@ctwy z(,t)
tion, the transversality condition at both endpoints of the traj ,

Loy, 3,90

(34) Yi(t) =jz=;aj—é)x’:+j§=:1b]axi’
b, oF) _ § 907
(35) wil) = 207 5o~ 2

/ ¥ -
i ) nnegative Con
where a; and aj are arbitrary constants, and bj and b are nonneg

stants such that | |
b, =0 4 Gi(x) <0or if z(t) is an tntertor point of S1,
J . -
(36) p, =0 if Gi(z) =0 and the equation actually defines the boun
T dary of Sy at z(t),

! lues of
and similar conditions hold for bi- In (34), (35) agbd c(fri)as ;IZ; ,;;L 1; s o
the functions and partial derivatives are evaluated at the

po’fgltiZOREM 5. Consider a control problem satisfying the following conditions:
(37) $(, u, 1) = Az + BOu + 1),

(38) o(z, u, 1) = plz, t) + 2( t),
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where A (t) and B(t) are matrices, f(t), p(x, t), and g(u, t) are vector func-
tions, p(x, t) 1s convex in x, and q(u, t) s convex in u,
X, 81, Ss, and the class C are convex.

If for an allowed control and path pair, 4.(t) and £(t), a set of functions,
H(, &, 1, t), §), ¢4, t), and C; > 0,7 = 1,2, ---, N, can be found
such that (12), (18), (24), (25), and the transversality condition are satisfied,
then 4(t) ©s a noninferior conirol among all admissible conirols which transfer
the phase point from a point on Sy at &y to a point on Se ot ts .

Proof. Let ¢ denote the row vector (Cy, Ca, -+ -, Cx). From (12), (37),
and (38),

(39) H(Y, =, u,t)
From (24),

VAW + ¢'B(u + ¥F(t) — C'ple, 1) — C'q(u, 1)

w) = gaw +22ED 4 0.
Zz

Consider any other allowed control and path pair w(¢), z(¢) which satisfy

the same terminal conditions. Evaluate the following total derivative:

d ;4 > N

SW@ =) =VBO@ - u)

CpE, 1) .
T

Subtracting C'p(4, t) + C'q(1, t) — C'p(z, t) — C'q(u, t) from both sides
of (41) and integrating from # to ¢, give

P& — o) — Clolk) — y(ts))
R 2O A CLTE
31 U

(41)

+ z) + (&, t)n' (£) (& — =).

(42) + [ [GC—QM (@ —u) = C'q(8,8) + C'qly, t)] dt

ty fii12

L[ [E’QM @ —2) — C'p&, ) + C'pla, t)] dt

ty [
12}
+[Te 0@ @ - e

On the right-hand side of (42), the first integral is nonnegative because
of (13) and the convexity of the class C. The second and third integrals
are nonnegative because of the convexity of the functions p(z, ¢) and
q(u, t),and C; > 0,7 = 1,2, - -+, N. The last integral is nonnegative be-
cause of (25) and the convexity of X. On the left-hand side of (42),

OPTIMAL PROCESSES 55

¥ — o) |4
is nonpositive because of the transversality condition and convexity of
Syand S, . Therefore

C'lgt) — y(8)] £ 0.

Examples of application of the theorems to discrete systems and other
special cases are given in a companion paper.
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