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GENERAL THEORY OF OPTIMAL PROCESSES* 

SHELDON 8. L. CHANGT 

In the presait paper a general version of the maximum principle is  formu.. 
lated and proved. Pontryagin's maximum principle [l] and various exten- 
sions 121-[9] thereof become special cases which can be readily derived 
from the general version. Of special interest are the following g e n e r a l i z a -  
tions: (1) discrete systems, (2) systems with multiple merit criteria, (3) 
restriction of the control function u to a special class of functions, and (4) 
systems with bounded state variables. 

Operative addition and convexity. Let c denote an infinitesimal qunntity 
and G ( t )  a give11 fu~~ctiori d ~ f i ~ ~ d  011 2' = { t:  tl t t,J. A functiorr u ( t )  
is said to vary infiriitesimnlly from 4 ( t )  if 

where A is a positive canstt~ut. Obviously if u(t) is different from Q( t) for 
a finite amourit, it can be only for a11 irifiriitesililal interval of t ixxre,  In 
the present paper, one 11eeds otily to eonsider illfiriitesirnal variations o f  the 
following form: 

where i may range from I to any finite number, t l  E T, and ai , Ai and 
t(t) are finite nun~bers arid function, respectively. 

Operative udditim is denoted by O and is defined as follows: let 6zcl(t) 
and 6~2(t) denote two infinitesimal v:triations from zi(t). If the t x s - o  sets 
of ti' have no element in romnlon, the two sets T' are disjoint for su f f i c i en t ly  
smdI e. Then 

If finite vnrintions occur tit tlic s:tnlci iristililt, the vslriutions are rearrttrlged 
in sequence in 6ul(t) O liuq(t).  I:ur instatlcc*, giver1 
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then 
aul(t) au2(t) = akl, tkl I t < t i  + 

A variation from a to b can be considered as a variation from b to a for a 
negative interval. 

A set of functions C is operatwely mvex if it has the following property: 4 
' given any u and idnitesimal variations 6u1 and 6th such that all three 

functions u, u + 6 ~ 1 ,  and u + 6th belong to C, then 

belongs to C for all values of h in the interval 0 < h < 1. 
The control problem. The controlled system is described by the following 

set of differential equations : 

where x and u are the state vector and the control vector, respectively, and 
f is a vector function having continuous and bounded first derivatives in 
x and being continuous in u. From known existence theorems, given x(t1) 
a n d  u(t) on T = { t: tl I t I tz) , x(t) is completely determined. 

The control function u(t) is required to satisfy three conditions: 
(a) u(t) belongs to an operatively convex set of functions C 011 T, 
(b)  the x(t) resulting from u(t) stays within an allowed region X, x ( t )  t X 
for all t E T, 
(c) the path terminates a t  a point x(b), where t2 may be fixed or urbi- 
trary, t2 5 T. 

A set u(t) satisfying (a) and (b) is called an adnira%le control. When 
all three conditions are satisfied, u(t) is called an allowed control. The nierit 
of an allowed control is judged by a set of variables yi , where 

r An allowed controI A is said to be inferior to B if i 

( 6 )  yj(t2) 1.4 2 yl(t2) I B  9 . . 

and the inequality sign holds for at  least one value of i. An allowed rontml 
is said to be noninferior if it is not inferior to any other dIo\~e.ed mrltrol 
in the sense defined above. 

The noninferior controls are generalizations of opti~ual m11tmIs for 
system with multivalued criteria. 
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First variations of state and merit variables. Due  to the inf i I l ike~i~l~al  

variation in u( t )  (see (a)) ,  x ( t )  :ind y(1) :ire different fro111 f ( t )  and ~ ( t )  : 

~ ( t )  - Z ( t )  = e A t ( t )  + O ( r ) ,  
(7) 

~ ( t )  - = eAv(t) + O ( E ) ,  

where &(t) and Ay(t )  are finite imd arc srlled the firvt variations 
r ( t )  and y (t ), respectively. 

Let z denote the (n + N)-di~mnsio~~sl  vector 

and h ( x ,  u, t )  denote thth (n + N)-di~l~t~twiotld vcctor furletiorl 

Equations (4) and ( 5 )  trlrl Ix* c*olnbincti :is 

The first variation in z for t if T' is nadily shown tcr IK: 

= C A ( t ,  h')[h(.t, l4, ik') - h(*,a, f kP") ]& .  

(9)  
(Z) at1 wi th  t k e < t  

where A ( t ,  t') is an (n + N)-dim~asio~lill squarci lluitrix satisfying 

aA( t ,  f') dhta', 6, f )  - = 
at1 82 A ( t ,  t ' ) ,  

an (t, f ) ---. = - <?/&t.f, li, i t )  
dl' 

i t(( ,frl  di -- 

A ( ! ,  t l  = I ,  
and ah/& is an ( n  + N)-tlitnc~~siolu~l sclti;rnb nult ris with 

Since the vector function k i8 i~idrpi~tld(lr~f o f  !I, t h ~  Itmb N colurnrls of the 
matrix ah/& are identically zc%ro. 

The following theorem is obvious fro111 (!I 1. 
THEOREM 1. Let ( 6 u ) l ,  ( 6 u ) ~  and (6% rfprc~c'ni injinitesimal vat- iaf  ions 

about d ( t )  related by 

Let , and (&)3 denote the $rst variations i n  z resulting from 
(&), , ( 6 ~ ) ~  and ( 8 ~ ) ~  , respectively. Then 

COROLLARY. The set of admissible first variations about any terminal 
Point  z(t2) is convex. 

General theorems on optimal coneol. 
BEOREM 2. Given $xed points x ( t l )  and x(tz) ,  and letting X be the x-space 

( ~ n b o u n d e d ) ,  a necessary condition for a control and path pair O(t) ,  3 ( t )  
to b e  a noninferior control i s  that there exists a set of vector functions $( t)  
and H($, 2, ti, t )  satisfying 

n N 

(12) H($,  5, fi, t )  a-1 $i(t) fi(% 6, t )  - k-1 C ckgk(3, f i r  t ) ,  

a n d  

where 

( 1 5 )  ck r o, 
a n d  the equality sign in (15)  cannot hold for all values of k ;  ar i s  thc $rat 
var ia t im  of the subsequent integral due to an in$nitesivtaZ variati(m of u ( t ) ,  
w i t h  $, 9 and t considered as jixed. 

Note that there is no restriction on the infinitesimal variation 6u except 
t h a t  O + 6u belongs to C. In this and later theorems a, is interpreted in the 
same way. From the definition of a,, (9) can be written as 

Before proving Theorem 2 some geometrical notions in z-space will 
established. A point p in 2-space is called accessible if there exists 

ad- 

missible u ( t )  which brings the system from z ( h )  to p at some time t2 . The 
set of all accessible points at fixed t2 and at t2 5 T are denoted by ~ ( b )  
and SZ,  respectively. 

The set of allowed t e k n a l  points is an N-diniensio.al plaW P, 
x = ~ ( t p ) .  The intersection of &th P is denoted by I. 
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LEMMA 1. The terminal point i ( t 2 )  of a noninferior contlal i s  a boundary 

point of I and Q. 
LEMMA 2. Let 0, denote the set i ( t2)  -k &for all adm.issz%le $rst veriatiom 

&. Then i (b )  i s  a boundary point of 9, . 
Lenlma 2 follows intuitively fmln Lci~l~lla 1. It hss ak0 been proven 

rigorously by previous authors [l,  pp. 86-1061. 
LEMMA 3. There exists a vector I sz~ch that 

for all allowed first variations hz, 

and the eqtcality sign i n  (17) can?tot koltl for all r~nlt~cs of i. 
Proof. Let l', denote :i section ie I' mliic.ll sntisfir.s 

z i -&i ( t r )  SO,  i = n + 1 , n + 2  , . . .  , n + ~ .  

Since l ( h )  is the terlllinal point of 2~ 1101lillf(~rior ( Q I ~ ~ M I ,  fie and Pa do not 
have itlterior poirlts in c.on11uo11. Purthcrnionh Q, is corlvcx because o f  the 
Corollary of Theores1 1. Ttiere rrists it sul~port ple~ie S which sepnrtites 
4 and Pa . Let 1 be the rlorriial to 8. Poirlts 011 tlic 4 side of S are repre- 
sented by ( 1 6 )  and all the points or1 P, satisfy 

By choosing 

zj - ii < 0 for j = i, 

( 1 8 )  Icads to ( 1 7 ) .  Bec.~usc S (*:LII (+oiia*idc nt t~most with one bourldnry 
pknc of 8, tho fi11:~I assrrt ion of t ilc I~bt~lnlit is oI)t,:linrtI. 

Proof nj Tfimrenl 2. Let /' rrpna(*ut i he ruw vcrt or ( h  , Zz , . - . , i,,+,,,). 
Ineyu:~lit~y ( 1 6 )  car1 hc writf r r ~  w 

Since ,Y is the critirr x - S ~ : I C C ,  thc (.I:Lss of :Idt~lissiblc (.ontroIs is iderltica1 
with C. Froln (9), 

12 

Az(t2) = a. J 21 ( t ? ,  t )h(9,  fi, l )  dt. 
! I  

I&, $( t )  denote the row vector l lA ( t e ,  t ) ,  and let H($, x, u, t )  be de- 
fined as 

(22) H(#, x,  u, t )  = #' ( t )  h (x ,  u, 1). 

Inequali ty (21) is identical with (13) .  Multiplying (11)  on the left by I' 
gives 

(23) 

The first n components of (23) give (14) .  The last N components of (23) 
give 

Let Ch E Equation ( 2 2 )  is then identical with (12).  
THEOREM 3. Given jked points x ( t l )  and x(t2),  and letting X be an m- 

dinzensionaE smooth region in x-space, a necessary condition for a control and 
p a t h  pair 8 ( t ) ,  2 ( t )  to be a na in fer im  control is that there exist $(f ), {(f, t )  
a n d  H(&, 3, ti, t )  satisfying ( 1 2 ) ,  (13) ,  (15), and the following: 

w h e r e  

( 2 5 )  = O i f  5 i s  a n  interior point of X ,  
>= 0 i f  5 i s  on the boundary of X ,  

a n d  s i s  the normal to X at 2 pointing away from X.  
Proof. The pmof of Theorem 3 is identical with that of Tlrwrenl 2 up 

t o  (19). Inequality (19) holds only for infinitesimal admissible v:tri:~t ions 
of U. Condition (2) defining admissible variations can be written 8s 

" - 
' where r' is the part of the path d ( t )  lying on the boundary of S. Thug 

(19) is replaced by itself together with the side condition (26). r*'t 4 
represent the ( n  + N)-component row vector with the ni as its f i ~ t  11 

Components and 0 for the remaining N components. Inequc~Iit~ (% '  i' 
identical with 

( 2 7 )  ( 2 ) ( t  s 0 on r'. 
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From a well-known result in variation calculus, ( 1 9 )  together with the 
side condition (27)  is equivalent to the existence of a { ( t )  such that 

The integral is taken over periods of time in which x lies on the boundary 
of X. 

LEMMA 4. A necessary condition for d ( t )  and $ ( t )  to be a noninferior 
control and path pair ia t h t  there exists a I ( t )  such that (28)  is satis$ed by 
all first variations A(z )  resulting from 6u( t )  with fi + 6u belonging to C. 

Let {(d, t )  = { ( t )  when 2 ( t )  is a boundary point, and equal zero when 
f ( t  ) is an interior point. Prom (9), 

= a. i:'l: t (2 ,  f ) q J ( $ ) ~ ( t ,  t ' )h ($a ,  t') dt' dt. 

Changing the order of integration but integrating over the same area gives 

Interchanging the notations t and t', one finally obtains 

Substituting ( 2 0 )  and (29)  into (28)  gives 

Let $'(t) be defined as 

and let H(+, x, u, t )  be defined the same way as in ( 2 2 ) ;  then (30)  is 
identical with (13) .  Fmm (31) ,  
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The first n components of (32) give (24) .  The last N components give 

and ( 1 2 ) .  
The condition ( 2 5 )  is proved in a previous paper for a less general pmb- 

lem ( 1 0 ) .  It also follows from the intuitive notion that yi(h)  can be re- 
duced if the path x ( t )  is allowed an excursion beyond X.  

The following theorem is the well-know transversality condition, and 
will be stated without a proof. 

THEOREM 4. Let u ( t ) ,  t $ t 5 L , be a n  admissible control which transfers 
the phase point from some position %( t i )  E S i  to the position x(&) E 8 2  7 

where Sl and S 2  are smooth regiom of points satisfying the following equations 
and inequalities: 

s2 : F / ( x )  = 0 ,  i = 1, 2, , k' 6 n, 

GI(,)  5 0 ,  i = I ,  2, , m'. 

I n  order that u ( t )  and ~ ( t )  yield the solution of the noninfm'or problem 
with variable endpoints, i t  i s  necessary that there exists a nonzero continuous 
vector function ) ( t )  which satisfies the conditions of Themem 3 and, in nddi- 
tion, the Iranmersality condition at both endpoints of the hajedory z ( t ) ,  

where aj  and a/ are arbitrary constants, and bj  and b/ are nonnegative con- 
stants such that 

b j  = 0 i f  G j ( x )  < 0 or if x ( t l )  i s  an interior point of d , 
(36) l~ 2 0 if G j ( % )  = 0 and the equation actually defines the ~ou*- 

dary of S1 at x ( t l ) ,  

and similar c d d s  hold for b/. I n  (34), ( 3 5 )  and (36)  the value8 of 
the functions and partial derivatives are evaluated at the catespondiq end- 
points. 

THEOREM 5. Corn.& a control problem satisfying the jollowing conditions: 

( 3 7 )  f ( x ,  u, t )  = A ( t ) x  + B ( t ) u  + f ( t ) ,  

( 3 8 )  g(x,  U ,  t )  = p(5, t )  + t ) ,  
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where A ( t )  and B ( t )  are matrices, f ( t ) ,  p(x,  t ) ,  and q(u, t )  are vector func- 
tions, p(x, t )  i s  convex i n  x, and q(u, t )  is convex in u, 
X ,  81 , Sz , and the class C are convex. 

If for an allowed control and path pair, &( t )  and I ( t ) ,  a set of functions, 
H($,  2, .d, t ) ,  $ ( t ) ,  l ( 2 ,  t ) ,  andCi > 0, i = 1, 2, - - - ,  N ,  can befound 
such that ( 12 ) ,  (13) ,  (24) ,  (25) ,  and the transversality condition are satisfied, 
then &(t)  i s  a noninferior control among all admissible controls which transfer 
the phase point from a point on S1 at tl to a woint on SP at te . - " 

Ptoof. Let C' denotethe row vector (Cl ; ~ 2 ,  . . , CN). From (12) ,  (37), 
and (38) ,  

(39)  H(+, X,U,  t )  = P ' A ( ~ ) x  + $'B(t)u + P' f ( t )  - C'p(z, t )  - cfq(u, t )  

From (24) ,  

Consider any other allowed control and path pair u ( t ) ,  x ( t )  which satisfy 
the same terminal conditions. Evaluate the following total derivative: 

Subtracting C'P(2, t )  + ctq(d,  t )  - C'P(X, t )  - cfq(u, t )  from both sides 
of (41) and integrating from tl to 6 give 

4'(2 - x>l:; - Cf[i(tz> - y(tz)l 

(2 - 2) - Cfp(2, t) + C f p  ( x ,  t )  I dt  
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$'(2 - x )  1:; 
is nonpositive because of the transversality condition and convexity of 
Sl and SZ  . Therefore 

~ ' [ ~ ( h )  - y(tz)l 5 0. 

Examples of application of the theorem to discrete systems and other 
special cases are given in a companion paper. 
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On the right-hand side of (42) ,  the first integral is nonnegative because 
of (13)  and the convexity of the class C. The second and third integrals 
are nonnegative because of the convexity of the functions p(x, t )  and 
q(u,  t ) ,  and Ci > 0, i = 1, 2, . . . , N. The last integral is nonnegative be- 
cause of (25) and the convexity of X.  On the left-hand side of (42) ,  




