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ABSTRACT

An entirely Lagrangian similarity analysis is used to determine the
mean trajectory and mean ground level concentration resulting from con-
tinuous sources located at the origin in a slightly unstable boundary layer.
The basic equations obtained reduce to the free convection equations for
L — - 0 and tothe neutral stratification equations for L — - oo, where
L is the Monin-Obukhov length scale characterizing the instability. The
predictions are that the mean trajectories are somewhat more sensitive
to a slightly unstable condition than has been previously suggested and
also that the mean ground level concentration drops off more rapidly with
distance from the source. The second of these predictions has some

experimental support.
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INTRODUC TION

In this paper, the results obtained by Batchelor (1 964) for the
case of neutral stratification in the constant stress region of the bound-
ary layer are extended to the case of a slightly unstable boundary layer.
The basic equations are obtained by assuming Lagrangian similarity.
The corrections to neutral stratification depend upon a characteristic
length L , which was first used by Monin and Obukhov (1954). For
L — - o0, the present results reduce to the neutral stratification re-
sults of Batchelor and for L — 0 (from the negative side), the basic
equations reduce to the free convection equations of Yaglom (1965).

Previously, Gifford (1962) obtained results for diffusion from
point and line sources in a diabatic surface layer by using a Lagrangian
description, but introducing an Eulerian function (the log-plus-linear
law of Monin and Obukhov). Cermak (1963) also uses a Lagrangian and
Eulerian description to obtain diffusion results. Cermak includes the
effects of a nonzero source height, while Gifford takes the source to be
at Z = 0. The source is also taken to be at Z = 0 in the present work.
Both of these analyses require knowledge of an empirical function.
These empirical functions do not enter into the first order corrections
to the neutral stratification case obtained herein.

The basic equations used by Gifford, Cermak and Yaglom do not

reduce to the correct equations for both L — - o and L — 0.
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Basic Equations
It will be assumed that Lagrangian similarity exists. From

dimensional reasoning, the following two equations are obtained for

X and Z respectively:

2...
d X U, u, t
5 = 7 oglm——) (1)
dt t L
L
2= u, t
d Z 1 ‘ %
= = LBy (=2 (2)
dt Nt e p T L
P o o

where g and f are two unknown3universa1 functions, U, (=~N7 )
-y, A/po
is the friction velocity, L ( = —=———=— ) is a characteristic

length, t is the time since the particle left the origin, T is the
constant shear stress; po R To and Cp are reference density,
temperature and specific heat respectively, k is von Karman's
constant, g is the acceleration of gravity and q is the vertical
heat flux, positive upward. X(t) and Z(t) are the directions down-
wind and vertically upwards respectively.

In the neutral stratification case L — - co. This results
from q = 0 and u, remaining finite. In this case equations (1)

and (2) become
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1
If g(0) = a, the above two equations are identical to the equations
!
given by Batchelor ( a is a dimensionless absolute constant defined by &

Batchelor and Batchelor's tl is zero for a particle released at Z =0 ). 1!
In the limit of free convection u, = 0 and q remains finite. 3
u
k.
Therefore, from the definition of L , EN — -0 as u, ~0.
Equations (1) and (2) become ._
3
5 _ .
i—-ls—-(:O or X=c t+ec (3) !
2 1 2
dt |
1
2 — 2
9___Z_=(~g..g___)v.1_f(_oo) (4)
2 t
dt c p T
P o o

If the constants of integration ¢, and ¢, equal U/ and 0 '

respectively (U is the constant wind velocity of Yaglom); and,
o

f(-0) = ks (c is a universal constant used by Yaglom), then

equations (3) and (4) are identical to the free convection results
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obtained by Yaglom. The free convection limit will not be considered

further here.

Slightly Unstable Solution

By using the definition of L, equation (2) can be rewritten as

w
Sl e

u, t
Z - L2 (5)
dt kL Nt L

u, t u*t

—7— about the zero value provided f and g are analytic functions.
u, t -

Z
Since Yaglom has shown that o is a function of T only small

values of % will be considered. In the unstable case under considera-

tion - co < L < 0. Equations (1) and (5) become

2
dz X Uy Uy g (0)
== = —t-— g (0) + —--L-~--— + higher order terms
dt
2 3 L > Ly
— ) — _u* —2 ”
i—zg-z (=) 2 (17 £(0) + (=——) “ —— Ak £ (0)
at k L t K L L

+ higher order terms

Only terms of order N7  will be retained. Therefore,
NL
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= =
dt NL Nt
i (0)
where g(0) =a and =% =1b_.
g r-w_k 1

z (t) should reduce to Batchelor's result for L— - . This
determines the constants of integration when equation (7) is integrated

with respect to time. Equation (7) becomes

3/,
4 P1U /2
Z (t) =35 —=

t +bu,t (8)
N1

where b is the proportionality constant used by Batchelor. (Batchelor
estimates b to be between .1 and .2).

Equation (8) is a cubic equation in the ANt which can be solved
for t (E) by using the standard techniques for cubic equaf.ions. Two of

the roots result in negative t for positive Z and small Z and thus

L
are not physically possible. The third root, for small Z , is
L
2oy 8 V2 L gl (9)
=3 Uy -3 (3 b L L

X (t) can be found from equation (6). The result is

S—C(t)=au<t10gt-au*t (10)
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The constants of integration are taken equal to zero so that the result
is identical to Batchelor's result for large L. Substitution of equation (9)

into equation (10) gives X (E), after some algebra:

z

Z (log bu
&

b NT
a . 4 a - YZ
b -1 - E(E)(—B—)ZV;I,logng (h

For L — - oo, this is identical to Batchelor's result since

2
b u,

c
Z where Zo is a length characteristic of the surface rough-
o

ness, when the source is at Z = 0. (c is a constant definéd by Batchelor.)

Mean Concentration

The mean concentration from a continuous point source is

m o —

! 1 X-X zZ Z
c (X,v,Z2) = Q - -—.=---,X,:,—)dt
P Vs Z) Z3 b 7 Z 7' L

where Q is the rate of release of particles from the source and { is

the probability that a particle will be at position X, y, Z at time t.

Z .
The function { can be expanded in a series about = to give

L
X - X z 7z -X z Z X Z
VS L2 By sy (B2 L 2 0) 2y (B L 20
V4 z Z L Z 7 Z L Z Z Z
+ higher order terms
VZ . s . fore
To order = , only the first term on the right side remains. Therefore,
NL
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1 X - X Z
c (X,V,Z)=Qj‘ =3¢(—'::'-,§,::)dt
P o Z 7 zZ Z



The mean ground level concentration in the slightly unstable case can

be found in the same manner as Batchelor's solution for the neutral
case, the only difference being the use of equation (11) instead of

Batchelor's. X (Z). The concentration at ground level from a point

source is
¢ 01 iz
1 RN
¢ (X,0,0) v £ ——sm2o {142=b iy
? « [7* 105 Z_ ] g 2 X=X
bu* § - X bu*
e}
g g(",0,0)d
-0
or
p— b '\/—: N
Q . 4,1 Z e
c (XS O,-; O ~ % ]_O o —r { ‘l‘ _ s . ) Vi e ot (2 oy —r )
P 0 u, X2 {1og 3 w, 3 % Nexd 1og 2
bu*
For the continuous line source
b, Nz 1
ez~ 2ot AT L
’ u* bIA 1og _B_u__ :X
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Results

In terms of Cermak's notation, equation (11) for the trajectory

becomes, in dimensionless form

3
bkE = Llogt-1) -2 —L va ¢ 2 10g¢ (13)

1
where k = 5 is von Karman's constant, £ = and

Z o) o

= ———

=7~ - The corresponding equation obtained by Cermak is (with

the source height zero)

bkE€ = L(logl-1)+a(-2¢+ —17-6- §Z+-él-czlog§)

By using equation (13) and the data given by Cermak the universal
constant lblt is estimated to be .0l.

Cermak gives his mean ground level concentration results in
e
the form ¢ o« x ©P for the continuous point source and a
p

similar expression for the line source. The exponents, mcp and

m » vary with X,

c!

Table I shows typical results for neutral stratification,

Cermak's analysis (with the source height zero) and the present

~4
analysis for a=~10
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It is clear from the table that the mean trajectory is higher for
unstable stratification than for neutral stratification and the present
analysis predicts higher values than does Cermak. As would be
expected, the mean ground level concentration decreases more rapidly
with distance from the source for the unstable case and it also decreases
more rapidly for the present analysis than for Cermak's. His calculated
—mcp is lower than the experimental values he gives. Since the present
analysis results in larger values of -rncp than Cermak, it appears
as if the larger corrections to neutral stratification indicated by the

Present analysis have some experimental support.
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