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Abstract

The moire gap equation originally derived by Sciamrnarella and Chiang

has been generalized to include li~ear and rotational mismatches. The

equation is then applied to the measurement of deflection of beams and

plates. The method has the advantages of being simple in comparison

with other optical whole-field methods. The application of moire gap

effect to the study of dynamic problems is also discussed.

"



Introduction:

It is well known that there are basically two types of moire fringes created

by the superposition of two gratings; namely that due to the difference in pitch

and that due to the difference in orientation. And they have been effectively

used for two dimensional strain analysis [1, 2, 3, 4J. A third type of moire

fringes which is less familiar to most people is the one created by the presence

of a gap bet-weenhlO gratings [5J. Indeed, if two identical gratings are oriented

wi th lines parallel to each other but with a uniform gap between them, one '-lOuld

observe a pattern of uniformly spaced parallel straight fringes running along

the direction of the grati.ng lines; and the spacing between the fringes will

vary as one varies the distance of observation. The fringe spacing will also vary

if cne varies the gap between the gratings. These fringes will fade away as the

gap becomes too large. The explanation of the phenomenon is the following:

Because of the presence of a gap these two gratings are located at different

distances from the eye which acts as a lens. As a result, they appear at the

retina (the image plane) with different pitches due to the difference in magnif-

ication. These TI10 images of the grating will interfere with each other to for~

a set of fringes equivalent to that formed by. two par'allel gratings of different

pitches in close contact [It]. It is obvious that the appearance of the fringe

pattern is a function of the gap as well as the observing distance because both

of them contribute to the change of magnification. When the gap is too large

so that the two gratings cannot be resolved simultaneously with reasonable

sharpness, the interference phenomenon disappears. Presented in the paper is .a

generalized moire gap equation and its application to the measurement of

deflection of structures. Also presented is the discussion of the possibility

of using moire gap effect for the measurement of dynamical deflections.
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GeneralizedHoire _Gap Equation

Based on the concept of difference in magnification of two gratings

Sciammal'ella and Chiang [5J derived a moire--gap-equation giving the relation-

ship bet-ween the gap and the fictitious strain thus created in terms of moire

fringes. In the derivation the two gratings ,..ere assumed to have identical

pitch and are parallel in orientation. In the follovdng the moire gap-equation

will be generalized to include the presence of linear and rotational mismatches.

If two gratings ifith a gap between them are placed in front of a camera whose

optical axis is perpendicular' to the plane of the master grating and the camera

is focused on the master grating, they will appear at the image plane of the

camera as shown in rig. 1. Let p and pI denote the pitches of master grating

and model gl'ating, respectively; and A - p

-pt

that the

linear mismatch; e (O:;:e<7T/2),

rotational mismatch, it is easily seen effective pitch, before the imaging

process, of the model grating in the direction normal to the master grating-

lines is given by

pI P
~ = .---.---
cos e Acos e

After going through the camera lens, the pitch of the master grating at the

image plane is given by

z
p. = p-1. Z

(2)

in which z and z are the object and image distances, respectively. And the

effective pitch of the model grating at the image plane is given by

P t ::. Ei ACos e
z

z+6z (3)

The relative displacement in terms of moire fpinge order is then

. 1 . 1

N = (- - ~)r (4)P. ,- 1. P.1.
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where r is the distance measured from the optical axis along the direction

normal to master grating-lines (Le. the principal direction). Because of

the axial symmetric property of a lens the principal direction can be

oriented arbitrarily in a plane normal to the optical axis. Substituting

eqs. (2) and (3) into eq. (4), one obtains

r
N = -= [z(1-Acos6)- AZ(Acos6)] (5)

pz

The fictitious displacement in the direction of r is therefore

ur>= Np. (6).. 1.

Using eqs. (2) and (6) one obtains

u = r [z(1-Acos6) - AZ(Acos6)]r z (7)

when A = 1 and 6 = 0, eq. (7) reduces to eq. (22) derived in reference [5J.

With the presence of a gap a fictitious strain field is introduced

and this should be subtracted from the final moire pattern. The magnitude

of the fictitious strain field can be obtained by direction r to the

direction of x and y consecutively and compute the partial derivatives

using eq. (7). One obtains

au 1
(

aAz
E = -- = - [z(l - Acos6) - (Acos6) Az + x ---)]xx dX z ax

(8)

£ = av _ 1
yY ay - z [z(l - Acos6)

(
aAz

Acos0)(Az + x ay-)]
(9)

I

I

I

I

t

f

I

I

I

!

I

au av

Yxy = ay + ax =

(10)



Experimental Proof for Generalized Moire Gap Equation

Eq~ (7) can be rearranged into

I:>.z =
z
Acos6 [(1 - Acos6) - ~'-]r

There exists a gap I:J.z .. (for A < 1 only) at whlch the displacement
crltlcal

u is equal to zero.r ur is determined by the term (1- ),cos6) .The sign of

They are of opposite sign when I:>.z < and of same sign when

I:J.z > 6zcritical. They are also of opposite sign for A ~l.

The val.i.dity of eq. (11) vldS proved experimentally Tor cases where

A = 1 and e = 0 in reference [5J and [6]. In this study evidence will

be given for cases where mismatches are included. In order to simplify

the experiment constant gaps were used throughout, and linear and

rotational mismatches vl.ereintroduced separately. Therefore for A = 1

eq. (11) reduces to

I:J.z = ~ [(1 - cos6) _ ur]cose r

and for 6 = 0 it reduces to

z
I:>.z=-[(lA A) - ~"Jr

To test the validity of eq. (12), two 8" x 10" plate gratings of 300

lines per inch were given a uniform gap of z = 0.128" :t 0.001 and a

rotational mismatch of 0°,1°,12',2°9',3°12' and 5°6' consecutively.

Pictures of the moire patterns for which e = 0°, 6 = 2°9', and 6 = 5°6'

are shown in Fig. 2. The displacement curves for all the five cases are

plotted in Fig. 3 as fringe orders vs. r cos 6. The centers of fringes

were accurately located with a microdensitometer. Care should be exercised

. ~. h f . [4J I . . b hIn OrClerJ_ngt ese rlnges . n essence lt lS necessary to 0 serve t e

condition that vlhen r = 0, urmust also be zero because at the optical axis

4

(11)

(12)

(13)
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there is no perspective effect. Successively increasing orders should be

assigned to fringes in the increasing direction of r until a change of

sign of the deviation of.the displacement is encountered[7]. The

starting order can be arbitrary but the abscissa of the plotted displacement

curve should be shifted to accommodate the condition (i.e. ur= 0 when 1" = 0).

~he average gap computed fr~m eq. (12) using the information from Fig. 3

given an average value of 0.128 which agrees quite well with the actual gap.

For tes.ting the validity of eq. (13), two 8" x 10" plate gratings of

300 and 296.23 lines per inch, respectively, were used. The value of A

depends upon which of the two gratings is used, as master (which is defined

here as the one closel' to the camera). If the former is used A = 1.0126,

and if the latter is used A = 0.9874. For A = 1.0126 cases of I1z = 0.59" :!:

0.001" and f:jz= 0.123" :!:0.001" and for A = 0.9874 a case of I1z= 0.064":!:.

0.001" were tested. Z was kept constant at 38.8" for all the three cases.

Moire patterns for A = 1.0126 and I1z = 0.059 :!: 0.001, and A~0.9874 and

I1z = 0.064 :!:0.001 are shown in Fig. 4. It is interesting to note the

difference in fringe densities in these two patterns. Had A been the same

for bo.th cases the fringe density would have been higher for the case where

the gap was larger. The fact that larger gap rendered less fringes was due

to the exchange of roles played by the two gratings.

Same procedures were used to plot the displacement curves which are

shown in Fig. 5. The computed gaps from these curves using eq. (13) are

the following: 0.064 for A = 1.0126 and 0.059 and 0.123, for A = 0.9874.

The agreement is again very good.



6

Deflection Measurements Using Moir~ Gap Equation

Tne original motivation for the derivation of the moire gap equation

was to know the influence of a gap on the moire pattern from which strain

to transverse loading, the gap equation can then be used as a means to

i
I

I

I

!'

!

t

~

(

f

I

t
!

I

distributions \orere to be derived [4.]. 'Thegap between ehe gratings was

created either by the out of plane deformation of the model grating under

plane loading or due to uncontrolable circumstances under which the master

grating had to be kept away from the model [8]. Now if one reverses the

situation whereby a gap is created by the deflection of a model grating due

compute the deflection at each and every point of the model. Indeed eq. (l2)

can be written as:

toZ= A ~ + B (14)r

where A and B are constants for a given experimental set-up. The simplest

form of the equation of course is when the initial mismatches are zero

(i.e. A = 1 e = 0). However, there may be cases in which the responses

are small so that an initially introduced mismatch pattern would be helpful

in plotting the displacement curves.

In order to demonstrate the applicability of the moire gap equation

for deflection measurement a cantilever beam made of Plexiglas was used.

The beam was printed with a grating of approximately 300 lines per inch with

lines perpendicular to the longitudinal direction of the beam. The cross-

section of the beam was 1/4" x 1/4" and a notch e,t 6" from the fixed end ,fas

cut on the beam to facilitate the application of load. The overall length

from the fixed end "WaS 6 3/4". A master grating plate of 300 lpi was in direct

contact with the beam before loading. There was an initial pattern due to the
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mismatch of line densities. Under loading the pattern changed because of

the presence of gap between the two gr.atings. As demonstrated in Ref. [6]

the appearance of the pattern depends on the location of optical axis. For

this particular case moire patterns for two locations of optical axis

(one at the center and one at the fixed end of the bea~) under different

loadings were recorded. In Fig. 6 the moire pattern under a load of 0.2281

lb for two optical axis locations are sho~m. Fringe were properly ordered

and displacemznt curves are then plotted from the moire patterns, for

example, as shown in Fig. 7 where displacement curves correspond to the

moire pattel>ns in Fig. 6. As mentioned earlier there was some initial

linear mismatches between the two gratings. In computing deflections one

could use eq. (13) with the computed A ~rom the initial moire pattern. An

alternative, however, is to compute deflection using ~z/z = u/r and then

shift the abscissa to accommodate the boundary condition that the deflection

is ze!'o at the fixed end. ~~ In doing so one need not know A aI?-dalso saves

some time in computation. The latter approach was adopted in the analysis and

the results for four experiments plotted in dimensionless form are shO~fn in

Fig. 8. The agreement with the theoretical deflection curve is good.

As a second exam~le, the problem of a circular plate with fixed boundary

and loaded centrally with a concentrated force was chosen. The thin (1/16

inch) plate ~~s also made of Plexiglas and clamped between two thick aluminum

plates with a cir.cular opening of 7 inch in diameter. The concentrated load

was applied via a pin-hook with a head of 1/8 inch in diameter cemented to the

bottom side of the plate. The plate was printed with a grating of 300 Ipi

and the master (a 8" x 10" glass plate) grating of identical line density

was placed atop the aluminum plate with lines parallel to that of the model

)":

In general this cannot be done unless A ~. 1. In the present case A = 0.999,
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grating. The initial gap due to the aluminum plate created a dense pattern

of parallel straight fringes. Two posi.tions for the optical axis of the

camera were also used for the experiments. One was at the center of the

plate, and the other at the boundary and the shifting of optical axis was

along the direction perpendicular to the grating lines. It should be noted

that shifting of optical axis along the direction parallel to the grating

lines will not effect the appearance of the patterns, because the perspective

effect is unaltered under this condition. The initial moire' pattern of

the plate as well as two patterns for a load of 2.18 lbs. but different

positions of optical axis are shown in Fig. 9. In plotting the displacement

curves fringe positions were again accurately located by microdensitometer

tracings. A total of four experiments (for two positions of optical

axis) were performed and the results of experimentally determined deflection

curve along the diameter perpendicular to the grating lines together with

the theoretical solution are shown in Fig. 10. The agreement is satisfactory

but not as good as the previous case. One reason for the discrepency is

due to the fact that while the theoretical deflection curve is for a

concentrated load, the actual loading was distributed over a circular area

of more than 1/8" in diameter. This may explain why that the experimental

values were lower than the theoretical ones near the central region of the

plate.

As a final example for the application of the method, a perforated

square plate simply supported at two opposite corners and concentrately

loaded at the center was used. While a problem of this kind is usually

not easily accessible to analytical approaches it presents no special

problem to whole-field experimental luethods like the present one. The

plate \.;as alsomade of Plexiglas and its configuration is shovm in Fig.11 (a) .
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A grating of 300 lpi was printed on the bottom face of the plate with lines

parallel to one edge. A glass master grating of same line density was laid

on top of the plate with no rotational mismatch. The initial gap between

the tvlO gratings due to the thickness of the plate aga,in created a moire

patteJ:Ll. The moire pattern under loading with optical axis at the center

of the plate is ShO~l in Fig. 11 (b). Deflections along two sections (A-A &

B-B) were computed. \~.ile usual procedures were used to compute the de-

flections along section A-A, some modifications were needed in computing

deflections along section B-B. In computing deflections along sections

that are not principal (i.e. sections perpendicular to the grating lines)

it is necessary to take into account the fact that the effective pitch of

the master grating along this section is plcos e, in which p is the pitch

of the master grating and e is the angle that the section deviates from

the principal section*. The result of the computed deflection curves are

shown in Fig. 12. No theoretical solution is available for comparison.

Conclusions and Discussions:

It may be concluded that the moire~ gap equation can be effectively utilized

as. a means for the determination of deflections of structures under transverse

loading. TIlemethod offers simplicity over the other optical methods: It

does not require elaborate equipment (a camera and a master grating are

sufficient) and the model used need not have a optical flat surface or a

reflective surface. While one may argue that the necessity of printing lines

on the plate is a drawback, it is worth noting that there are commercially

available plastic plates with light-sensitive emulsion already coated (Kodak

Photoplast Plates). Printing gratings on these plates is as easy as printing

gratings on photographic films [9),

*An alternative leading to the same result is to use r cos e rather r in

computing the distance.
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It should be noted that in deriving the moire gap equation the

inclination effect of the model grating was not taken into account nor

did the surface strains of the model under load. The effect of the

inclination of the model grating ,vas sho..m in Ref. [6] to be of no signi-

ficance even for a slope of 0.0238. The effect of the surface strain

seems to be of little significance judging from the close agreement

between therretical and experimental results for the cantilever beam.

While it is evident that \vhcn the deflection becomes very large the

errors will not be negligIble it may be safe to say that within the limits

of the smal] oeflection theory of plates, the present method gives sufficiently

printed on its top surface is under a steady state vibration, and a master

gratir,g is placed over it with a certain gap so that it will not get into

contact with the vibrating plate; the moire pattern created by the gap effect

will continuously change due to the changing gaps from point to poin~.except

at those places where lNdel points or lines occur. Therefore, if a camera

is used to record the phenomenon with an extended exposure time, the pattern

of nodel lines or points will be recorded as a portion of the original gap

moire pattern while the rest of the place w"ashed out. Indeed if a high speed

camera is used, it js also possible to deterTIlinethe transient deflections of

plates and beams.
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good results.

Another use of the moire gap effect is its applications to the vibra-

tion problems of beams and plates. For example, if a plate with a grating
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Figure Captions

Optical Arrangement for the Observation of Moire Gap Effect

Displacement Curves for Moil"ePatterns due to Gap (b.Z= 0.128" :!:

0.001") and Various Rotational Hismatches

Moire Patterns due to Gap and Linear Mismatch

a) A = 0.9874, b.z= 0.064" :!:0.001"

b) A = 1.0126, b.z= 0.059 :!:0.001"

Displacement Curves for Various Combinations of Gap and Linear

t1ismatch

I - A = 0.9874~ lJ.z= 0.064" :!:0.00111

II - A = 1.0126, b.Z = 0.059" :!: 0.001"
III - A = 1.0126, b.Z = 0.123 :!: 0.001"

Moire Patterns for a Cantilever beam under Load

of Optical Axis

for Two Positions

Fig. 7 Displacement Curves Corresponding to Moire Pattel"ns in Fig. 6

Fig. 8 Experimental and Theoretical Deflection Curves for the Cantilever
Beam

Fig. 9 Haire Patterns of a Circular Plate with Fixed Boundary and Con-
centrated Load at the Center
a) Initial Pattern
b) Pattern Under Load with Optical Axis at Center
c) Pattern under Load with Optical Axis at Left End.

Fig. 10 Experimental and Theoretical Deflection Curves for the Circular Plate

Fig. 11 a) Configuration of the Perforated Plate Under Concentrated Force
at Center

b) The Corresponding Moire Pattern

Fig. 12 Experimental Deflection Curves along Sections A-A and B-B of the
Perforated Plate

Moire Patterns due to Gap and Rotational Mismatch
a) e = 0°, b.Z = 0.128" :!:0.001"

b) G = 2°9', b.Z = 0.12811 :!:0.001"

c) e = 5°6', b.Z = 0.12811 + 0.001"
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Moire Patterns of a Circular

centrated Load at the Center

a) Initial Pattern

h) Pattern Under Load

c) Pattern under Load
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Fig. 10 Experimental and Theoretical Deflection Curves for the Circular Plate
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b) The Corresponding Moire Pattern
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