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The moiré gap equation originally derived by Sciammarella and Chiang

has been generalized to include linear and rotational mismatches. The

equation is then applied to the measurement of deflection of beams and

lates. The method has the advantages of being simple in comparison
g 24 P I

with other optical whole-field methods. The application of moiré gap

effect to the studv of dynamic problems 1s also discussed.



Introduction:

Tt is well known that there are basically two types of moiré fringes created
by the superposition of two gratings; namely that due to the difference in pitch
and that dve to the difference in orientation. And they have been effectively
used for two dimensional strain analysis [1, 2, 3, 4]. ‘A third type of moiré
fringés which is less familiar to most people is the one created by the presence
of a gap between two gratings [5]. Indeed, if two identical gratings are oriented
with lines parallel to each other but with a uniform gap between them, one would
observe a pattern of uniformly spaced parallel straight fringes running along
the direction of the grating lines; and the spacing between the fringes will

vary as one varies the distance of observation. The fringe spacing will also vary

if cne varies the gap between the gratings. These fringes will fade away as the

gap becomes too large. The explanation of the phenomenon is the follewing:

Because of the presence of a gap these two gratings are located at different

distances from the eye which acts as a lens. As a result, they appear at the

retina (the image plane) with different pitches due to the difference in magnif-
ication. These two images of the grating will interfere with each other to form |
a set of fringes equivalent to that formed by two parallel gratings of different

pitches in close contact [4]. It is obvious that the appearance of the fringe

pattern is a function of the gap as well as the observing distance because both
of them contribute to the change of magnification. When the gap is too large
so that the two gratings cannot be resolved simultaneously with reasonable
sharpness, the interference phenomenon disappears. Presented in the paper is a

generalized moiré gap equation and its application “to the measurement of
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deflection of structures. Also presented is the discussion of the possibility

of using moiré gap effect for the measurement of dynamical deflections.



Generalized Moiré Gap Equation

Based on the concept of difference in magnification of two gratings

Sciammarella and Chiang [5] derived a moiré-gap-equation giving the relation-

ship between the gap and the fictitious strain thus created in terms of moiré

fringes.

In the derivation the two gratings were assumed to have identical

pitch and are parallel in orientation. In the following the moiré-gap-equation

will be
If
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generalized to include the presence of linear and rotational mismatches.
two gratings with a gap between them are placed in front of a camera whose

axis is perpendicular to the plane of the master grating and the camera
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sed on the master grating, they will appear at the image plane of the

camera as shown in Fig. 1. Let p and p' denote the pitches of master grating

and model grating, respectively; and X = B » linear mismatch; 6(0<6<w/2),
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rotational mismatch, it is easily seen that the effective pitch,before the imaging

process,

of the model grating in the direction normal to the master grating-

lines is given by

p' 2 | (1
£
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After going through the camera lens, the pitch of the master grating at the

image plane is given by

in which

P :? (2)
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z and 'z are the object and image distances, respectively. And the

effective pitch of the model grating at the image plane is given by

£ p %
pi. CAcos 0 zihz (3)

The relative displacement in terms of moiré fringe order is then

.
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where r is the distance measured from the optical axis along the direction
normal to master grating-lines (i.e. the principal direction). Because of
the axial symmetric property of a lens the principal direction can be
oriented arbitrarily in a plane normal to the optical axis. Substituting

eqs. (2) and (3) into eq. (&), one obtains

N = ~§:[z(l-kcose) - Az(Xcos6)]

pz

The fictitious displacement in the direction of r is therefore

Using eqs. (2) and (6) one obtains

u = = [z2(l-icosB) - Az(lcosa}]
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when A = 1 and 6 = 0, eq. (7) reduces to eq. (22) derived in reference [5].

With the presence of a gap a fictitlous strain field is introduced
and this should be subtracted from the final moire pattern. The magnitude
of the fictitious strain field can be obtained by direction r to the
direction of x and y consecutively and compute the partial derivatives
using eq. (7). One obtains
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Experimental Proof for Generalized Moiré Gap Equation

Eq. (7) can be rearranged into

Z " Uy :
= — . = hcosB) - = 2
Az = 5===r [(1 - Acosb) - '] (1)
There exists a gap b4z , |, for A < 1 only) at which the displacement
o critical _
u, is equal to zero. The sign of u is determined by the term (1-Acos8).

They are of opposite sign when Az < Az and of same sign when

critical
Az > ﬁzcritical, They are also of opposite sign for A 27,

The validity of eq. (11) was proved experimentally tror cases where
A =1and 6 = 0 in reference [5] and [6]. In this study evidence will
be given for cases where mismatches are included. In order to simplify
the experiment constant gaps were used throughout, and linear and
rotational mismatches were introduced separately. Therefore for A =1
eq. (11) reduces to

-z _ _ Uy
Az = e [(1 - cos8) - ] (12)

and for 8 = 0 it peduces to
= 2z - - By
Az = 3 [(1 A) - 1 (13)

To test the validity of eq. (12), two-8” x 10" plate gratings of 300
lines per inch were given a uniform gap of =z = 0.128" # 0.00l and a
rotational mismatch of 0°, 1°, 12', 2°9', 3°12' and 5°6' comsecutively.
Pictures of the moire patterns for which ¢ = 0°, ¢ = 2°9', and ¢ = 5°6"
are shown in Fig. 2. The displacement curves for all the five cases are
plotted in Fig. 3 as fringe orders vs. r cos 6. The centers of fringes
were accurately located with a microdensitometer. Care should be exercised

(4]

in ordering these fringes In essence it is necessary to observe the

condition that when v = 0, u.must also be zero because at the optical axis
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there is no perspective effect. Successzively increasing orders should be
assigned to fringes in the increasing direction of r until a change of

[7]. The

sign of the deviation of the displacement is encountered
starting order can be arbitrary but the abscissa of the plotted displacement
curve should be shifted to accommodate the condition (i.e. u = 0 when r = 1
The average gap computed from eq. (12) using the information from Fig. 3
given an average value of 0.128 which agrees quite well with the actual gap.

For testing the validity of eq. (13), two 8" x 10" plate gratings of
300 and 296.23 lines per inch, respectively, were used. The value of A
depends upon which of the two gratings is used as master (which is defined
here as the one closer to the camera). If the former is used A = 1.0126,
and if the latter is ugsed A = 0.9874. For XA = 1.0126 cases of Az = 0.59" %
0.001"™ and Az = 0.123" + 0.001" and for A = 0.9874 a case of Az = 0.064" %
0.001" were tested. 7 was kept constant at 38.8" for all the three cases.
Moiré patterns for X = 1.0126 and Az = 0.059 + 0.001, and 2=0.9874 and
Az = 0,064 * 0.001 are shown in Fig. 4. It is interesting to note the
difference in fringe densities in these two patterns. Had A been the same
for both cases the fringe density would have been higher for the case where
the gap was larger. The fact that larger gap rendered less fringes was due
to the exchange of roles played by the two gratings.

Same procedures were used to plot the displacement curves which are
shown in Fig. 5. The computed gaps from these curves using eq. (13) are
the following: 0.064% for X = 1.0126 and 0.059 and 0.123, for A = 0.9874.

The agreement is again very good.



Deflection Measurements Using Moire Gap Equation

The original motivation for the derivation of the moireé gap equation
was to know the influence of a gap on the moirée pattern from which strain
distributionsweré to be derived [4]. The gap between the gratings was
created either by the out of.plane deformation of the model grating under
plane loading or due to uncontrolable circumstances under which the master
grating had to be kept away from the model [8]. ©Now if one reverses the
situation whereby a gap is created by the deflection of a model grating due
to transverse loading, the gap equation can then be used as a means to
compute the deflection at each and every point of the model. Indeed eq. (12)
can be written as:

AZ = A.%-+ B (%)

where A and B are constants for a given experimental set-up. The simplest
form of the equation of course is when the initial mismatches are zero
(i.e. A =1 & = 0). However, there may be cases in which the responses
are small so that an initially introduced mismatch pattern would be helpful
in plotting the displacement curves.

In order to demonstrate the applicability of the moire gap equation
for deflection measurement a cantilever besam made of Plexiglas was used.
The besm was printed with a grating of approximately 300 lines per inch with
lines perpendicular to the longitudinal direction of the beam. The cross-
section of the beam was 1/4" x 1/4" and a notch et 6" from the fixed end was
cut on the beam to facilitate the application of load. The overall length
from the fixed endwas 6 3/4". A master grating plate of 300 lpi was in direct

contact with the beam before loading. There was an initial pattern due to the




mismatch of line densities. Under loading the pattern changed because of
the presence of gap between the two gratings. As demonstrated in Ref. [6]
the appearance of the pattern depends on the location of optical axis. For
this particular case moiré patterns for two locations of optical axis
(one at the center and one at the fized end of the beam) under different
loadings were recorded. In Fig. 6 the moiré pattern under a load of 0.2281
1b for two optical axis lccations are shown. Fringe were properly ordered
and displacement curves are then plotted from the moiré patterns, for
example, as shown in Fig. 7 where displacement curves correspond to the
moiré patterms in Tipg. 6. As mentioned earlier there was some initial
linear mismatches between the two gratings. In computing deflections one
could use eq. (13) with the computed X from the initial moiré pattern. An
alternative, however, is to compute deflection using Az/z = u/r and then
shift the abscissa to accommodate the boundary condition that the deflection
is zero at the fixed end.* In doing so one need not know A and also saves
some time in computation. The latter approach was adopted in the analysis and
the results for four experiments plotted in dimensionless form are shown in
Fig. 8. The agreement with the theoretical deflection curve is good.

As a second example, the problem of a circular plate with fixed boundary
and loaded centrally with a concentrated force was chosen. The thin (1/16
inch) plate was also made of Plexiglas and clamped between two thick aluminum
plates with a circular opening of 7 inch in diameter. The concentrated load
was applied via a pin-hook with a head of 1/8 inch in diameter cemented to the
bottom side of the plate. The plate was printed with a grating of 300 1pi
and the master (a 8" x 10" glass plate) grating of identical line density

was placed atop the aluminum plate with lines parallel to that of the model

&
In general this cannot be done unless A 2 1. In the present case A = 0.999.



grating. The initial gap due tc the aluminum plate created a dense pattern
of paraliel straight fringes. Two positions for the optical axis of the
camera were also used for the experiments. One was at the center of the
plate, and the other at the boundary and the shifting pf optical axis was
along the direction perpendicular to the grating lines. It should be noted
that shifting of optical axis along the direction parallel to the grating
lines will not effect the appearance of the patterns, because the perspective
effect is unaltered under this condition. The initial moire' pattern of

the plate as well as two patterns for a load of 2.18 lbs. but different
positions of optical axis are shown in Fig. 9. In plotting the displacement
curves fringe positions were again accurately located by microdensitometer
tracings. A total of four experiments (for two positions of optieal

axis) were performed and the results of experimentally determined deflection
curve along the diameter perpendicular to the grating lines together with
the theoretical solution are shown in Fig. 10. The agreement is satisfactory
but not as good as the previous case. One reason for the discrepency is

due to the fact that while the theoretical deflection curve is for a
concentrated load, the actual loading was distributed over a circular area
of more than 1/8" in diameter. This may explain why that the experimental
values were lower than the theoretical ones near the central region of the
plate.

As a final example for the application of the method, a perforated
square plate simply supported at two opposite corners and concentrately
loaded at the center was used. While a problem of this kind is usually
not easily accessible to amalytical approaches it presents no epecial
problem to whole-field experimental methods like the present one. The

plate was also made of Plexiglas and its configuration is shown in Fig.1l1l(a).



A grating of 300 1lpi was printed on the bottom face of the plate with lines
parallel to one edge. A glass master grating of same line density was laid
on top of the plate with no rotational mismatch. The initial gap between
the two gratings due to the thickness of the plate again created a moire
pattern. The moiré pattern under loading with optical axis at the center
of the plate is shown in Fig. 11(b). Deflections along two sections (A-A &
B-B) were computed. While usual procedures were used to compute the de-
flections along section A-A, some modifications were needed in compufing
deflections along section BE~-B. In computing deflections along sections
that are not principal (i.e. sections perpendicular to the grating lines)
it is necessary to take into account the fact that the effective pitch of
the master grating along this section is p/cos 6, in which p is the pitch
of the master grating and @ is the angle that the section deviates from

the principal section®*. The result of the computed deflection curves are
shown in Fig. 12. No theoretical solution is availablelfor comparison.

Conclusions and Discussions:

It may be concluded that the moire gap equation can be effectively utilized
as. a means for the determination of déflections of structures under transverse
loading. The method offers simplicity over the other optical methods: It
does not require elaborate equipment (a camera and a master grating are
sufficient) and the model vsed need not have a optical flat surface or a
reflective surface. While one may argue that the necessity of printing lines
on the plate is a drawback, it is worth noting that there are commercially
available plastic plates with light-sensitive emulsion already coated (Kodak
Photoplast Plates). Printing gratings on these plates is as easy as printing

-gratings on photographic films [9].

*An alternative leading to the same result is to use r cos 8 rather r in
computing the distance.
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It should be noted that in deriving the moiré gap equation the
inclination effect of the model grating was not taken into account nor
did the surface strains of the model under load. The effect of the
inclination of the model grating was shown in Ref.[6] to be of no signi-
ficanée even for a slope of 0.0238. The effect of the surface strain
seems to be of little significance judging from the close agreement
between thecretical and experimental results for the cantilever beam.

While it is evident that when the deflection becomes very large the

errors will pot be negligible it may be safe to say that within the limits

of the small deflecticn theory of plates, the present method gives sufficiently
good results.

Another use of the moiré gap effect is its applications to the vibra-
tion problems of beams and plates. For example, if a plate with a grating
printed on its top surface is under a steady state vibration, and a master
grating is placed cver it with a certain gap so that it will not get into
contact with the vibrating plate, the moire pattern created by the gap effect
will continucusly change due to the changing gaps from point to point,except
at those places where uodel points or lines occur. Therefore, if a camera
is used to record the phenomenon with an extended exposure time, the pattern
of nodel lines or points will be recorded as a portion of the original gap
moiré pattern while the rest of thé_place washed. out. indéed if a high speed
camera is used, it is also possible to determine the transient deflections Pf
plates and beams.

Acknowledgement:

The research was accomplished under the financial support of the National
Science Foundation through an Engineering Research Initiation Grant No. GK -

3039.



11

REFERENCES

Dantu, P., "Utilisation des Resaux pour l'etude des Deformations"
Laboratoire Central des Ponts et Chaussees, Paris, Publication
2i=by 1957,

Morse, S., Durelli, A.J. and Sciammarella, C.A., "Geometry of Moire
Fringes in Strain Analysis', J. of the Engineering Mechanics Division,
Proceedings of the ASCE, Vol. 86, M4, August 1960.

Sciammarella, C.A. and Durelli, A.J., "Moire Fringes as a Means of
Analyzing Strains' Transactions, ASCE Vol. 127, Part I, 1962.

Chiang, Fu-pen, "A Method to Increase the Accuracy of Moiré Method"
J. of the Ingineering Mechanics Division, Proceedings of the ASCE, Vol. 91,
No. EML1, Feb. 1965.

Sciammarella, C.A. and Chiang, Fu-pen, "Gap Effect on Moiré Patterns"
Zeitschrift flr angewante Mathematik und Physik, Vol. 19, Fasc. 2, 1968.

Chiang, Fu-pen and Rangansyakamma, B., "Some Experimental Evidence
for the Validity of Moire Gap Equation'’, to be published in Experimental
Mechanics.

Chiang, Fu-pen, 'Determination of Signs in Moiré Method" J. of the
Engineering Mechanics Division, Proceedings of the ASCE, Vol. 95, No. EM6
December 1969,

Sciammarella, C.A. and Chiang, Fu-pen, '"Dynamical Stresses and Strains

in Propellant Grains' 6th Annual Mechanical Behavior Working Group Meeting
of ICRPG, Jet Propulsion Laboratory, Pasadena, California, Dec. 1967,

CPTA Publication No. 153, Vol. 1, October 1967.

Chiang, Fu-pen, "Discussion — Production of High-density Moiré Grids"
Experimental Mechanics, Vol. 9, No. 6, June, 1969,




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

12

Figure Captions

Optical Arrangement for the Observation of Moiré Gap Effect

Moiré Patterns due to Gap and Rotational Mismatch
a) .6 = 0°, Az = 0.128" * 0.001"

b) B = 2°9', Az = 0.128" + Q.001"

c) B 506t, Az = 0.128" + 0.001"

Displacement Curves for Moiré Patterns due to Gap (Az = 0.128" +
0.001%") and Various Rotational Mismatches

Moiré Patterns due to Gap and Linear Mismatch
a) A = 0.8874, Az = 0.064" + 0.001"
5) & & 10126, Az = 0,089 % 0.00L"

o

Displacement Curves for Various Combinations of Gap and Linear
Mismatch

I~ A= 0.9874, Az = 0.064™ % 0,001

IT - A = 1.0126, Az = 0.059" * 0.001"

TIT ~ X = 1.0128,.4% = 0.123 + 0.601L"

Moiré Patterns for a Cantilever beam under Load for Two Positions
of Optical Axis

Displacement Curves Corresponding to Moire Patterns in Fig. 6

Experimental and Theoretical Deflection Curves for the Cantilever
Beam

Moiré Patterns of a Circular Plate with Fixed Boundary and Con-
centrated Load at the Center

a) Initial Pattern

b) Pattern Under Load with Optical Axis at Center

¢) Pattern under Load with Optical Axis at Left End.

Experimental and Theoretical Deflection Curves for the Circular Plate

a) Configuration of the Perforated Plate Under Concentrated Force
at Center
b) The Corresponding Moiré Pattern

Experimental Deflection Curves along Sections A-A and B-B of the
Perforated Plate
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Fig. 3
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Displacement Curves for Various Combinations of Gap and Linear
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Fig. 6 Moiré Patterns for a Cantilever beam under Load for Two Positions
of Optical Axis
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Displacement Curves Corresponding to Moiré Patterns in Fig. 6
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Moiré Patterns of a Civcular Plate with Fixed .Boundary and Con-

centrated Load at the Center

a)

Fig. 9
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Fig. 10 Experimental and Theoretical Deflection Curves for the Circular Plate
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Fig. 11 a) Configuration of the Perforated Plate Under Concentrated Force

at Center
b) The Corresponding Moiré Pattern
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Perforated Plate



