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I Int roduct ion . - - 

The question o f  pe r iod ic  so lu t ions  f o r  nonlinear hyperbolic p a r t i a l  

d i f f e r e n t i a l  equations a r i s e s  i n  a na tu r a l  manner a s  one t r i e s  t o  consider 

steady-state dynamical problems i n  physics and engineering. Up t o  now much 

progress has  been made i n  t h i s  pa r t i cu l a r  area o f  research and we s h a l l  not 

give a d e t a i l e d  account o f  it here  except those o f  d i r ec t  relevance t o  our 

work. Recently, J. B. Kel ler  and L. Ting [l] and M, Millman [Z] have presented 

a general  pe r tu rba t ion  method fo r  f inding the formal per iodic  solutions of a 

l a rge  c l a s s  of nonlinear hyperbolic p a r t i a l  d i f f e r e n t i a l  equations. On the 

other hand, t he  exis tence  of periodic solutions of a very spec i a l  c lass  of . 
nonlinear hyperbolic p a r t i a l  d i f f e r e n t i a l  equations has  been proved by L. Cesari 

[3] . - and P. H . Rabinowi t z  [h] . 
The main purposes of  t h i s  paper a r e  t o  present  a method, which not  only 

does produce approximte  'per iodic  solut ions  of a l a rge  c l a s s  of nonlinear hyper- 
\: 

bolic p a r t i a l  d i f f e r e n t i a l  equations bu t  a l s o  o f f e r s  r e l a t i v e  simpler c r i t e r i a  f o r  

t e s t i n g  th2:ilocal exis tence  and uniqueness; f o r  es t imat ing t he  r a t e  of con- 
', 

vergence and the  t runca t ion  e r ro r ,  and t o  demonstrate how it can be applied i n  
\ 

p r ac t i c e  by using few concrete examples a s  those of [l] . To no-one s surprise,  

our proposed method here  i s  one of the modified Newtonr s methods i n  nonlinear 
', 

func t iona l  ana ly s i s  [5] ,  161. This method not  only s u i t s  our purposes but a l s o  

sometimes o f fe r s  few d i s t i n c t  computational advantages over t he  perturbation 

method, 

In Sect ion 11, Newton's method and its modificat ions a r e  b r i e f l y  outlined. 

I 
The well-known Kantorovichls theorem [s], [6] f o r  Newton's methods f o r  nonlinear 

I funct ional  equations i n  Banach spaces and i t s  va r i a t i on  are s t a t ed  without.proof. 

Moreover, s eve r a l  r e l evan t  known renarks a r e  a l s o  given. 
I - - 



A general  formulation-of the app l ica t ion  o f  t he  second modified Newton's 

method t o  const ruct  approximate per iodic  so lu t ions  of a c l a s s  of  nonlinear hyper- 

bo l i c  p a r t i a l  d i f f e r e n t i a l  equations which possess  time indGpendent solutions i s  , 

1 given i n  Section 111. There t h e  sequence of approximate angular  f'requencies, 

{%I, i s  obtained as a by-product. 

In Sections N and V, a simple nonlinear s ca l a r  wave equation and a equation 

governing the  l ong i t ud ina l  v ib ra t ion  of a s t r i n g  a re  solved e x p l i c i t l y  and compared 

with t h e  corresponding r e s u l t s  i n  [I], Final ly ,  a b r i e f  discussion on the r e l a t i v e  

advantages of t h e  second modified Newton's method over t h e  per turbat ion method i s  

given i n  t he  last sec t ion ,  



I1 Newton's Method and i ts Variat ions 

L e t  B, and B, be two r e a l  Banach spaces, and F a nonlinear operator which 

maps an open s e t . n  of B, i n t o  B,. Let F have a zero  and a continuous Frhchet 

i der iva t ive  F' (u) f o r  u E n. Sta r t i ng  with an i n i t i a l  approldmate solut ion uo E n 

Newton' s method is  the  process of forming t h e  sequence {un] such t h a t  

the  first modified Newton's method i s  t he  process  of forming the  sequence 

{un] such t h a t  

CU 

where uo = uo, 

and t he  second modified Newton's method i s  t h e  process of forming t he  sequence 

{fin] such t h a t  
A 1, = a, - r F(Qn), n = 0, 1, 2, 3, . . . 

-1 

where to ="i:uo and r i s  an l i n e a r  operator c lose  t o  [F'(O.,)] . 
\ 

By t h e  ' Kantoro~ich5  theorem and other  re levan t  theor e m s  [ s ] ,  [ 6 ] ,  Newton' s 

method and i t s  va r i a t i ons  n o t  only do produce t he  approdmate so lu t ion  of (2 .I), 

but  a l s o  y i e l d  conclusions on the  l o c a l  e x i s t e x e ,  uniqueness, r a t e  of convergence 

and e r r o r  estimate. Hence these  m y  apply where f i xed  p o i n t  p r inc ip les  and impl ic i t  
\ 

Functional theorems [S], [7] do not ,  

Theor em 1 (Kant o r  ovi ch) : Le t  
r 

. (1) t h e  mapping F be defined, as previously,  on Q and have a continuous 

second f i h c h e t  de r iva t ive  i n  the  sphere 

s {U E n: I ~ u  - uoll 5 R < -1; 
-1 

(2) F' (uo) map 4 onto 8, and have an inverse  To = [F1(uo)] ; 



and R > - ro = [l - (1 - 2 h h  K-I (2-6) 

t he  equation (2.1) w i l l  have a solut ion u* C S t o  which both [un] and ("1 a r e  con- 
i 
i 

vergent and 11.u9 - uo[l 5 r,. 
Furthermore, i f  f o r  h < % 

and R < r = [I + . ( 1  - 2 h ) S  Bl 

or i f  f o r  h = % 

and R 5 r, (2 , lo)  

the so lu t i on  u* is unique i n  .S. 

The r a t e  of  convergence of Newton's method i s  character ized by 
n 

[lu-'- uAl 5 (2)-" (2hI2 K-1, n = 0, 1, 2, 3, ... (2.11) 

and t h a t  of the  first modified Newton's method, f o r  h < %, i s  characteriaed by 
N k 

Ilu* - udl 5 [l - (1-2h) lntl K-, n = 0, 1, 2, 3, ... (2.12) 

Theorem 2: Let . - 

. - . (1) the  mapping F be defined as  previously, on 0 and have a continuous 

second f i eche t .  derivative i n  S; 

(2) there  e x i s t  a l i n e a r  o p e r a t o r r  such that 

and R > - Po = [l - (1-2@j (1-6) 2-1 
the equation (2.1) will have a solution u* E S t o  which [Gn] is convergent I I 

and it is u o i q u a ,  if for  



" A h 

and f b r  h = %, R 5.r. . (2.16) ' 

Moreover, t he  r a t e  of convergence of t h e  second modified N e e o n ' s  method, f o r  
CC 

h < %, i s  character ized by 

Remark 1: Newton's method app l ied  t o  (2.1) i s  equivalent t o  t he  method of 

successive approximations app l ied  t o  the  equation 

u = u - [F'(u)]-~ F(u), (2 -18) 

the  first modified New-ton's method applied t o  (2.1) i s  equival.ent t o  t h e  rnethod of 

successive approemations applied t o  the equation '; = F - [F' (zo1-' F(%), (2.19) 

and the second modified Newton's method applied t o  (2.1) i s  equivalent t o  t he  

method of successive approximations applied t o  t h e  equation 

ii = t'i - r  ti). (2 20) 

The essence of Newton's method and i t s  var ia t ions  i s  t h a t  ' instead o f  Solvlng a 

given nonlinear equation, one solves a sequence of l i nea r i z ed  l o c a l  approximting 

equations. -. 

Remark 2: The boundness o f  \IT, ~(u,)ll  and p'(u)lI (u € S) of theorem 1 and 

IlI' ~(u,)ll  and Ill' F'(u)ll (U E S) of theorem 2 i s  necessary fo r  t he  existence and 

the  uniqueness o f  any l o c a l  solut ion of ( 2 J ) .  

Remark 3: The modified Newtonls methods of ten  a r e  much eas ie r  t o  use than Newton's 

method, because i n  applying t h e  modified methods the re  i s  only one l i n e a r  operator  

t o  i n v e r t  and t h e r e  a r e  i n f i n i t l y  many l i n e a r  operators t o  i n v e r t  i n  t h e  o r i g i n a l  

method, 



III Application of ~ o d i f i e d '  Newton's Methods t o  Obtain Periodic Solutions of 
I 
I 

a Glass of Nonlinear Hyperbolic P a r t i a l  Di f fe ren t ia l  Equations ! 

~ e w t o n ~  s method has  been applied t o  nonlinear e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  

equations with some success by A, I. Koshelev [8] and D. S. Cohen [F]. I n  general  
i 
I 
i 
I 

it i s  d i f f i c u l t  t o  apply Newton1 s method o r  any one of i t s  va r i a t i ons  t o  general  - 
I 
I 

nonlinear hyperbolic p a r t i a l  d i f f e r e n t i a l  equations. However, i f  only per iod ic  I ; 

s ec t i ons  o f  a c l a s s  of nonl inear  hyperbolic p a r t i a l  d i f f e r e n t i a l  equations a r e  of  . I 
I 
I 

main concern, ~ e w t o n ' s  method o r  i t s  var ia t ions  may be used sometimes not  only t o  1 

cons t ruc t  pe r iod ic  so lu t i ons  bu t  a l so  t o  provide co~idi t ions  f o r  t h e i r  existence 
I 

l 
and uniqueness, This i s  because the  above problem can be considered a s  a boundary 

value problem f o r  hyperbolic equations i n  which the  boundary condit ions f o r  space 

va r i ab l e s  i s  imposed and t he  requirement of  per iodic i ty  i n  time can be i n t e rp r e t ed  I 
I:,. 

asia boundary condit ion fo r  t h e  time var iable .  Here we a r e  looking f o r  c l a s s i c a l  

pe r i od i c  so lu t ions  of a c l a s s  of nonlinear hyperbolic p a r t i a l  d i f f e r e n t i a l  equations 
I . . .' .. 

which possess time independent solutions.  
+ I  

Let  C, be t he  space of continuous r e a l  valued functions of T and I '  

! + 

x = (X , , . . . , x ) def ined  on the  one dimensional t o r u s  D: 10 < qs Li, - N - 
I 

k, > 0, i = 1, 2, . . . , N; ' 2rr per iodic  i n  T = w t ,  where w i s  the  unknown r e a l  angular  
I I 

- 
frequency] with boundary 6D and l e t  5 = D U 6 D. CW(D) i s  a Banach space with respec t  1 

i 
t o  t he  norm ll~rll = - - I q ( ~ ,  T ) I .  Let C; be the  space of continuous i n -  I ;  I 

Cw (x, T) E D 40 I I 

f i n i t e l y  d i f f e r en t i ab l e  r e a l  valued functions of T a n d 5  defined on D. Then C, c G,. 
. ' /  

t h e  Hi lber t  space Hw be t h e  c b q l e t i o n  of C, with respect  t o  

I $ I H  = [ J ~ ~  J~.....J~I~(~, r ) I 2  d d r ]  a d  i t s  inner  product  
a 0 0 0 

I 
be denoted by (, ). Then C-c Hw. 

U) 



I 

, 

A nonlinear hyperbolic p a r t i a l  d i f fe rent ia l  equation can be wri t ten as I 

FCu(x, t ) l  = 0 (3.1) I 

with the  solution u subjected t o  some kind of boundary conditions on 6D, Here . I 
we l e t  uA (x) - be the time independent solution of (3.1)- A s  a consequence of the I 

transformation T = w t .  '(3.1) becomes ' 

I F [ u ( ~ ,  7 - 1 9  w] = 0 (3-2)  
I 
I 
I 

( . which contains w expl ic i t ly  and um1 (x) - becomes the solut ion of (3.2) for any 1 
I 1 

value of w. The se lec t ion  of the 'proper method and of t h e  proper i n i t i a l  approximate , 
! 

solution uo are  en t i re ly  determined by computational and physical considerations. 
I 
I 

I I 
For simplicity i n  computation (Rem-rk 3)) we s h a l l  give up Newton1 s method here. I 

j 
Since we are mainly in te res ted  t o  study how other solutions bifurcate from c1 (_x) 1 

1 
and from what values of w solutions sp l i t ,  it i s  reasonable t o  t r y  u , ~  (z) or some I 

I 
, I 

# I .  

other function which i s  close t o  u, (x) - as the initial approximation. Because . I ,  

I 

I (z) i t s e l f  i s  a honest solution of (3.2)) t rying u , ~  (x) as  uo w i l l  not lead t o  
I 

u-1 , 1 I 
i -;-I  . 

any other solution. Hence the next reasonable choice f o r  uo is the solut ion of the - ! 

l inearizhd version of (3.2)) i .e.  
\ ':, 

. .- uo (2, 7) = u-= (5.) + @ (x, 7 )  
',,., 

CO 

where P (5,' r )  E Cw is the general nontrivial  solution of 

(3.4) i, CF' [ u - ~  (21, woII @ = 0 
', I 

sa t i s fy ing  the corresponding homogeneous boundary conditions of (3.2) and was a re  I 

\ 
I 

the values of w for  the existence of 9. Next we adopt the  second modified Newton1 s 1 

I 
method by se t t ing  = [F' (u, , w,)]-l , for  it is  much more easier t o  inver t  

B' (u-1, wo ) than ~'(u, ,  wo). ,Also the selection of the second modified Newton's 

I method with this par t icu lar  choice of r gives us not only a method of successive 

approximations for  constructing u but also for  w. 1 
I 

Now let vn+l = Qn+= - G n , n = 0 , 1 , 2 ,  3, ... (3.5) I 

Q) 

where {$I E Cw. &om (i.4) and r = [~ ' (u,  , s 0 ) l 1 ,  we obtain a sequence of in- ; 



homogeneous l i n e a r  equations. 

CF'CU, (51, ~ 0 1 )  vn = - FCCn, (5, T I ,  wn], n = 1, 2, 3, - 0 -  (3 .6 )  

xhere vn(n = 1, 2, 3, ...) s a t i s f y  the  proper homogeneous boundary conditions. 
I 
1 

The subscr ip t  "nu i s  i n se r t ed  i n  w here t o  indicate  t h a t  [con] i s  considered as t h e  i 

approximating sequence f o r  w, A s  a consequence of our p a r t i c u l a r  choice of T, t h e  

homogeneous form of (3.6) has  non t r iv ia l  solutions.  The so lvab i l i t y  condition o f  i 

I 

(3.6) i n  Ha [ lo]  is t h a t  i t s  r i g h t  hand s i de  must be orthogonal t o  a l l  non t r i v i a l  
I 

! 

C 
so lu t i ons  of the  ad jo in t  homogeneous form of (3.6). i 

1 I 

i 
Often roo, the  values of 0 fo r  which non t r i v i a l  solut ions  of (3.4) exist, a r e  I 

i 
I ca l l ed  eigenvalues and form a d i sc re te  se t ,  f o r  example ' l 

If X k  i s  a simple eigenvalue, there i s  only one corresponding eigenfunction or 
- 

n o n t r i v i a l  so lu t ion  tPk(s, T )  and then 

if Xk is a mul t ip le  eigenvalue with mul t ip l i c i ty  o, there are a d i f f e r en t  correspond- 
I 

. I  ' .. 

where a's a r e  a r b i t r a r y  constants. 

Let the  ad jo in t  of  (3.4) have eigenvalues hk and corresponding eigenfunctions 

In the  first case, t h e  orthogonal condition 

t ( ~ 2 ,  KQn-1 (z, 71, wn]) = 0, n = 1, 29 3 9  a * *  (3.10) 

g ives  t h e  expression of urn as a function of a, and i n  the  l a t t e r  case, the orthogonil 
I 

condi ti ons I 



f 

lead t o  a system of a nonlinear homogeneous algebraic equations of o + 1 unknown 
P 
I wn and a,.,, 1 = 1, 2, ..., o which can be hopefully solved f o r  &i] a;', l < q i _ o  

and m, as a funct ion  of aq ai-l . If u -I =, (3.11) will be a system of in f in i t e ly  
I 
I 

I many equations whose so lu t ion  (91 w i l l  make lluollc -t unless only f i n i t e  number 
W 

~ o w ' l e t  4 = E& = c,($ and F a nonlinear operator which maps an open subspace 

cm(S) of 4 i n t o  Q . Let F have a zero and a continuous second ~ r d c h e t  derivative 
W 

EO - 
i n  the sphere S {u E c,(D): I]u - uo(lCW 5 R < m] . Then we have a theorem for the 

existence of a solut ion d* d u-= E S of (3.2) such that  ilu" - u 11 is small. " CW 

Theorem 3: Let there  ex i s t  a bounded l inear  operator I' 
- - 

such tha t  Ilr ~ ( u , ,  cy 111 < 
- =w - 

and Ilr F" (u,w)llcw < -, u E s. 
A 

If J and !IF'(u~, wo) - rillc are  continuous functions of 11111 and both of them 
aJ c W 

equal t o  zero as ll1ll = 0, then fo r  l l m l [  > 0 but small enough, {fin] converges 
cW 

uniformly t o  a snlunion u* E S of (3.2) such t h a t  U* 6 u,. 

~ o o f :  S n c e  llr F' (u,, e,) - IllC < IlrIIc II~'(uo9 eo) - r-1 [ I G  , from hypothesis 
W W W 

we can w e  the r i g h t  hand s ide  smaller than one by choosing 11111 > 0 (or {a,-,]) but 

small enough. Hence the  condition (2) of theorem is  sa t i s f ied .  Next, if 

Ilr P ( u ,  w)ll i s  bounded, w; can always take a positive r e a l  number M large enough 
A 

such t h a t  [Ir Fr(u,  .)llC < M.(K < -  for u E S. 
w 

Upon rewriting the existence conditions (2.13) and ( 2 . ~ )  of theorem 2, we obtain 

the inequality for  the existence of solutions, . . 

5 < Min. ( 1 -  , R 1 -  - h R MI]. 



From the hypothesis, ? ckn be made s d  enough t o  sa t i s@ the above inequality 

by choosing ll$llc > 0 but  smal l  enough. Because of the norm i n  C,, {sn] converges 
a, 

uniformly t o  a so lu t ion  u* E S of (3.2). By our par t icular  way of constructing 

the approximate solution, it i s  obvious t h a t  u" # u, unless 119]10 = 0. Q.E.D. 
W .  

A 

Remark 4: The uniform convergence of {uA i np l i e s  the convergence of {w,]. 



I V  A Nonlinear Scalar Wave muation 

.As a simple example i n  application of the second modified Newton's method, 

we s h a l l  consider the  following two-dimensional nonlinear sca la r  wave equation, 

Utt - 'kr - f(u) = 0 O < x < n  - - (4.1) 

- . . < t < m  

where f (u) i s  a i n f i n i t e l y  Fre'chet different iable  real  functional such tha t  

We seek a solution of (4.1) sa t i s fy ing  the simple boundary condition 

U(O, t) = u(n, t )  = 0 

and the  periodicity condition 

where w i s  the unknown angular frequency of the solution. For convenience, we - 
introduce a new time scale .  7 = w t  . Under t h i s  transf omation, (4,1), (4.3) 

and (4.4) become 

2 ~ ( u ,  w) = w u,, - u xx - f (u)  -0, 

U(O, T) = u(n, 7) = 0 

and s U ( ~ ,  7 + &) =.u(x, T) . 
The time independent solution of this problem i s  

Q) 

If we r e s t r i c t  the domain of F t o  be Cw (n , then F maps C: i n to  ck-' U, for  any 

k 2 2 and has i n f i n i t e l y  many continuous ~re 'che t  derivatives i n  c ~ ( Q .  The 

f iret  two of them are  



(4.10) I and. F " ( ~ )  = - f"(u) . 
Hence from (3.3), (3,4), (3.6), (4.8) and (4.9), we obtain 

m ~ d  v (x, T +  TI) ' vn(x> T) 3 n =. 1, 2, 3, * * *  9 n (4.13) 

where u0(x, T) = ( a  s in  p T + b COB p T). s i n q  x (4.1b) I 
! 

md w2 = p'2[q2 - f '(o)], o ( 4- 15) i 
! 

where (a, b) is a p a i r  of a rb i t ra ry  constants and (p, q) is a p a i r  of integers I 

with the condition q2 > f'(0) f o r  wo t o  be real .  For s implici ty  we may choose -- - 
the origin of T - axis such t ha t  

uo(x, T) = a sin p T s in  q x = P . ( 4. 16) 

Since ( 4 . )  (4.12) and (4.13) form a self-adjoint system and w, i s  a simple 

eigenvalue, the orthogonal condition (3 .lo) becomes 

By the  method of generalized Cireenls function, the solutions of (4.11), (4.12) 

and (4.13) a re  

I 
i 

217 n 
J0 J o n  ( - 1  wn) d ~ d ~  r =-C 1 3 s in  m x  TiZ m=1 f '(o) - m2 (4.18) i 

8 

I , (fnf sin 47 s in  mg($-gwn)~d.r) s i n  AT s i n  mx 
i 

h + F * A=l c m.l. z o o  :i 
f f (0 )  - ma + w t  j2 

MP m f q  
-- 

+(J:= Ccos  i r  s i n  rnxg(u* cos 17 sin mX 
n-1 , I 



where 5 a re  a rb i t r a ry  const&ts,  ' 

n 
2 a I 1 I 

In par t i cu la r ,  the  f i rs t  correction t o  wo can be obtained by s h p l y  using I 

I 1 

(4.16) and (4.17). Hence 

Q) v +I 
a a -2 3 f(3)(0)a2 + I 

I " 

L dv) (0) a..-lcn~on(sin PT s i n  qx) dxd7-J -" . lo=-p [-j? 
I + v=5,7>9,.., y! 

(4.19) 1 
a 

of which the  f i rs t  term agrees exact ly  with t h e  second correction t o  wo of t he  
I 
I 
I 

I 

perturbation nethod of J. B, Keller  and L. Ting [l] under the assumption of / 

I 
f (2)(0)  - 0. 

I 

i 

i 
To show the  convergence of {%I, we invoke Theorem 3 of which conditions I 

j 
I 
I 

can be v e r i f i e d  easily.  Since I 

I I 

from (4.16) and (4.18) they a r e  continuous functions of II6II = a and equal t o  I 

Cw i ! ,  
zero as (Igl[ = 0. Also 

cw 
[ 
I 

A 

Hence by Theorem 3 ,  converges uniformly f o r  s m a l l  enough a > 0. 

V Another Simple Example: 

, , 
Now we consider another simple example, I ,  

i 

where ~ ( p )  i s  a i n f i n i t e l y  ~ r g c h e t  d i f fe ren t iab le  r e a l  function of ux such 
I 

1 
I 

I t h a t  
i 
1 

i 
E We seek a solution of (5.1) sa t i s fy ing  t he  simple boundary condition ,I I 



and t he  condition 

4 %  t + rnoi1) = i(X, t )  (5.4) 

w i t h  w being the unknown a;ngular frequency o f  the solution. Under the trans- 

formation T = ~ t ,  (5-11, (5.3) and (5.4) become 

2 
F(U, W) i w p(x)uTT - T(%)+ 0, (5-5) * 

U(O, 7) ' 0 r u ( ~ ,  7) " L ( 5 6 )  

and 

I3 t h i s  case, the time independent solution i s  

.a3 - 
Let the domain of F be C (D).  Then F has i n f in i t e ly  mamy continuous Fre'chet 

w 

derivatives in C- (5) and the first two are 
U) 

and !:\ 

From (3.3); (3.4), (3.6), (5-8) and (5.9), we obtain 

and vn(x3 T + 27~) n)- vn(x, 7) 9 n = 1, 2, 3, ; c -  (5.13 

with 

u (x, 7 )  = x + (a s in PT) x (x) = x + 4 
0 Q 

and (u: = p-=lq , -- 



where A is a simple eigenvalue of  the  problem 
9 , , 

such t h a t  . 

for  any i # q and any in tegers  j and p; 

%(x) i s  the corresponding eigenfmction . 
From the  orghogonal condition (3.10), we ge t  

2 a2$_1 -1 

an = (9, p G )  ,$ ) 0,  ~ ( ; ~ - l  1 ) , n = 1, 2, 3, - - . - -  
X ax2 

and by the  method of  generalized Green's function, we obtain 

vn(x, 7 )  =-r g(Gn-ly 

where ~ ( x ,  x:d) s a t i s f i e s  

G(O, x', a) = G(L, x', a)=O . 
lh part icular ,  t h e  first correction t o  cuz due t o  the nonl inear i ty  is 

which, i n  general, i s  nonzero f o r  at l e a s t  one T(") (1) # 0, v = 2, 4, * =  - 
* 

15 



I. The convergence of  {GI can be e a s i l y  shown also. S h c e  

I by (5.19) they a r e  continuous functions of l l~ll OC a and equal t o  zero as []+I1 =O. 
cw cw 

Furthermore, ! I 

Hence by Theorem 3, [k] converges uniformly. f o r  a > 0 s m a l l  enough. 



~ 1 :  D - ~ ~ c u s s ~ ~ ~  

I n  t h i s  section we s h a l l  make a brief comparison between the per- 

tnrbation technique of J. B e  Keller and L o  'Ping [l] and our method described i n  

~ e c t i o n s .  Since there is no exact periodic solutions available and rates 

of convergence are hard t o  cane by, it is very diff icul t  t o  discuss the relatiye 

advantage of these two methods for constructing the approximate periodic solutions. 

1 ~ o w e v a  in conputing w2, the  perturbation method always gives zero contribution 

to w:-& or 3 i n  [I], the f i rs t  correction t o  &, while the second modified 

Newton's method of ten  y ie lds  nonzero contribution. From the mechanism of these 
i 

two methods, the howledge of uo or 6, the non-trivial solution of the linear- 

ized homogeneous equation, i s  needed t o  calculate &-wg or &2 respectively; 

the howledge of uo and GI or ; and ii is  needed t o  calculate d-6 or 6j2 res- i 
I pect ive ly .  Because a l o t  of tedious computation i s  needed t o  obtain t. or ij 

/ and o%her higher order approximate solutions i n  general, we mag conclude that 

1 the secondmodif iedlTewton~$methodhasoftenadis t inctcomputat ionaladvan-  

1 t age  over the perturbation method. Furthermore, it i s  rather easy t o  show 

F , . the convergence of the approximate solutions of the second modified Newton's 
I 

method, while t o  show the  convergence of the perturbation series i s  often 

d i f f i c u l t .  It i s  t o  b e  noted tha t  our method applies equallg well t o  a 

system of inhomogeneous nonlinear hyperbolic pa r t i a l  different ial  equations = 

It should be mentioned tha t  J. Moser [El) has outlined a similar technique 

for  t h e  construction of solutions of nonlinear different ial  equations. * 1% 

essen t i a l ly  consists of constructing a sequence of approximate solutions by using 

I Newton' S method and proving the convergence by invoking Nash implicit fincti0n.d- 

! theorem 171. 
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