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Abstract

A Bayesian solution to autoregressive (AR) signal modelling is proposed.

In contrast to standard techniques, the exact posterior density of the model

parameters is derived. In addition, a numerically efficient procedure is intro-

duced which permits application of this density to compute optimal estimates,

such as minimum mean square estimates (MMSE), without resorting to multi-

dimensional optimization. Our approach can be used to investigate many signal

characteristics such as the signal's spectrum, marginal densities for prediction

or model selection. The end result is not only guaranteed to be more accu-

rate, but also more robust to model assumptions. Simulation results confirm

our expectations and illustrate the improvement over the classic, maximum

conditional likelihood (MCL) approach to AR signal modelling.



1 Introduction

The autoregressive (AR) signal model has long been utilized by tile signal processing

community [11] and, even today, the AR model continues to be an active area of

research, particularly for small sample sizes [4, 5]. This is an intriguing problem,

not only due to its inherent difficulty, but also due to its widespread applicability.

In many applications, such as speech processing, ECG analysis, or econometrics, the

signals are highly nonstationary which implies that short data segments are the norm

for signal analysis. In other applications, such as geophysics or sonar, the limiting

factor is the number of sensors that observe the phenomena. A particular example of

where the AR model has been successfully applied is the modelling of EEG signals

for biomedical applications [1].

Generally speaking, there have been two popular approaches to AR signal mod-

elling. The first approach is based on the fact that the signal covariances satisfy the

Yule- Walker equations [13]. The method proceeds by computing an estimate of the

signal covariances, based on the observed data, and then solving the resulting ma-

trix equation. This approach has the advantage of having very efficient algorithms for

solving for the AR coefficients and works very well as long as the covariance estimates

are reliable, which typically requires a substantial number of data points.

The other popular approach to solving this problem is based on classical statistics

or, equivalently, the likelihood function. This method has the benefit of utilizing the

model of the driving noise process though, unfortunately, the exact likelihood is a

complicated function of the AR parameters which is intractable to maximize, analyt-

ically. To circumvent this difficulty, many researchers use an approximate likelihood

[10] which is conditioned on the first p samples, where p is the model order. By

using this approximation, a simple solution exists for the maximum likelihood esti-

mate, which we denote as MCL to differentiate it from the exact ML estimate. The

disadvantage is, the approximation is an asymptotic one which implies that it will

work well for large data records though all bets are off when the number of samples
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is small.

Recently, Bayesian methods have been applied to the AR signal model [3, 16],

though the conditional likelihood is utilized since it results in a rather elegant solution.

The nicest property is that, if noninformative priors are used and the signal variance

is known, the posterior density is Gaussian and hence convenient to work with. In

addition, Kalman filter methods can be applied which makes this approach amenable

to real-time processing [8]. Once again, the dilemma is that this solution is only

guaranteed to give reasonable results when sufficient data are available.

In our approach, we too will utilize a Bayesian methodology though, in contrast,

we will construct the exact posterior density of the AR model parameters. By deriving

an expression for the theoretical signal covariance matrix in terms of the AR coeffi-

cients, we are able to write the true likelihood function directly. In addition, since

the variance of the driving noise process is unknown, it is marginalized analytically

using a noninformative prior.

By avoiding asymptotic results, we derive a procedure to utilize the posterior

density to examine various signal characteristics, such as its spectrum. This is in

contrast to the traditional methods, which first estimate the parameters of the model

and then use those estimates in some desired fashion, such as prediction or control [2].

To implement the required integrals, we introduce a numerically efficient algorithm,

importance sampling, which not only guarantees optimal estimates but also avoids

the drawbacks associated with multidimensional optimization. Simulation results

illustrate our proposed method and the improvement that can be attained compared

with the MCL approach, particularly for short data records. The Bayesian method,

coupled with numerical integration techniques, offers serious contention to classical

approaches, not only for AR signal modelling, but for many other estimation problems

as well.

The paper is organized as follows. In Section 2, the problem is formulated and

the necessary assumptions are stated. Following that, in Section 3, we present our
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derivations and construct the posterior distribution of the AR model parameters. The

importance sampling method is presented in Section 4 as well as to how to best take

advantage of its benefits. In Section 5, simulation results are reported which clearly

illustrate the benefit of our proposed approach and finally, in Section 6, we present

our conclusions, and suggestions for future research.

2 Problem Formulation

A real signal, y(.), is observed from N data samples. The signal is assumed to be

generated as a stationary, p'th order AR process, where p may be unknown. We may

thus model the signal as

p

y(n) = L ajy(n - j) + e(n)
j=l

n = 1,2,...,N (1)

where e(n) is a sample from a white Gaussian process, with zero mean and unknown

variance (1"2,and aj, j = 1,. . . ,p, are the coefficients of the process.

It is well known [13], that the Z-transform of the signal is given by

(1"2
.

1

2 '
H(z) = 11- I:j=l ajz-J

(2)

where z is a complex variable, and that the poles of the process correspond to the

zeroes of the characteristic polynomial. That is, they are the solutions to the equation

zP - alzp-l - a2zp-2. . . - ap = O. (3)

The stationary assumption of the model implies the constraint that the poles of the

process reside within the unit circle in the complex plane. This, in turn, constrains

the coefficients, aj, j = 1,.. . ,p, to lie in a region n c ?RP,which we will refer to as

the region of stationarity.

Our objective, given the model, is to determine the exact posterior density of the

AR coefficients given the observed data, which is written as f( aIYl,N) and we have
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used the notation

a = [al,a2,'" ,ap]T (4)

and

Yj,k = [y(j), y(j + 1), . . . , y(k)f j :::.k. (5)

Upon deriving this density, information about the signal is to be extracted by inte-

grating the desired function using the density as a weighting function. For example,

the MMSE spectral estimate is computed as

S(w) = 1 S(wla)f(aIYl,N)da (6)

where S( wla) is the spectrum of an AR process whose coefficients are given by a.

Another example is the one-step predictive density given as

f(y(N + 1)IY1,N)= 1 f(y(N + l)la,Yl,N)f(aIYl,N)da (7)

which can be used for decision making, incorporating appropriate cost functions.

It should be noted that our approach is significantly different than the traditional

method of first estimating the coefficients and then using them to interrogate the

signal. Using the true posterior density, and marginalizing over all possible values of

a, not only guarantees improved performance (i.e., minimum mean square estimates)

but also robustness to excursions from the assumed model.

3 Theoretical Derivation

To proceed, we will use Bayes' rule to evaluate the posterior density. That is,

f(aIYl,N) = f(Yl,Nla)f(a) (8)

where f( a) is the prior density for the AR coefficients. Note, that since the variance,

0-2, is unknown, it must be integrated out of the likelihood function as a nuisance

parameter. That is,

f(Yl,Nla) = 1 f(Yl,Nla, 0-)f( o-Ia)do- (9)
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and, therefore, we can write (8) as

f(alYl N) = fa f(Yl,Nla,o-)f(o-la)do-f(a)
, fa fa f(Yl,Nla, o-)f( o-Ia)f(a)do-da

(10)

We would like to justly compare our approach with other techniques and thus we

will adopt non-informative priors by making use of Jeffreys' invariance rule [3]. This

implies that f(a) is a constant over the region of stationarity, n, and that f(o-Ia) ex ;.
Other Bayesian approaches to AR signal modelling [5, 16] utilize the improper prior,

f(a) = C, a constant, over RP which, of course, does not imply the signal is stationary.

Also, standard maximum likelihood estimates of a can be thought of as maximum a

posteriori (MAP) estimates when the improper prior is used.

The likelihood function, f(Yl,Nla, 0-), needs to be determined and, to facilitate

this, we can decompose it as

!(Yl,Nla, 0-) = f(Yp+l,NIYl,p, a, o-)!(Yl,pla, 0-). (11)

The first term, in (11), is the conditional likelihood and is written as

!(Yp+1,NIYl,P' a, 0-) = {CI-_?\~N_""? exp { - 2~2 (Yp+1,N- Yp,Na)T (YP+l,N - Yp,Na)}

(12)

where we have introduced the (N - p) x p matrix,

Yp,N = [YP,N-l:'" :Yl,N-P-l] . (13)

In the traditional approach to AR signal modelling, an asymptotic argument is

utilized and the conditional likelihood is used to construct point estimates of the AR

coefficients. The main benefit to this approach is that the conditional likelihood is

in a form which is equivalent to when a linear data model is assumed and, therefore,

the MCL estimate has a simple and well known solution [9]. In addition, if 0- is

assumed known and a flat prior is used for a, the posterior density can be shown to

be Gaussian [3] which is ideal for computing point estimates and confidence ellipsoids.

The drawback is that this approximation is asymptotic and, thus, only valid for large

data records.
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The second term in (11) is the likelihood of the first p samples, the evaluation of

which entails expressing the theoretical covariances in terms of the AR coefficients.

This, of course, complicates the exact likelihood which is why it is traditionally ig-

nored. Not only does the model not conform to a linear hypothesis, but also the

posterior is non-Gaussian even when (J"is known. Let Rp denote the p x p covariance

(14)

whose i,j'th element is R(i- j) = E[y(i)y(j)]. It should be noted that Rp is Toeplitz

and therefore many fast, numerical algorithms are available for calculating its inverse

and determinant.

The Yule-Walker equation [2] for the signal covariances is written as

R ~ 2
p+1a= (J" e1 (15)

where aT = [1, aT] and e1 is the standard, unit coordinate vector. The matrix Rp+1

can be written as

Rp+ 1 =

T
r p+ 1Ho

T
rp+1H1

(16)

r~+1 Hp+1

where r~+1 = [R(O), R(I),..., R(p)] and the Hk's are constructed, recursively, via

simple linear operations. Letting Iq denote the q x q, identity matrix and Om,n the

m x n, zero matrix, the Hk's can be written as Ho = Ip+1 and

Hk = Hk-1I1 + I2Hk-1I3 (17)

for k = 1,...,p + 1, where

-

[

Op,l Ip

]
11 - ,

0 01,p

(18)
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matrix,
r

R(O), R( 1), . . ., R(p - 1)

Rp=
I R(I), R(O), . . ., R(p - 2)
I .,

R(p-l), R(p-2), ..., R(O)



[

010p 0

]

12 = ,
Ip Op,l

(19 )

and

[

1 010p

]

13 = .
Op,1 °poP

Thus, Hk is constructed by shifting all the columns of Hk-l to the right and replacing

(20)

the first column with that of Hk-1, shifted down one.

Dsing the above construction, we may write the Yule-vValker equation as

T
rp+IHoa

T -
rp+l H1a 2= (j el (21)

r~+IHp+la

or, by rearranging terms,
-TH T
a 0

-TH T
a 1

r - 2
p+l - (j el (22)

-THT
a p+l

and, thus, rp+l can be solved for as

r 2A -1
p+l = (j el (23)

where
-TH T
a 0

-T H T
a 1A= (24)

-THT
a p+l

If, in addition, we introduce the matrix i = [Ip,O],and noting that rp = irp+l then
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the covariance matrix, Rp, is written as

Rp = a-2

(IA -lel)THo

(IA -lelfH1
(25)

(IA -leI )THp

Hence, we may express the likelihood of the first p samples as

1

{
1 T -1

}!(Yl,pla, a-) = in - ')\~hl 11/') exp - 2a-2Yl,pRp,aYl,p . (26)

where the matrix Rp,a = 0-\ Rp is the correlation coefficient matrix, defined via (25),

and we have explicitly noted its dependence on a. Given a value of a, Rp,a is easily

determined via (25) and its inverse and determinant can be efficiently computed. As

previously noted, most research to date has ignored this term, which is reasonable

for large sample sizes. For short data sequences, however, this term is significant and

can not be ignored.

Combining (12) and (26), the complete likelihood of the AR coefficients can be

wri t ten as

f(Yl,Nla, a-) = 1

X exp {-2~2 ((Yp+l,N - Yp,Naf(YPH,N - Yp,Na) + yr,pR;'~Yl,P)}'

(27)

The marginalization of a- can be carried out by using the integral formula

r= ~e-~ da-= r(L)
Jo a-2L a- 2;3L (28)

which enables us to write

IR -111/2
!(aIYI,N) <X p,a

((YP+I,N - Yp,Na)T(Yp+l,N - Yp,Na) + Y[pRp;1Yl,P)
(29)

where <Xis the proportionality sign. We may write the posterior density in a more

convenient form by introducing

a = (Y;'N Yp,N )-IY;'NYP+l,N, (30)
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which is the MCL estimate for the AR coefficients, and

Pt- p,N = IN-p - Yp,N(Y;'NYp,Nr 1Y;'N, (:31)

which is the orthogonal projection operator that projects vectors onto the subspace

orthogonal to the column space of Y p,N. Using the above notation, the posterior

density of the AR coefficients is written as

f( aIY1,N) ex:
JR -1

1
1/2

p,a
N/2 .

((a - ilVYJ,N Yp,N(a - il) + Y[pR;,lY1,P + yJ+1,NPt-P,NYP+1,N)
(;32)

4 Numerical Solution

Given the posterior density, we may compute the MMSE estimate of any function

of the AR model parameters, h(a). One such possibility is h(a) = a which would

provide us with the mean of the posterior density. To compute the estimate, we merely

integrate the desired function using the posterior density as a weighting function,

hMMSE= 1 h(a)f(aIY1,N)da. (33)

In general, the required integrations will not have a closed form solution and

thus, an efficient numerical procedure is needed. One approach is to use a numerical

quadrature procedure [14, 15] which estimates the integral by using a grid, which is

typically non-uniform, over the region of integration and local spline, or polynomial

approximations which can be integrated analytically. Though highly efficient for one

dimensional integration, this approach suffers from the following drawbacks:

1. Computations increase exponentially with the dimension of the integration re-

glOn.

2. Error estimates are not easily computed.
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:3. If a more accurate estimate is required, the previous estimate is thrown out and

the complete procedure must be repeated.

-I:. The estimate is susceptible to the spline, or polynomial, assumption.

An alternate approach is to use a Monte Carlo procedure [7] which based on the

rather simple principle that a deterministic integral can be estimated via a stochastic

process. This approach has been successfully applied to many problems in statistical

physics and econometrics. Formally, if the expected value of a function, h( x), with

respect to a probability density function (pdf), f(x), is to be computed, one may

estimate this integral by the following,

1 N
HN = - 2:h(Xi)

IV i=l
(34)

where the Xi'S are samples drawn from a population governed by the pdf, f(x). It

can be shown that the Monte Carlo estimate is unbiased and strongly consistent. In

addition, due to the Central Limit Theorem, the estimate is asymptotically Gaussian

and therefore, error estimates can be easily computed[6].

In many cases, the pdf f( x) is not easily sampled. In such cases we can make use

of a technique known as importance sampling which uses the fact that the integral

can be rewritten as

{ h(x)f(x)dx = ( (
h(X)f(X)

) j(x)dx
Jx Jx f(x)

(35)

where we have tacitly assumed that the integrand on the right side of (:35) is < 00

except possibly on a countable set of points. In addition, we require that the support

of f contains the support of f. The integral can thus be estimated via

1 N f(Xi)

fIN = IV~h(xd j(Xi)
(36)

where the xi's are now drawn from the density j(x) which is, hopefully, more readily

sampled.
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The importance sampling estimate enjoys all the properties of the basic Monte

Carlo method, though the rate of convergence depends on the choice of the sampling

function, f(x). In general, the function should be chosen to be as "similar" to f(x)

as possible and, preferably, have heavier tails. In many cases, determining the ap-

propriate f( x) is a difficult task and, thus, adaptive techniques are a current area of

research [12].

The benefits of the Monte Carlo methods, including importance sampling, are

well documented [6]. Most notably, the convergence is independent of the dimension

of the integration region which, as previously stated, can not be said of numerical

quadrature. In fact, there is always a dimension, d, for which the Monte Carlo

converges faster than any fixed quadrature rule. In addition, an error estimate is

readily available, more accurate estimates require only additional sample points, and,

finally, no assumption is made on the function to be integrated. In fact, one of

the most successful applications of importance sampling is when the function has a

singularity within the region of integration [7].

For our application, we would like to use a Gaussian distribution, with mean J1

and covariance C, for f which is simple to implement on a computer. As noted

previously, other Bayesian approaches to this problem result in a Gaussian posterior

when (]"is known with mean equal to it and covariance (]"2(YJ.NY p,Nt1. If we ignore

the effects of Rp,a in (32), we can see that the true posterior should have a maximum

close to the it and its contour ellipsoids will be basically oriented in the same manner

as the, above mentioned, Gaussian density. In addition, the true posterior will tend

to be strongly peaked, due to the exponentiation, and therefore the Gaussian will

have larger tails which is desirable. Unfortunately, we do not know the value of (]"so

we will use the conditional estimate

A 2 1 T ..L
(]" = -- Yp+l,NPY p NYP+1,N.

-p ,
(37)

This is not a serious drawback since, as indicated before, we only need a sampling

function which approximates the original. Thus, for j(x), we will use a Gaussian
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density with f1 = a and

c - 1 T pi. (yT Y )
-1

- lV - pYp+1,N Yp,NYp+1,N p,N p,N
(:38)

It should be noted that by using the Bayesian methodology, along with the im-

portance sampling technique, we have replaced the traditional approach of maximiz-

ing the likelihood, or posterior, with the process of integration. Multidimensional

optimization procedures suffer from the same curse of dimensionality as numerical

quadrature techniques. In addition, convergence problems and local extrema hinder

those methods, except for some idealized cases (i.e., convex cost functions defined on

compact sets). One can see that (32) is a complicated, non-linear function of the AR

coefficients and that problems such as local extrema would be encountered. Not only

does the Monte Carlo method guarantee convergence but also is amenable to parallel

processmg.

5 Simulation Results

To illustrate the improvement that can be obtained by using the Bayesian approach,

a number of simulations were performed. A second order AR process was simulated

for various values of al and a2 with (J"= 1. If we express the poles of the process in

polar form, pe-xjB, it can be readily shown that

p = v-a2 (39)

and

e = tan-1 [J- (1 + 4a2/ an] . (40)

The simulations were run for values of p ranging from .2 to .8 and e from 0 to 7r/2

radians. Initially, the number of samples that were used was 10 which is regarded as a

short data sequence. Estimates for the AR coefficients were computed using both the

traditional maximum conditional likelihood (MCL) approach as well as the proposed

method (MMSE).
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To analyze performance. the R:YIS error for the AR coefficient estimates were

computed and to insure statistical significance, 500 trials were performed for each

run. The number of sample points used in the Monte Carlo integration was 5000.

The RMS errors for three representative values of p and () are shown on Tables 1-:3.

Table 1: RMS errors for MCL and MMSE estimates of AR coefficients for 2nd order

AR process with p = .8 and () = 0 radians.

As can be seen from the tables, the proposed approach yields superior estimates

and outperforms the MCL method for these pole positions.

To visualize performance, scatter plots for the MCL and MMSE estimates are

shown in Figures 1-3. The values of p and () are the same as in Tables 1-3, respectively.

The scatter plots show that the Bayesian approach clusters the estimates closer to

the true value of the AR coefficients which are located at the crosshairs. Figure 1

indicates a bias in the Bayesian method, which is reasonable since the coefficients lie

on the boundary of n and no estimates can occur outside this region. In Figures 2 and

3, the true values of the coefficients are well within n and the plots clearly indicate

the benefit of computing MMSE estimates regardless of the stationary constraint.

Table 2: RMS errors for MCL and MMSE estimates of AR coefficients for 2nd order

AR process with p = .8 and () = 7r/8 radians.
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MCL MMSE

Eal .458 .255

Ea2 .41:3 .120

MCL MMSE

Eal .347 .281

Ea2 .353 .113



Table :3: RMS errors for MCL and MMSE estimates of AR coefficients for 2nd order

AR process with p = .8 and () = 7r/2 radians.

The simulations were run for many additional pole positions with the results shown

in Figures 4-7. In these plots, the combined RMS error of the AR coefficient estimates

are shown as a function of () for fixed p. Figure 4 is the performance with p = .2.

Since the poles are close to zero, in the complex plane, the process looks quite like the

driving noise sequence which helps to explain why the performance of the MCL and

MMSE are nearly equivalent. As p approaches 1, which implies the poles approach the

unit circle, the improvement in performance that is obtained by using the Bayesian

approach becomes more apparent. For p = .8, in Figure 7, the MMSE estimates are

clearly superior with at least a 50% improvement in RMS error. As ()approaches zero,

and the poles become close together, the MCL performance degrades substantially

while the MMSE actually improves slightly. This is particularly interesting because in

many applications the poles of the AR process are located near each other and these

results indicate that the Bayesian approach will enjoy a certain degree of immunity.

To examine the performance as the sample size increases, an experiment was

performed with the number of samples, N, equal to 25. The RMS curves are shown

in Figure 8 for the case of p = .8. Clearly, the MMSE estimates are still better

than the MCL though the margin of improvement is less than in the case of N ,;,

10. This is expected since as the number of samples grows, the MCL becomes a

better approximation to the actual MMSE estimate. These simulation results clearly

illustrate the benefit of using a Bayesian methodology as well as provide evidence of

the efficacy of the importance sampling technique.
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6 Conclusions

[n this paper, we have introduced a Bayesian solution to the problem of AR signal

modelling. By utilizing the exact likelihood expression and formulating the theoretical

covariances in terms of the AR coefficients, the posterior density was constructed using

noninformative priors for both the AR coefficients and the signal variance, which was

marginalized analytically. The resulting posterior density can then be used to examine

many signal descriptors or characteristics.

To perform the required integrations and generate MMSE estimates, a highly

efficient numerical technique, importance sampling, was introduced and how it can

be applied to the AR parameter estimation problem was discussed. The method

guarantees consistent estimates of the necessary integrals and, further, avoids the

pitfalls associated with multidimensional optimization.

In addition, simulation experiments were performed where the MMSE and MCL

estimates of the AR coefficients were compared. The results indicate the improvement

that can be attained by using a Bayesian approach and in all cases examined the

MMSE estimates were superior. In the future, it will be interesting to examine

the problems of prediction and spectral estimation with the AR model using the

proposed approach and to compare performance with classical methods. Also, since

the importance sampling procedure has clear benefits as compared to optimization

methods, it will be worthwhile to apply this technique, with the Bayesian philosophy,

to other signal processing problems, such as detection and estimation of sinusoidal

signals.
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Figure 1: Scatter plots of (a) M CL coefficient estimates and (b) MMSE estimates of

AR coefficients for 2nd order AR process with p = .8 and e = 0 radians. Crosshairs

indicatetrue values of at and a2.
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Figure 2: Scatter plots of (a) MCL coefficient estimates and (b) MMSE estimates of

AR coefficients for 2nd order AR process with p = .8and e = 7r/8 radians. Crosshairs

indicate true values of al and az.
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Figure 3: Scatter plots of (a) MCL coefficient estimates and (b) MMSE estimates of

AR coefficients for 2nd order AR process with p = .8 and ()= 7r/2 radians. Crosshairs

indicate true values of al and a2.
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Figure 4: RMS error of MCL (solid line) and MMSE (dashed line) estimates of AR

coefficients as a function of pole angle, 0, for 2nd order AR process with p = .2.
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Figure 5: RMS error of MCL (solid line) and MMSE (dashed line) estimates of AR

coefficients as a function of pole angle, 0, for 2nd order AR process with p = .4.
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Figure 6: RMS error of MCL (solid line) and MMSE (dashed line) estimates of AR

coefficients as a function of pole angle, 8, for 2nd order AR process with p = .6.
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Figure 7: RMS error of MCL (solid line) and MMSE (dashed line) estimates of AR

coefficients as a function of pole angle, 0, for 2nd order AR process with p = .8.
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Figure 8: RMS error of MCL (solid line) and MMSE (dashed line) estimates of AR

coefficients as a function of pole angle, 0, for 2nd order AR process with p = .8 and

N = 25.
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