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R. 6. Duffin 

Abstract 

This note concerns t h e  normal modes of v ib ra t ion  of an e l a s t i c  body 

subject  t o  standard boundary conditions. The Poisson coefficient- enters  

i n t o  the  problem i n  a r a t h e r  complex way, bo th  i n  the d i f f e r e n t i a l  equations 

and i n  the boundary condit ions.  To simplify t h i s  s i tua t ion  the Rayleigh-Ritz 

va r ia t iona l  pr inciple  is introduced i n  arder t o  define the  nmmal mode f re -  

quencies as s ta t ionary values .  T h i s  l e ads  t o  a perturbation formula fo r  

the frequencies as a func t ion  of the Poisson coeff ic ient .  I n  some cases 

it is found t ha t  t h i s  formula can be evaluated exactly. I n  any case the 

formula furnishes upper and lower bounds f o r  the  variat ion.  

* Prepared while the  author was v i s i t i n g  professor a t  the 'State University 

of New York a t  Stony Brook. 



The Influence of PoisscnTs Ratio on t h s  Tibre-:icaal Sp l c t rm  

1. Introduction 

If an e l a s t i c  rod is s t re tched  by r percent of i t s  length  then 

experinsnt shows t h a t  its dianeter  decreases by o r percent.  he con- 

s t an t  a is termed Poisson's r a t i o  and it serves t o  determine the  increase 

i n  volume. Clearly i f  a were .5 Ynere would be no change i n  volume, 

However measurement shmrs t h a t  o i s  i n  the range o < a < -5. For metals 

a i s  about -3 while f o r  rubber o i s  almost .5, 

A problem of frequent occurrence i n  technology concerns t he  change 

i n  the v ib r a t i ona l  spectrum of a mechanical system resu l t ing  from a change 

i n  the Poisson coeff ic ient .  For example such a problem a r i s e s  when tae be- 

havior of a system i s  t o  be in fe r red  from a scale  model. However, it may 

not be f ea s ib l e  t o  const ruct  a model with mater ia l  having the sane value of . 

Poisson's r a t i o .  

In  t h i s  note the v ib r a t i ona l  spectrum of  an e l a s t i c  system i s  analyzed 

by means of the calculus of va r ia t ions .  A perturbation form-iLa i s  developed 

which r e l a t e s  the va r ia t ion  i n  frequency of a n o r n d  mode of v ibra t ion re-  

sul t ing from a var ia t ion  i n  Poisson's r a t i o .  To use this formula i n  a precise 

way it i s  necessary t o  knaw a fac to r  q depending on the mod2 shape. How- 

ever c e r t a i n  inequa l i t i e s  a r e  eas i ly  deduced from the  perturbation formula. 

Before taking up the  general  case of a t h e e  dimensional body it seems 

bes t  t o  t r e a t  the  two dimensional l imi t ing  case of a t h i n  f l a t  p la te .  The 

problem of the tr ansvirse v ib r a t i on  of a p l a t e  i s  somewhat simpler t o  pre- 

sent  because it i s  governed by a s ingle  d i f f e r e n t i a l  equation rather than a 

system of thkee d i f f e r e n t i a l  equations. Moreover, the p l a t e  problem i s  

suf f i c ien t ly  important t o  warrant spec ia l  a t t en t ion .  



2. Dimensional Analysis of the Vibrating Plate 

The vibrating par t  of many mechanical systems may be accur ately 

described as  a clamped plate .  The dynamical properties of such systems 

are devsloped i n  the elements of the theory of e la ' s t ic i ty  [I, p. 2jOj.  

Considerable simplification r e su l t s  because: (1) the pla te  i s  regarded 

as - f l a t  and (2 )  because the thickness i s  a f r ac t ion  of C2e surface di-  

mensions so the p la te  i s  thin. - 'Under these simplifying hypotheses the 

theory shows t h a t  a normal mode of vibration of a thin  f l a t  p la te  is  

determined by the following biharmonic wave equation, 

- a*W + 2 a4w + a(w = phf2w 
ax" ax2ay2 ay4 D 

Here: x and y are orthogonal coordinates i n  the plane of the plate,  

w = v(x,g) i s  the deflection of the p la te  normal t o  i t s  plane, 

p is the density of the  plate ,  

D is the f lexura l  r ig id i ty ,  

h is the t h i c b s s  of the plate,  

f i s  the angular frequency, 

In the derivation of the above equation it i s  shown that  the f lexural  

r ig id i ty  i s  given by the formula 

Here : E is Young's modulus of e l a s t i c i t y ,  

o is Poisson's ra t io .  



O f  equal importanca are the boundary conditions. The three  main types of 

boundary conditions are: clamped edge, hinged edge, and f r e e  edge. The 

de r iva t ion  gives the f oliowing mathematical rek i t ions  which must hold on 

the  boundary [l, p. 2511. 

w = O  
Clamped edge C J aw = , - 

an 

w = o  
Bnged edge I 

Free edge 

I 

at2 

Here n denotes a normal direct ion and t denotes a tangential  d i rec t ion  t o  

the  boundary. Both these directions a re  i n  the plane of the @late ,  

A problem of concern is  how the normal frequencies depend on the 

fol lowing properties:  (1) the  scale, (2) the thickness h, (3)  the modulus 

of e l a s t i c i t y  E (4) Poissonrs r a t i o  a, and ( 5 )  the density :p. 

To t r e a t  this problem it is assumed t h a t  the p l a t e s  have similar 

plan form but d i f f e r  i n  scale .  The scale i s  determined by a l i nea r  
-/ 

dimension L which gives the "diameter" i n  a ce r t a in  direction.  



Let the basic d i f fe ren t ia l  equation be multiplied by md l e t  Ir, = X/L; 

Y = y/L, and h = pkf2~2-1~4. T h i s  gives 

a dimensionless equation. The corresponding boundary conditiorls for a f ree  

edge are, 

where N = n/L and T = t/L. 

Suppose t h a t  th.e boundary value problem is solved for these dim- 

ensionless equations. The normal modes of v ibra t ion  nay be denoted as 

w, , wz , w3 , . . . with the corresponding eigenvalues : 

1: < 1, < A3 *.. . - - 
Then the following formula gives the  m-th angular frequency f, for a 

p la te  of l inear  dimension L, thickness h, densi ty  p and e l a s t i c  rnodsus E 

The dinensionless d i f f e r e n t i a l  equation does n o t  contain the variables 

h, L, p, E or a. The dimensionless boundary condition fo r  a clamped 

edge does not contain these var iables  e i ther ,  Thus if the plate i s  

clamped all around the eigenvalue h, is not a function of the variables 

h, L, p, E or a. Then we can form the  frequency r a t i o  f o r  two pla'bes whose 



plaa forrns a r e  geometrically similar,  Then A, cancels and we obtain the 

sc aling f ornula 

It i s  worth noting, i n  connection with t h i s  formula, tha t  the e l a s t i c  

constants of metals have consider able var ia t ion.  For exanple s t e e l  has 

E = 20 x l$ dynes per em2 and o = 0.3 while gold has E = 8 x loU. and 

a = 0.4. 

If there  are  hinged. edges or f ree  edges then the boundary conditions 
.- 

contain Poissonls r a t i o .  Thus i n  t,'his czse the eigenvalue h, is  expected 

t o  be a function of a. Moreover it can not be supposed t h a t  eigenvalue 

r a t i o s  such as Al/& a r e  i~deperldent of a. 

If f r e e  edges are  present then th above scaling formxila holcls 

rigorously if &- = a. Presumably the scaling formula i s  reasonably 
I 

accurate i f  d+ is close t o  o. To atkack th i s  question the next par t  of 

tLWs paper w i l l  show how t o  estimate the var ia t ion i n  frequency due t o  

var ia t ion of Poisson's r a t i o .  



3. Variationai Treatment of the Plate 

We have seen t h a t  an eigenvdlue X is determined by solving the b i -  

harmonic wave equation for the deflection w, 

subject t o  one of %he boundary conditions: clamped edge, hinged edge, or f r ee  

edge. It i s  desired t o  f ind the variat ion ir, h resu l t ing  from a var ia t ion  

h 0. It. seems most d i f f i c d t  t o  get a hold on the problem whsn it is  

formulated i n  th i s  d i rec t  way. However the calculus of var ia t ions  affords 

an equivalent but more t ractable  formulation. This formulation, termed the 

Rayleigh-Rite method, w i l l  now be stated. 

Let two expressions V and T be defined by the following in tegra ls  

cver the area of the plate.  

Here V is  p~opor t ional  t o  the e l a s t i c  energy of a s t a t e  with def lect ion w. 

Likewise T i s  proportional t o  the kinet ic  energy i f  w were a s t a t e  of 

velocity rather than displacement, Then the eigenvalues 1, are the 

stationary vaiues of 

=  h he Bayleigh quotient). 

Here w and its variatior,  are required t o  sa t i s fy  the clamped boundary 

condition and w = 0 for  the hinged boundary, I n  a p p r d m a t e  calculations 

it is not necessary t o  sa t i s fy  the free bounds-y condition, This is so  



beczuse the f r ee  bumdarg condition turns out  t o  he a "na tu rd  boundary 

conditionTf a s  defined i n  the calculus of var ia t ions .  

The va r i a t i ona l  def in i t ion  of eigenvalues i s  very w e f u l  for  num- 

e r i c a l  computation* In par t i cu l s r  the smal les t  eigenvalue is simply the 

minimum of the quot ient  V/T fo r  the smooth funct ion w sa t is fying tne 

clamped bouJdary condition. Ths vmia t iond .  method w i l l  now be applied t o  

deCuermine the  rate of change of frequency wi th  respect  t o  Poisson's r a t i o .  

Theoren 1, - kt f be t he  frequency of a normal mods of vibratiqn of a th in  

f l a t  p la te  which is clamped on pa r t  of i t s  boundary, hinged on another par t  -- cf 

its boundary, and f r ee  on the  remaining p a r t  of i t s  boundary. T h e ~  the 

r a t e  of change f wi th  respec t  t o  Poisson's r a t i o  a i s  given by the  farmula 

where p i s  a dimensionless shape factor defined a s  - I- 

Here w(xy) i s  t h e  def lec t ion  of t he  normal mode af vibrat ion of concern. - 
Proof. .-A var ia t ion  6a in a gives r i s e  t o  a var ia t ion '  6h i n  h. and a varia- 

But the va r i a t i on  of V/T vanishes when w is a na tura l  mode so the  l a s t  term 

i s  zero and r r  

From the formula f o r  f we see t ha t  

This i s  seen t c j  caplet ;!  Vnc? proof of t he  theorem. 



To use the f o r m l a  of t h i s  theorem it i s  n e c e s s ~ y  t o  b.aw 

the s e c o ~ d  derivatives of w i n  order t o  compute p. Theye are tkee 

conceivable ways  t o  obtair, t h i s  information: (L) An a ia ly t icd  solution w 

might he availa5le fo r  a cs r ta in  value of o. (2) .The defleflection a could 

be obtained by experiment. (3) Tne deflection w could be appraxixated 

by the hyleigli-Ritz method. 

In the Rayleigh-Ritz nethod we assume a mode shape depending on 

a s e t  of par meters .  Then the Rayleigh quotient i s  minimized ~ ~ 6 t h  respect 

t o  these parameters. This gives an upper bowd t o  the l o m s t  ~ i g ~ , n v d u e  1. 

The mini.mizing deflection is  taken t o  be an approximation a d  p can be 

computed. A similar p ocedure is available f o r  higher e igem~lues .  

Cor ollary 1. The var ia t iona l  formula 

holds for  a p la te  cl-aped on all edges. 

Proof : If a function s a t i s f i e s  the bow-dary condition w = 0 it follows - 
t h a t  &/at = 0. Hence the c o ~ d i t i o n s  w = 0 and a w / h  = 0 t o g e t k r  

imply aw/& = 0 and a~r/hy = 0. Then integration by par t s  ~ . t h  respect t o  

x gives 

w w dxdy = SS yy -is wxwFndxdS 
because the boundary t e r m  has K- as a factor and so vanishes. Wce~rise 

4% 

in tegrat ion by par t s  with respect t o  g gives 



Subtracting these two equations g i ~ e s  

Rence p = 0 and the proof i s  cmplete. This confirms the r e s u l t  obtained 

in Section 2 by a d i f fe ren t  ar,ment. 

Corollary 2, - The var ia t iona l  inequality 

holds under the h;ypothesis of Theor em '1. 

Pr oof : A t  point  Q of the p la te  l e t  

But clearly 

Then the fbllowing i~?equal i ty  holds between the integrand N i n  the 

numerator of p and the integrand D i n  the denominator of p 



Consequently -1 - < 2p - < 1 and subs t i tu t ion  of t h i s  inequal i ty  i n  the  

r e l a t i o n  of Theorem 1 completes the proof of Corollary 2. 

Corollary 3. For a rectangular beam df/do = 0, 

Proof: A long rectangular p la te  may be regarded as a beam. We take. the  

x ax is  along t he  middle of t he  beam. By symmetry we see t h a t  wq = 0 along 

the  x axis. To the  degree of appraximaticn employed i n  beam theory it may 

be assuned t h a t  wq . 0. D-e boundary condi t ion along t he  edges of the 
I 

beam is  w -- n- m . .  I n  the  beam theory approximation it follows t h a t  

- wsY = - owxx. Making these approximatiom we see t h a t  

Subst i tu t ion i n  Theorem 1 completes the proof. 



vibrat ion of a Thee  ~ h e n s i o n a l  Body- 

This sect ion concerns the  normal modes of vibration of a three- I i .  ' 

dimensional e l a s t i c  body. The treatment i n  general except f o r  the 

r e s t r i c t i o n  t h a t  the  mater ia l  i s  i sot ropic  and homogeneous. Again the  j 
' I 

problem of concern is the  var ia t ion  i n  na tura l  frequencies due t o  a 
! 

v 2 i a t i o n  i n  Poissonls r a t i o .  I 
I 

We begin by a formulation of the equation of e las t i c i ty ;  for the 

purpose of def ini teness  we fol lm- the  notation of Courant-Elbert 

[I, p. 2683. Suppose t h a t  the body i n  question occupies a region G i n  

(xl, x2, x3) space with piecewise smooth boundary surface I'. Let 

(ul , u2, us) denote a s m a l l  def orrnation of each point (x, , xz, xg ) from 

the r e s t  posit ion.  Then the  s t r a in s  a re  defined as the tensor 

E . ,  = l ( 2  
13 2- ax, 

The d i l a t a t i on  i s  defined as 

If Sij  is  the s t r e s s   en ens or,. then Hookers law, s ta t ing  t h a t  s t r e s s  i s  

proportional t o  s t r a in ,  is  

Here 1 j is  the fionecker symbol and a and b are constants. By applying 

these r e l a t i ons  t o  the s t re tch ing  of a rod it i s  easy t o  show tha t  

where E i s  Young's modulus and a is  Poisson's r a t i o .  



. . 
The condition for  equilibrium i n  the i n t e r i o r  of G is 

wbere P i  denotes the body force density components. The equilibrium con- 

d i t i on  on the boundary of G is 

Here n j  denotes the exterior normal components and p i  denotes t h e  surface 

force density components ( t ract ions) .  

It now follows fr am Newtonr s equation t h a t  a normal mode of f r e e  . 

vibration s a t i s f i e s  the equations 

asi j 
2 C - =-p f Ui 

axj 

where p is the mass density a d  f i n  the angular frequency of v ibra t ion .  

O f  course, t he  type of boundary condition must be specified,  There a r e  

two types of  bowndar y conditions commonly considered; and defined a s  

follows : 

(a) Fixed boundary, ul = u2 = u3 = 0 .) 

(b) Free boundary, pl = pz = p3 = 0 . 
There are also two kinds of boundary. conditions introduced by Somigliana : 

(c) Normal fixed, un = 0, p t  = 0 j 

(d) Tangential fixed, u t  = 0, p, = 0 . 
Here un denotes the normal component of the  displacement and p t  denotes 

tine tangential  component of the sm.'face t rac t ion .  Further information on 



' 

Somigliana boundary conditions i s  given i n  reference [2]. 

By a mixed boundary condition we s h a l l  mean tha t  over a p a r t  ra of 

the surface the boundary condition (a) holds, uver a p a r t  Tb of the sur- 

face the boundary condition (b) holds, e t c .  Note tha t  i n  a nixed boundary 

condition C p i  u i  = 0 on the boundary. 

The potent ial  energy of a s t a t e  of equilibrium is 

x € - j j S i j  d ~ -  X P i u i d x -  
G I- 

Suppose tha t  a mixed boundary condition i s  i n  force so tha t  the integrand 

of the l a s t  in tegra l  vanishes. Moreover suppose t h a t  there are no body 

forces so  the energy becomes,, 

Also of concern is the kinet ic  energy quadratic farm 

Then the square of the normal frequencies are the stationary values af the 
I 

The reason being, of coirse, tht the above d i f f e r e n t i a l  equations defining 
l 

a normal mode of vibration are simply the  N e r  equations of the Rayleigh 1 

i 
variat ional  principle . I 

i 

Theorem 2. - Let f - be the frequency of a normal node of vibrat ion correspond- 

Fng t o  an arbitrary mixed boundary condition. Then the r a t e  of change of f with - 
I 

respect t o  Poisson's r a t i o  i s  given by the formula 

where q is  a dimensionless shape fac tor  defined as 



Here Eij is  the s t r a i n  tensbr-i of the nmmal mode of concern. - 

Proof: Since f is  a stationary value it follows tha t  the var iat ion i n  

u i  due t o  a var iat ion i n  a can be ignored. The reasoning i s  and%gous 

t o  tha t  used i n  Theorem 1 s o  

2 v = b ( a n , + s ) J z ~ ; , k  

log  9 = - l o g  (1 + a) - l og  (6'-2) + l o g  ( d l - 2 + ¶ )  + cons t. 

This i s  seen t o  complete the proof, 

Corollary 4. n. Then 

q = 0 and - 

More over under sca l ing  

where - L i s  a %avelengthl: and c~ is. the t ransverse velocity of sound, 

Proof: The tensor Eij i s  a pure shear if t h e  t race  vanishes; i n  o t b r  words - 
E: = 0. A pure shear may a lso  be described as an incompressible flow because 

d iv  u = 0. The tors ional  vibrat ion of cyl inders  are examples of pure shear 

modes . 
Since E = 0 i t  f o l l a r s  t h a t  Sij = a %j 

Substitution i n  the equations of motion gives 



The second summation vanishes and s o  

2 cT A =-fa u i  

Thus a pure shear mode s a t i s f i e s  the ordinary wave equation. Reducing this 

equation t o  dimensionless form completes 'the proof. 

Lema 1. Let be the s t r a in  $,&nsor corresponding' t o  a displacement u . - - J 

sa t i s fy ing  the  condition tha t  the normal component of u vanishes on the-  

boundary - T&n 

5 r J e = (div u)2 dx + 4 J ( C V ~  u12 dx. 
G G G 

Proof: By def in i t ion  

The first two *rms on the  r igh t  can be wri t ten as 

2c2 - 2E € = - 
12 11 22 -- - 

Adding such expression gives the identity : . 

z c = (div u ) ~  +%(curl u)'+ L tau,  auj au i  auj  

li 
The last;' summation can be written as  

where the vectar i s  defined as 



. To show t h a t  the  i n t eg ra l  of d iv  r over t h e  region G vanishes it is suf- 

f i c i e n t  t o  show t h a t  the normal component of r vanishes a t  an a r i b i t r a r y  

po in t  of the  boundary. A t  such a po in t  choose the coordinate system s o  

t h a t  the  xl axis  is along the normal devia t ion.  Then 

If boundary condition (a) holds t h i$  obviously vanishes. If (c )  holds 

then ul = 0 and if the b'oundary i s  smooth a t  this po in t  then au,/ax, and 

a q  /ax, a l so  vanishes -so r,=Q. T h i s  is seen t o  complete t proof. 

Corollary 5. Let a normal mode of v ib ra t ion  be such t h a t  t h e  displacement 

u i s  i r r o t a t i o n a l  i n  the region and such t h a t  tk normal component of u 

vanishes on the  boundary. - Then q = 1 - and 

2 df 1 1 1 * 
-7 = - 
f do '(FX + --)' - k w  

Moreover under s ca l i ng  

where L is  a llwavelength" and c is the  long i tud ina l  ve loc i t y  of sound. L 

Proof: Since u i s  i r r o t a t i o n a l  curl u = 0, It then fol lows from Lema 1 
- - 

t h a t  q = 1. 

An i r r o t a t i o n a l  vector can be wr i t t en  as u = grad cp where cp i s  a scalar 

Thus 



The equation of motion becomes 

This may be wr i t t en  a s  

Thus an i r r o t a t i o n a l  mode satisfies the  ordinary wave equation. Reducing 

this equation t o  dimensionless f orm cmple  t e  s tk pr oof . 

Corollary 6. Suppose a normal mode s a t i s f i e s  a bopndary condit ion i n  which 

the  normal component of the displacement vanishes on t he  boundary then 

CKqd and - -  - 

proof : By def in i t ion  it i s  c lear  tha.t q 2 0. On t h e  other hand Lemna 1 - ,  
! 

gives q - < 1. Then 0 - < q - < 1. Moreover experiment shows t h a t  0 < a < % so  

the  r i g h t  s ide  of the  formula of Theorem 2 i s  a monotone func t ion  of q. 

Putt ing q = 0 gives the f irst  inequali ty and put t ing q = 1 gives the  second 

inequali tg . 

Corollary 7. Let a normal mode s a t i s fy  an a rb i t r a ry  mixed boundary condition. 

Then - 

Proof z By the  Caiidhy inequality - 
€= = (I: E ~ ) ~  5 3 z 4.< 3 'z $?* 

TI- 

Thus 0 5 q 5 3.  Substi tut ing q = 0 and q = 3 i n t o  t he  f ormd-a of The? em 1 

y ie ld s  the  proof. 

It is worth noting t ha t  Corollary 7 would apply t o  a p l a t e .  However, 

it is seen t h a t  Cor.ollary 2 gives a be t te r  upper bound. 



5. Discussion 

This note was suggested by problems e n c o d e r e d  by engineers i n  

sca l ing  models. The writer is indebted t o  H. C .  Nathanson, W. E. Newell, 

G. Mot*, uld A. C . Hagg of the Westinghouse Research Laboratories for dis- 

cussions concerning such questions. Such models may be smaller or longer 

than the actual  machine . Thus the model of a steam turbine r otor is smaller . 
On the other hand, the model for  a resonant gate t rans is tor  i s  larger. . 

The treatment given here shows t h a t  there i s  no d i f f i cu l ty  in scaling 

Youngis modulus. It i s  only Poissonts coeff ic ient  which leads t o  d i f f i c u l t  

questions of scaling. However, i n  some cases, such as the beam and the 

f u l l y  c _clamped -. plate,  the problem is easi ly  resolved . 
The treatment given here indicates t h a t  it would be worth while t o  con- 

s ider  other special  cases. For example Raleigh studied inextensional vibrations 
I 

of s h e l l s  and the frequencies fo r  cylinders and spheres a re  given in Lovsls 

"Elast ic i tyu,  pp. 513-514 of the 4th edition. In  a r e c e n t  paper Ross an3 

Matthews B] have t reated domes and have obtained frequencies f o r  d i f fe rent  

kinds of modes. For mcdes of bending type they obtained f o r d a s  (2), (20), 

and (U) . For high frequency modes of membrane type they obtained formula 

(43) 

li.1 the analysis given here it has been assumed tha t  the  material .has 

i so t ropic  and homogeneous e l a s t i c  proper t i e s .  However, it 'is apparent from 

the derivation t h a t  the theorems s t i l l  hold even if the mass density is not 

unifarm in the body. 

In this paper the approach t o  the problem has been by the way of avoid- 

ing  boundary integrals .  Resumably other r e s u l t s  could be obtained by plras- 

i n g  the problem in terms of such integrals.  T h i s  l a t t e r  approach proved qui te  

successful i n  a somewhat similar problem [h], is]. 
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