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Abstract- An algorithm is presented to solve the problem of performance con-
strained scheduling in data path synthesis. Given a time constraint T for completion of
the operations in the data flow graph (DFG), the algorithm minimizes the number of
functional units required in the hardware implementation of the DFG. The algorithm
achieves superior results by computing a lower bound on the number of functional units
required to execute the operations of the DFG under the performance constraint T,
and then employing a simple resource constrained scheduling algorithm to schedule the
operations into the best control steps. The lower bound not only greatly reduces the
size of the solution space, but also provides a means to measure the proximity of the
final solution to an optimal one. Since the bound is computed in polynomial time this
scheduling algorithm is very effective, especially for large DFGs. Experiments indicate
that the lower bound is very tight. For all of the test cases the difference between our

solution and the optimal solution is not greater than one. The solution of the perfor-
mance constrained scheduling problem is presented for data flow graphs which contain
multi-cycle, structural pipelined operations and functional pipelined operations. This
technique can be extended to other types of DFGs.



I INTRODUCTION

In the behavioral synthesis of integrated circuits (ICs) the fundamental steps are the

scheduling and allocation of operations on functional (hardware) units. The synthesis is

commonly divided into a data path design and a control path design. Operation scheduling

and allocation are the most important steps in behavioral synthesis [1], since they can effec-

tively determine the time-cost trade-offs. The scheduling problem can be approached from

two perspectives: resource constrained and performance constrained. Resource constrained

scheduling is the task of minimizing the completion time given a fixed amount of resources,

and performance constrained scheduling is the task of minimizing the amount of resources

given a fixed completion time. Most scheduling techniques focus on the former variant of

the problem. Presented in this paper is an algorithm to solve the performance constrained

scheduling problem using lower and upper bounds on the number of functional units re-

quired. We address the performance constrained scheduling problem because it is more

complex than the resource constrained scheduling problem. Furthermore, it is a more real-

istic problem given the advancement of integrated circuit technology (e.g., increased circuit

densi ties).

The new technique is superior to existing performance constrained scheduling algorithms

because it is more efficient in design space search, and the lower bound derived in this paper

quantifies the quality of the solution.

The research on data path scheduling and allocation is addressed in [2,3,4,5,6,7,8,9].

Early work (e.g., [8]) used exhaustive search and is therefore not practical for large designs.

Some branch-and-bound techniques such as integer linear programming have been used by

Hafer and Parker [7], Lee [6] and Balakrishnan [4]. These algorithms have exponential

complexity by nature, and therefore are not practical for large designs. Most polynomial

time heuristics are constructive (e.g., [2] [5]). They use a stepwise refinement approach in

which the selection and assignment of operations to the control steps is one at a time until

all operations are assigned.

The most notable of polynomial time heuristic scheduling algorithms are force-directed

scheduling [2], neural network based scheduling (NNS) [19] and multiple exchanging pair

selection algorithm [5]. Force-directed scheduling uses so-called force to guide scheduling,

with computational complexity O(Tm3), where T is the height of the data flow graph and

m is the number of operations in the graph. NNS [19] uses an energy function to guide

scheduling by moving the cost function towards an equilibrium point such that the total
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cost is minimized. Park's [.5]multiple exchanging pair selection algorithm with a complexity

of O(Tm2log m) is based on a partitioning algorithm in which maximal cumulative gain is

used to decrease the total cost. A comprehensive survey of various scheduling and allocation

techniques can be found in [10].

A common characteristic of these polynomial time heuristics is that they give only an

upper bound to the minimum number of functional units needed to meet the design con-

straints. Although they obtain near optimal or optimal schedules on a few test examples,

these algorithms in the general case have no way of knowing the proximity of their solution

to the optimal solution. The lack of a tight lower bound is recognized as one of the weak-

nesses in current scheduling algorithms [20]. Generally, the quality of a heuristic solution

for an NP-complete problem is proportional to the time spent in search for a good solution;

however, a quantitative measure of the quality of a heuristic solution can only be obtained

by measuring its proximity to the optimal solution. Therefore, tight lower and upper bounds

are essential to providing a good measure of the quality of an algorithm when the optimal

solution is too expensive to compute.

The purpose of our paper is to present a new polynomial time algorithm to solve the

performance constrained scheduling problem such that it gives both a lower and upper bound

to the optimal number of functional units required to finish all the operations in a data flow

graph under time constraint T. Since our algorithm computes a lower bound on the optimal

solution, it is possible to observe the proximity of the solution to the optimal one. The design

space is well defined by the lower and upper bounds, and when used in conjunction with a

simple resource constrained scheduling algorithm, the functional units can be successfully

allocated to operations to meet the time constraints in short search time. We have tested our

method on 25 different data flow graphs for various time constraints and types of operations,

and our solutions differ from the optimal solutions by at most one.

The organization of our paper is as follows. Presented in Section II are the bounds on the

number of functional units for non-pipelined, structural pipelined and functional pipelined

cases. Presented in Section III is the "cut the longest queue" scheduling algorithm for non-

pipelined, structural pipelined operations and scheduling algorithm for functional pipelined

operations. These scheduling algorithms are used to assign operations to functional units

and consequently give the upper bounds. Section IV contains the complexity analysis and

presentation of test examples, and the paper is concluded in Section V.

2



Active Range ActIve Range

'.'.'.'.''''.'''',.""""""""""""",..""""

::,:,:,:,~,:,:,:,:j':'::'&:::"':i:':':'::~':'::,

:::f:t:fH:f~ii

~~

(a)

0123456789

(b)

Time

10

8

4

10

0123456789

(c)

Time

Fig. 1. (a) An example data flow graph, (b) the list of active ranges for the multiplications,
and (c) the list of active ranges for the additions.

II BOUNDS ON THE NUMBER OF FUNCTIONAL UNITS

In this section lower and upper bounds on the number of functional units required to

execute the operations of a data flow graph within a specified time are derived for the non-

pipelined operations, structural pipelined operations and functional pipelined operations. As

a prerequisite for computing the bounds on the required number of functional units the as

soon as possible (ASAP) and the as late as possible (ALAP) schedules1 under the assumption

of an unlimited amount of resources must be computed for every operation in the graph,

and the critical path must be identified. The algorithms for processing the data flow graph

to find the ASAP and ALAP schedules can be found in [22]. The run time complexities of

these algorithms are O(E), where E is the number of edges in the graph.

The ASAP and ALAP schedules are used to compute bounds on the number of functional

units of each type required to execute the operations of the DFG within a specified time. The

final solution is a specification of the number of functional units of each operation type and a

schedule of all operations of the data flow graph. For example, Fig. l(a) is a data flow graph

with two types of operations: addition and multiplication. In our method the bounds for the

number of multipliers and the bounds for the number of adders are determined separately

and combined to form the final solution. The ASAP and ALAP schedules of each operation

in Fig. l(a) are shown in Table 1. In Fig. l(a) the operation identifier is shown adjacent to

the node, an oval represents a multiplication with two units of delay and a circle represents

1A schedule is represented by the completion times of its operations.
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Table 1. The ASAP and ALAP schedules of operations in Fig.1(a).

an addition with one unit of delay.

A Non-pipelined Operations

Let m be the total number of operations in the data flow graph, Tj be the time for

completing the ph operation in the graph (j = 1,2,..., m), and let integer s be the time

required to execute an operation. An m-tuple (Tl, T2,..., Tm) of completion times for the m

operations in a data flow graph represents a schedule of the graph. Let Tj be the completion

time of operation j in the as soon as possible (ASAP) schedule of the graph, and let Tj(T)

be the completion time of operation j in the as late as possible (ALAP) schedule. Note that

the ALAP completion time Tj(T)2 depends on the total completion time T.

The time interval [Tj - S,Tj] is called the active range for operation j. The active range

for each operation can be listed in a Cartesian coordinate system as shown in Figs. 1(b) and

(c). For example, in the data flow graph in Fig. l(a) the total completion time is T = 9. It

is assumed that two units of time (s = 2) are needed to complete a multiplication operation;

therefore, for multiplication 7 we have T7 = 2 and T7(9) = 4. Thus the active range of

operation 7 is [T7- S,T7(T)] = [0,4]as indicated in Fig. l(b).

Given a schedule (Tl, T2, ..., Tm) the activity of operation j in the graph can be described

by the following function.

{
It E h - 5, Tj]

f( Tj, t) =. 0 otherwise

f(Tj,f).is called the active function. f(Tj, t) is the actual representation of an operation

in a schedule (Tl, T2, ..., Tm), while the active range h - 5, Tj] represents the freedom of an

operation among all possible schedules. Furthermore, the active function of the entire data

flow graph can be described as the sum of the active functions of the individual operations.

m

F(Tl,T2,...,Tm,t) = Lf(Tj,t)
j=l

2Tj(T) is abbreviated as Tj in the sequel.

4
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F is the active function of the entire data flow graph with respect to the schedule

(TI,T2,...,Tm). F is an indication of how many operations are being executed simultane-

ously at an instant of time t given a schedule (TI, T2, ..., Tm). The problem of finding the

minimum number of functional units n to finish the computational task within time T can

be formulated as finding an integer n and an optimal schedule (TI*'T;, ..., T1:) C D such that

n = max F(TI*,T;,...,T:n,t) = min max F(TI,T2,...,Tm,t) [11],
VtE[O,T] V(rJ,T2,...,Tm)ED, VtE[O,T]

where D is the schedule space. That is, the minimum number of functional units required

is the minimum over all feasible schedules of the maximum activity during each unit time

interval over the time interval [0, T].

To find a feasible schedule under these conditions is an NP-complete problem, but there

are possibilities of finding a tight lower bound and one way to obtain a good lower bound

is to relax the constraints. There are three major constraints, the precedence relationships

between operations, the active ranges and the completion time T. We construct a relaxation

by eliminating constraints for the precedence relationships, but keep the active ranges of

operations. As a result of this relaxation each operation can be considered independently.

We define the minimum load for each operation j in the interval [tl, t2], denoted rPj(tl, t2),
as

It2

rPj(tl, t2) = min f( Tj, t )dt.
Vrj tJ

The integral indicates how much of the active function f(Tj, t) of operation j will be

present in the interval' [tl, t2] for a given completion time Tj. Therefore, rPj(tl, t2) is the

minimum portion of the active function which must be present in the interval [tl, t2] among

all schedules. The collective effect of the rPj(tl, t2)'s of all the operations is an indication of

the minimum number of functional units needed to meet the time constraint.

Given the ASAP and ALAP schedules, let nj (tl, t2) be the overlap between the active

function f( Tj, t) and [tl, t2] for the ASAP schedule, and nj(tl, t2) be the overlap between the

active function f(Tj,t) and [tl,t2] for the ALAP schedule. The overlap between two time

intervals A and B is denoted by IA n BI. The computation of minimum load rPj(tl, t2) is

given in the following lemma.

(1)

Lemma 1

rPj(tl,t2) = min{ nj(tl' t2), nj(tl, t2)}, (2)
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where

nj(tl, t2) = I[Tj - 5, Tj] n [tl, t2]1and nj(tl, t2) = I[Tj- 5, Tj] n [tl, t2]1.

Proof:

We partition the time axis into five regions by four time instances, Tj - 5, Tj, Tj - sand

Tj. If Tj - 5 ~ Tj, the partition is called a non-overlapped partition; otherwise it is called- -

an overlapped partition. Given a partition of the time axis, there are ( ~ ) + ( ~ ) = 1,5

possible positions for an arbitrary time interval [tl, t2] on the time axis depending on the

locations of tl and t2. We prove the lemma for one of the positions of [tl, t2], and the proofs

for the others are similar. Let us assume that we are given a non-overlapped partition of the

time axis and

tl < Tj - S, Tj - 5 < t2 < Tj.

According to the definition of ~j(tl, t2), it is the minimum integral (overlap) possible between

[tl, t2] and f(Tj, t). Therefore,

I
t2

~j(tl,t2) = min f(Tj,t)dt = t2 - (Tj - 5).
'<ITj tj -

On the other hand,

nj(tl,t2) = I[Tj - S,Tj] n [tl,t2]1= s

and

nj(tl,t2) = Ih - S,Tj] n [tl,t2]1 = t2"-- (Tj - s) < S.

Thus,

min{ nj(tt, t2), nj(tl, t2)} = 5 - (Tj - t2) = ~j(tl, t2).

Similarly, we can prove for the other positions of [tt, t2] that

~j(tl, t2) ~min{nj(tl, t2), nj(tl, t2)}.

.

Consider operation 7 in Fig. l(b). If [tl,t2] = [0,3], then

n7(tl, t2) = I[T7- 5, T7] n [tl, t2]1= 1[0,2]n [0,3]1= 2,

n7(tl,t2) = 1l::z.-S,T7]n[tl,tz]l= 1[2,4]n[0,3]1=1,
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and

<P7(tl,t2)= min{n7(tl,t2),n7(tl,t2)} = min{2, 1} = 1.

Consequently, the relationships between the minimum load (<pj), minimum number of

functional units (n) and the lower bound (nL) of n is given in the following theorem. The

time interval [tl, t2] is a sub-interval of [t3,t4], denoted as [tl, t2] ~ [t3, t4], if t3 S; tl S; t2 S; t4.

Theorem 2 For n to be the optimal number of non-pipelined functional units needed to

complete the computational task of a data flow graph within time T} it is necessary that for

any possible t~:ne interval [tl, t2] ~ [0,T],
m

L <Pj(tl,t2) S; n(t2 - tl),
j=l

(3)

where <Pj(tl,t2) is defined in Eq. (1). Furthermore} a lower bound on n is

nL = [max 2::j=l <Pj(tl,t2)
V[t"t2]~[O,T] (t2 - tr) 1-

Proof: Since it is the proof of a necessary condition, it must be shown that Eq. (:3) is true for

all time intervals [tr, t2]. Suppose n is the minimum number of functional units required to

implement an optimal schedule (T:,T;,...,T~), then n 2: F(T:,T;,...,T~,t) over [tl,t2] since

n is the maximum over [0, T]. Hence,

m

L <pj(tr,t2)
j=l

m

1
t2

1
t2 m

= L min f( Tj, t)dt S; L f( Tj*'t)dt
j=l VTJ tj tj j=l

l
t2

- F( T;, T;, ..., T~, t)dt S; n(t2 - tr).t,

Therefore,

n > 2::j~l <Pj(tl,t2)
- (t2 - tr)

for every sub-interval [tl, t2] of [0, T]. Thus, every 2::~} rPJY\jh)is a lower bound on n.

n is an integer, the tightest lower bound nL is

Since

nL = [max 2::~1 <pj(tl, t2)
V[t"t2] ~ [O,T] (t2 - tl) 1-

.
The number of possible sub-intervals in the time interval [0,T] is T(T + 1)/2; therefore,

there are T(T + 1)/2 different 2::~1 <Pj(tl,t2)'s to compute in order to determine nL.
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By going through T(T + 1)/2 time intervals we obtain not only a lower bound, but also an

upper bound on the number of functional units. The number of functional units needed to

implement an arbitrary feasible schedule constitutes an upper bound. The ASAP and ALAP

schedules are feasible schedules, and therefore can be used to compute an upper bound. The

number of functional units needed by the ASAP and ALAP schedules are denoted by nu

and nu, respectively. The upper bound is

nu = min{nu, nu},

where

nu = max F (Tl' TZ,..., Tm, i), and nu = max F( Tl, TZ, ..., Tm, i).
VtE [O,T]- VtE [O,T] - - -

Both the ASAP and ALAP schedules are used to derive the upper bound because both

F( h, TZ,..., Tm, i) and F( Tl, TZ,..., Tm,i) are computed for every i during the computation of

the lower bound, i.e., additional effort is not required to compute this upper bound.

The upper bound may not be tight, since only two different schedules are considered;

however, it can save unnecessary computational effort in some cases. Any schedules for which

n < nu is a better schedule than both the ASAP and ALAP schedules. The improvement of

the upper bound is achieved by using a better scheduling algorithm. The details of scheduling

will be discussed in a later section.

Example

In the example shown in Fig. 1(b) the completion time is T = 9, the total number of

multiplication operations is 6 and the delay of multiplication is 2. The multiplication is a

two-cycle operation. According to Theorem 2, among all L}~l <Pj(tl,iz)'s, [iI, iz] = [0,4]",10. 1 . ~-1 rPJ(tlh) Th h I b d h b f I
.

1
. .

gIVes t Ie maxImum Jif- ~f. \ . us, t e ower oun on t e num er 0 mu tIp lers IS

nL - rL}~l <pj(0,4)1= r<Pl(0,4) + <P3(0,4)+ <P7(0,4)+ <P9(0,4)1= r2 + 2 + 2 + 01 = 2.
(4 - 0) 4 4

The upper bound is derived from the ALAP schedule. Thus,

nu = min{ nu, nu} = nu = 2, ai i = 3.

Since nL = nu, the optimum number of multipliers is 2 and the ALAP schedule is an optimal
schedule.
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B Structural Pipelined Operations

So far we have discussed the lower and upper bounds for multi-cycle operations. If the

execution of an operation in a data flow graph can be divided into the executions of sub-

operations and can be pipelined on available functional units, then the operation is called a

structural pipelined operation. In a structural pipelined architecture the number of pipelined

functional units3 needed is different from that of the non-pipelined case. For example, a

schedule of 4 multiplications is shown in Fig. 2, and each multiplication can be divided into

sub-operations ABC and D. The number of pipelined multipliers needed to complete the

schedule is not 4 which is the maximum number of multiplications active, but instead :3

since the execution of any sub-operation of multiplication 1 can be carried out by any of

the free multiplier sub-units previously executing sub-operations of multiplications 2, :3or 4.

Therefore, the minimum number of pipelined multipliers needed is the maximum number of

sub-units4 of a certain kind, i.e. np = max{nA,nB,nc,nD} = max{3,3,3,3} = 3, where ni

is the minimum number of ith sub-units of the pipelined multiplier needed during any unit
time interval.

The idea of structural pipelining is to divide an operation into s sub-operations and

pipeline these s sub-operations onto any pipelined functional sub-unit as soon as one is

available, instead of waiting for the entire operation to be completed asjn the non-pipelined

case. The active function f( Tj, t) for each operation can be divided into s active sub-functions,

l.e.,
s

f(Tj,t) = 'Lfk(Tj,t).
k=1

Each active sub-function is defined for sub-operation k as

fk( T t) =
{

It E [Tj ~ S + k - 1,Tj - 5 + k]
J, 0 otherwIse.

After the division of an operation into sub-operations, each sub-operation in a structural

pipelined data flow graph can be treated as an independent operation with execution time

equal to one. The active function of all the ith sub-operations in a data flow graph is defined
as

m

Fi(Tl,T2,...,Tm,t) = 'Ll(Tj,t)
j=1

where 5 is the number of sub-units of the pipelined functional unit and m is the total

number of operations in the data flow graph. Fi(Tl,T2,...,Tm,t) is the sum of the active

1 ::; i ::; 5, (4)

3A pipelined functional unit is an entire pipeline of hardware.
4A sub-unit is a stage of a pipeline hardware.
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Fig. 2. Reservation table for pipelined operations in a data flow graph.

sub-functions of the ith sub-operations only. The relationships between F( T1, T2, ..., Trn, t),

Fi(T1,T2,...,Trn,t), fi(Tj,t) and f(Tj,t) can be demonstrated with the following equation.

rn ssm

F(Tt,T2,...,Tm,t) = ~f(Tj,t) = ~Fi(T1,T2,...,Tm,t) = ~~/(Tj,t)
j=1 i=1 i=1j=1

Let n~ be the minimum number of ith sub-units of a functional unit needed during any

unit time interval. Then the minimum number of pipelined functional units np needed to

complete a structural pipelined data flow graph is

{
1 2 S

}np = max np' np' ..., np .

Since the computation of n~ is based on the non-pipelined theory, we define the minimum

load similar to non-pipelined case for the kth sub-operation of operation j in the interval

[t1,t2] as
k . l t2 k

4>j(t1, t2) = mm f (Tj, t)dt.
'<IT) tj

The computation of 4>Jis the same as for the non-pipelined case except the delay of each

sub-operation is 1. From Lemma 1,we have

(5)

4>](t1,t2) = min{ nj(tt, t2), n](it, t2)},

where

nj(t1' t2) = I[Tj- s + k - 1,Tj - S + k]n [t1,t2]I

and

n](tt, t2) = I[Tj- S + k - 1,Tj - S + k] n [tt, t2]1.

nJ(t1, t2) is the overlap between the ASAP active function of the kth sub-operation and

[t1,t2], and nJ (t1, t2) is the overlap between the ALAP active function of the kth sub-operation

and [it, i2].
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The computation of the lower bound for structural pipelined data flow graphs is stated

in the following theorem.

Theorem 3 Given a data flow graph G and m operations which can be structurally pipelined

into s sub-units, the minimum number of pipelined functional units (with s sub-units) is np.

The lower bound for np is

max 2:m)..k (
npL = [max Vk.E[1,s] ]=1 'f'j t1, t2)

V[tl,t2]~ [o,T] (t
1

2 - t1) ,

where </;j(tl' t2) is defined in Eq. (5).

Proof: Because the computation of n; is based on the theory for the non-pipelined case,

according to the definition of n; and Theorem 2

m

L </;](tl't2) ~ n;(t2 - td Vk,
j=1

and the lower bound of n; is,

n;L= [max 2:~1 </;j(tl't2)
V[tl,t2]~ [O,T] (t2 - t1) 1-

On the other hand, from the definition of np,

k 2:":.1 </;k(t1,t2)
npL = [max n Ll = [max max J- J 1

Vk E [1, s] p Vk E [1, sIV[tl, t2] ~ [O,T] (t2 - td

max 2:j=1 </;1(tl,t2)
[

VkE [1,s]
1- max .

V[tl,t2]~ [O,T] (t2 - td

.
Similar to the non-pipelined case there are T(T + 1)/2 different time intervals to be

considered. By computing the lower bound, we also obtain an upper bound since the ASAP

and ALAP schedules are computed. The upper bound for the structural pipelined case is

npu = min{npu,npu},

where

npu = max max {Fk(TI, ..., Tm,tn and npu = max max {Fk(Tl' ..., Tm,tn.
Vt E [O,T]Vk E [1,s] - Vt E [O,T]Vk E [1,s] - -

Fk(Tl' .." Tm,t) is defined in Eq. (4).
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Example

In Fig. 1(b) the execution of the multiplication requires 2 units of time and the total

completion time is T = 9. If a 2-stage pipelined multiplier is used, the multiplication

operation is divided into 2 sub-operations with k = 1,2. After computing L;~I <i>}(tl't2)

for sub-operation 1 and L;~I <P;(tI,t2) for sub-operation 2 of the multiplication for all time
.

t l
..

d
.

d h h . L1~11>j(tlh) . [ ] [0 1] 1 k 11Il erva s, It IS etermme t at t e maxImum l(t2-td IS at tl, t2 = , w len . = .
Therefore, the lower bound on the number of pipelined multipliers is

npL - rL;~1 <i>}(0,1)1 = r<PHO,1) + <pHO,1) + <p~(0,1)1 = r1 + 0 + 01 = 1.
(1 - 0) 1 - 0 1 - 0

The upper bound is derived from the ALAP schedule.

npu = min{ npu, npu} = npu = 2, at t = 3

Note that the time intervals that give the maximum may not be unique. Anyone of them

will suffice for the solution.

C A Simplified Approach for Structural Pipelined Operations

The algorithm presented in the last section involves keeping track of which sub-operation

of an operation has the most frequent appearance. In order to avoid this kind of situation

we also present a simpler algorithm to calculate the lower bound. In this simple alternative

approach we suggest that all sub-operations occurring in the time interval [tl, t2] be counted

indiscriminately, i.e., we treat an s-stage pipelinedoperation as an s stage multi-cycle oper-

ation.

Given a data flow graph with operations that can be structurally pipelined, we examine the

total number of sub-operations in the time interval [tb t2] indiscriminately. The relationship

between the lower bound on the number of structural pipelined functional units npL and the

total number of sub-operations is stated in the following Lemma.

Lemma 4 Given an arbitrary number r of sub-operations active in a time interval [tl, t2L a

lower bound npL on the number of s-stage pipelined functional units np required to complete

all sub-operations in [tl, t2] is

r :::; np'
npL = (t2 - td X s

12



Proof: Each structural pipelined functional unit active during the time interval [t1,t:,d

can execute up to .5X (t2 - t1) sub-operations. These.5 x (t2 - t1) sub-operations must be

in certain positions in order to be covered by one structural pipelined functional unit. If

these s x (t2 - t1) sub-operations are in arbitrary positions then more structural pipelined

functional units may be needed. Therefore, for r arbitrary sub-operations, a lower bound

npL on the number np of pipelined functional units needed is

r :Snp.
npL = (t2 - td x s

.
Note that we assume each sub-operation has a delay of one unit. l' also represents the

total area occupied by the sub-operations in the interval [tI, t2].

Based on Lemma 4 a simpler approach to compute the lower bound on the minimum

number of pipelined functional units required to complete a structurally pipelined data flow

graph is stated in the following theorem.

Theorem 5 Given a data flow graph G and m operations which can be structurally pipelined

into s sub-units, the minimum number of structural pipelined functional units (with s sub-

units) required is np. The lower bound for np is

npL = [max L:j=l <Pj(tl, t2)
V[t"t2] ~ [O,T] s X (t2 - t1) 1,

where <Pj(tI, t2) is defined in Eq. (1).

Proof: L~t r* be the total number (area) of sub-operations of an optimal schedule

(T1*'T;, ..., T,~) in the interval [tI, t2]. Since L:~1 <pAt1,t2) is the sum of the minimum load of

all operations, from the proofs of Theorem 2 and Lemma 4,

m (t2
L<Pj(t1,t2) :S it F(T1*,T;,...,T;',t)dtj=l t,

= r* < np x (t2 - td x s.

Hence, the lower bound is

npL = [max L:~l <pj(tI,t2)
V[t"t2]~ [0,T] S X (t2 - td 1-

.
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This theorem concludes that the same algorithm used for non-pipelined functional units

can be used to derive the solution of the minimum number of functional units for structural

pipelined operations. The only modification is that Lj=l cPj(i1,i2) is divided by (i2 - i1) x s

instead of i2 - i1. Experiments show this lower bound is nearly as tight as the bounds from

Theorem ;3, but avoids keeping track of the individual sub-operations and thus requires less

computation time.

As a by-product of the lower bound computation, the upper bound for the simplified

method is

npu = min{ npu, npu},

where

npu = max F( 71,72, ..., 7m, i) and npU = rnax F( 71, 72, ..., 7m, i).
VtE [O,T] - VtE[O,T] - - -

F( 71,72, ..., 7m, i) and F( 71,72, ..., 7m, i) are the activity functions for non-pipelined operati.ons

instead of pipelined operations.

Exampfe

In Fig. 1(b), s = 2 and T = 9. [iI, i2] = [0,4] is determined to generate the maximum
L1~ <l>j(tl,t2) .

7-1 , and the lower bound IS

npL - rLj~l cPj(0,4)1 = rcP1(0,4)+ cP3(0,4)+ cP7(0,4)+ cP9(0,4)1= r2 + 2 + 2 + 01 = 1.
(4-0)x2 (4-0)x2 8

The upper bound is derived from the ALAP schedule

npu = min{npu, npu} = npU= 2, ai i = 3.

These are the same results that are obtained using Theorem 3.

The relationship between the bounds of Theorem 3 and those of Theorem 5 are stated in

the following theorem.

Theorem 6 The bounds of Theorem 3 are tighter than those of Theorem 5.

Proof:

14



1. Lower bound

Let npLl and npL2 be the lower bounds derived from Theorems 3 and 5, respectively.

Given any time interval [tl, t2], let 7Pl(tl, t2) be the count of the maximum occurence

(load) in [h, t2] of a single sub-operation as in Theorem :3, and let 7/;2(tl,t2) be the

count of the totaloccurences (load) of all sub-operations in [tl, t2] as in Theorem 5.

That is,

m

7/;1(tl,t2) = max L<P](tl,t2)
Vk E [1,8] j=l

and
m 8

7p2(tl, t2) = L L <P](tl, t2) :::;7/;l(tl, t2) x S.
j=l k=l

This means s x 7/;l(tl, t2) is the maximum of all sub-operations that can possibly occur

in [tl, t2]. Thus, from

s x 7/;l(tl, t2) 2: 7/;2(tl, t2)

we have

7/;l(tl, t2) 7/;2(tl, t2)> ,
(t2-td -s(t2-td

and from Theorems 3 and 5,

npLl 2: npL2'

2. Upper bound

Since

max{Fl( Tl, T2, ..., Tm, t), ..., F8( Tl, T2, ..., Tm, t)} :::; F( Tl, T2, ..., Tm, t),

npUl :::; npU2 and npUl :::; npU2.

Hence,

npUl :::; npU2.

.

D Functional Pipelined Operations

A behavioral description often consists of loop statements and the loop execution usually

dominates the total execution time. Optimizing the execution of the loop body is critical to

the performance of the design.
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Scheduling a loop body is quite different from scheduling a straight-line code segment,

since parallelism beyond the iteration boundaries can be exploited by executing several

iterations of the loop concurrently. The type of pipelining where the entire data flow graph

is pipelined is called functional pipelining. The objective of this section is to find a lower

bound on the minimum number of functional units needed given the task Initiation Latency

(IL), the loop body data flow graph and the iteration time (completion time) T.

To illustrate the idea of functional pipelining we use the same example as in Fig. 1(a),

except the data flow graph is viewed as the loop body data flow graph in a functional

pipelining situation. In the example successive iterations begin their executions two control

steps apart.

In functional pipelining different initiations of tasks share the same control steps. If we

look at the loop body data flow graph, these operations are located I L control steps apart

in the data flow graph. In other words, operations in a loop body data flow graph that are

I L control steps apart will be executed in the same control step when functional pipelining

is utilized. In our example I L = 2, therefore after every two units of time a new task is

introduced, and operations that are two control steps apart will be executed in the same

control step in the final schedule.

A partition is formed on the operations of the loop body data flow graph. Operations that

are I L control steps apart belong to the same partition, and there are I L different partitions.

The active function of partition i is LJ~ 1F( T;, T;, ..., T~, t + i x I L), where 0 :::;t < I L. The

active function is the same as the previous cases, except it reflects the consideration of all

the operations in a partition. Formally, given the task Initiation Latency IL and iteration

time T, we are to find nfp and an optimal schedule (Tt, T;, ..., T:J such that

rlr,l

nfp = max 2: F(T;,T;,...,Ti7~,t+i x IL)
'it E [O,IL] i=O

r};'l
mm max '" F (

'ih,T2,...,Tm)ED 'itE[O,IL] L Tl,T2,...,Tm,t+i X IL).~=o
(6)

In this formulation an entire partition is taken into consideration; therefore, instead of

calculating the minimum load in a single time interval, we must calculate the minimum load

for all the time intervals I L units apart. ~j is defined as the minimum overlap between the

active function f( Tj, t) of operation j and the time intervals uJ~ 1[tl + i x I L, t2 + i x I L],
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algorithm 1>j(t1,tz, Tj, Tj)
1>j = maximum integer;
for each position of Tj between Tj and Tj + I L do

SUM = 0;

for i = 0 to I~1 do
SUM+= J[tl+ i x IL,tz +i x IL] n h - S,Tj]l;

end_for

1>j= min(1)j, SUM);
end_for

return(1)j);
end_algorithm

Fig. 3. Algorithm to compute cjJj.

and is given by
r}~,1

1
t2+ixIL

1>j(t1, tz) = min L f(Tj, t)dt.
\IT; i=O tl+ixIL

The computation procedure of 1>j is illustrated in Fig. 3. Consequently, the lower bound

on the number of functional units required to complete the functional pipelined data flow

graph given the initiation latency I L and iteration time T is stated in the following theorem.

(7)

Theorem 7 Given a functional pipelined data flow graph, the task initiation latency I Land

the loop body data flow graph iteration time T, the minimum number of functional units

required to complete the./unct~onal pipelined data flow graph is nfp' The lower bound of nfp
zs

r Z=~1 1>j(t1,tz) ln fpL = I,max .
\I[tl,t2]~ [O,IL] tz - t1

Proof: If Tj*represents the completion time for operation j in an optimal schedule, then from

the definition of 1>j

r}~,1

1
t2+ixIL rTL 1

1
t2+ixIL

1>j(t1,tZ)= min L f(Tj,t)dt:::; L f(Tj*,t)dt.
\IT; i=O tl+ixIL i=O tl+ixIL

Thus,

m

L 1>j(t1,tz) <
j=l

rl~, l

j
t2+iXIL m

= 2: . 2: f (Tj*,t)dt
i=O tl+~xIL j=l

m r}~,1

1
t2+ixIL

L L . f (Tj*, t) dt
j=l i=O tl+~xIL

r}~,l

j
t2+iXIL

= 2: F(Tt, T;, ..., T:n,t)dt.
i=O tl+ixIL
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Using a variable transformation with t' = t - I Lxi, we have dt' = dt and t = t' + I Lxi.

Therefore, from Eq. (6),

m rI~1 t2

L1>j(tl,t2) :S; L 1 F(r;,r;,...,r:"t + IL x i)dtj=1 i=O tl

t2 r I~1=
1 LF(r;,r;,...,r:"t+ILxi)dt

t! i=O

< nfp(t2 - td.

Hence, the lower bound is

nfpL = [max 2::]'=1 1>j(t1, t2)
'V[t!,t2]~ [O,IL] t2 - t1 1-

.

Since the total number of partitions is I L, only time intervals [t1, t2] that are subsets

of [0, I L] need to be considered. The number of sub-intervals in the time interval [0, I L]

is I L(I L + 1)/2; therefore there are I L(I L + 1)/2 different 2::~1 1>j (tl, i2)'s to compute in

order to determine n fpL.

The computation of the upper bound n fpU is accomplished at the same time the lower

bound is computed. An upper bound on the number of functional units required to complete

the data flow graph given the initiation latency I L and iteration time T is given by

nfpU = min{nfpu,nfpu},

where
rI~1

nfpU = max L F(rl' r2, ..., Tm,i + i x I L)
"It E [0, IL] i=O

and
rI~1

nfpU = max "" F(rl,r2,...,rm,i+i x IL ).
- "ItE [O,IL];:C; - - -

Example

In our example the task initiation latency I L = 2. For multiplication the maximum'\'!O
L..-! <PJ(t!,t2)

[ . 5.
J-trt! occurs at iI, i2] = [0,1]. The followmg 1>j(O,I)'s are needed to obtam the

lower bound.

1>1(0,1) = 1>3(0,1) = 1>5(0,1) = 1>6(0,1) = 1>7(0,1)= 1>9(0,1)= 1

5All possible time intervals need to be computed in order to determine the maximum.
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Thus, the lower bound is

- L;~l 1>j(O,1)
1 = r~l = 6.n fpL - r 1 - 0 1

Since n fpU = n fpU = 6, the upper bound is

nfpU = min{nfpu,nfpu} = min{6,6} = 6.

Similarly, for addition

nfpL = 2, nfpU = min{nfpu,nfpu} = min{4,:3} =:3.

III SCHEDULING

In the previous section we derived the lower and upper bounds on the number of functional

units required to execute the operations of a dataflow graph in time T, but the problem

of assigning the operations to functional units after we obtain the bounds is not addressed.

There is no guarantee that a feasible schedule exists for a design which contains hardware

units equal in number to the lower bound. On the other hand, the ASAP and ALAP are two

feasible schedules, but the number of functional units required by them may not be close to

optimal.

Since the resource constrained scheduling problem is N P-hard, only an exhaustive search

strategy can be guaranteed to produce an optimal schedule. However, the lower bound is of

significant importance even if a feasible schedule does not exist, because it can be used with

a branch-and~bound algorithm to solve the scheduling problem optimally. The lower bound

is crucial if such a technique is employed, since the execution ti~e of the branch-and-bound

algorithm depends on the quality of the lower bound. From a practical point of view it

is not always necessary to generate an optimal solution if the solution obtained is close to

an optimal one [5]. Therefore, a good heuristic is in more demand in a real world design
environment.

Our objective is to employ a simple yet effective algorithm to generate a feasible schedule

for the data flow graph after we obtain the lower and upper bounds. The scheduling algorithm

should assume that the number of resources is limited by the bounds, and it must produce

a feasible schedule for the data flow graph. The new and feasible schedule produced by the

scheduling algorithm will replace both the ASAP and ALAP schedules, and the new number

of functional units required to schedule the data flow graph feasibly will become the new
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upper bound. The general procedure for finding a feasible schedule and improving the upper

bound is outlined below.

1. Assign n = nL for all types of operations initially, where nL is the lower bound.

2. Use a resource constrained scheduling algorithm to schedule the data flow graph. The

scheduling algorithm chosen depends on the type of the data flow graph.

:3. If the schedule meets the time constraint T, then replace the upper bound by the current

n (i.e., we found a feasible schedule better than the ASAP and ALAP schedules) and
terminate.

4. If the schedule does not meet the constraint T (i.e., extra control steps are needed to

obtain a feasible schedule), the number of functional units needed is increased by 1 for

those types of operations which need extra control steps to be completed; if n < nu, go

to step 2; otherwise, if n = nu the ASAP or ALAP schedule (whichever was used for

deriving nu) is the best schedule we can find.

Experimental results indicate that nL is a tight lower bound, and in many cases it is

actually the optimal. Therefore, assuming n = nL from the start is an educated choice. If

the current schedule meets the time constraint, then the current n is a new upper bound

for the optimal solution. In the case nL = nu the algorithm has determined that nL is the

optimal solution. If the current n cannot satisfy the time constraint T, then the numbers

of certain types of functional units which require extra control steps are increased by 1 as

long as n < nu. The data flow graph is then rescheduled, and this process is repeated until

a feasible schedule with completion time T is obtained.

Note that the upper bound will never exceed nu, since the best known schedule could

be either the ASAP or ALAP schedules from which nu is derived. Test cases indicate that

the procedure will generate an optimal or near optimal schedule under time constraints as

well as an improved upper bound on the minimum number of functional units required. The

detailed scheduling algorithms for the different types of data flow graphs will be discussed

in the following sub-sections.

A Scheduling For Non-pipelined DFGs

For non-pipelined and structural pipelined operations in a data flow graph the "Cut The

Longest Queue" (CTLQ) [12] scheduling algorithm is chosen. The name "Cut The Longest

Queue" is first introduced in Hu's research [12] on scheduling a rooted tree of operations
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where the queue (or priority function) refers to the distance of an operation to the exit node.

The original CTLQ is a simple but very effective method. The merits of the CTLQ algorithm

are determined based on the results of extensive empirical studies [I:3]. Empirical studies

compared force-directed scheduling (FDS) [2], force-directed list scheduling (FDLS) [2] and

MAHA [3] over one hundred graphs, some of which are randomly generated. Ranking the

methods in terms of the number of non-inferior schedules produced, CTLQ scheduling with

complexity O(mlog(m)) produced the maximum number of non-inferior schedules, followed

by FDS, FDLS, and finally MAHA.

The basic CTLQ scheduling algorithm first assigns functional units to operations (nodes)

which are farthest from the exit node, then removes those nodes that have been assigned

and repeats the process until all the nodes have been scheduled. For example, in Fig. 4 the

number of operations is 5 and the number of functional units is 2. Operations 1 and 2 are

scheduled in control step one since operations 1 and 2 are farther from the exit node than 3.

In order to schedule several different types of operations in a data flow graph, a slightly

modified queue is more efficient [21] than the original queue. The modified queue is a

pseudo-A LAP value of an operation and is derived from the control steps assigned by using

backward ASAP list scheduling with a subset of the resource constraints. The algorithm is

briefly described as follows.

1. Perform backward list scheduling with the resource constraint of type k. For other op-

eration types assume unlimited resources. Let the pseudo-ALAP schedule of operations

be the control step assignment under such a schedule.

2. Perform forward GTLQ scheduling using pseudo-A LAP as the queue. All the resource

constraints on the number of functional units are used in the forward scheduling.

3. Repeat steps 1 and 2 for each operation type and find the best schedule.

The modified GTLQ algorithm outperforms the simple CTLQ algorithm in the area of

resolving the congestion of operations. The modified GTLQ algorithm has the speed of the

simple GTLQ algorithm yet is effective for node-distribution when operations are congested.

In the scheduling of non-pipelined operations most of the operations in a data flow graph

are multi-cycle operations; therefore, we must distribute them into consecutive control steps

such that the same hardware is dedicated to a particular operation6. For example, in Fig. 1(a)

the lower bounds for multiplication and addition are 2 and 1, respectively; The corresponding

6In some other architectures (e.g., pipelining) hardware sub-units can be shared by different operations.
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Fig. 4. A data flow graph scheduled by the CTLQ algorithm.

1&2

3&4

6&7

8&9

Fig. 5. A schedule for the data flow graph in Fig. 1 assuming non-pipelined functional units.

schedule is shown in Fig. 5. Since a feasible schedule requiring 2 multipliers and 1 adder is

produced by CTLQ, the lower bound is the optimal solution.

B Scheduling For Structural Pipelined DFGs

The same CTLQ scheduling algorithm with some modifications is used for scheduling

structural pipelined DFGs. The essential differences are

. Sub-operations whose predecessor sub-operations have already been scheduled should

be scheduled immediately onto available sub-units of any pipelined functional unit

. An operation has to follow precedence between sub-operations, but functional sub-units

do not

COIlsider the example in Fig. 1. If the multiplication which takes 2 time units is pipelined,

we will need fewer multipliers. In Fig. 1 s = 2 for the multiplications and from the previous

discussion in our example on the lower bound, we have nL = 1. Thus, we start scheduling

with the assumption that the minimum number of multipliers is 1. The number of adders

remains unchanged since it is not pipelined. The scheduling result is shown inFig.6.The
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Fig. 6. A schedule for the data flow graph in Fig. 1 assuming pipelined multipliers.

completion time T is still 9, but only 1 multiplier is needed. Since we can successfully

schedule the data flow graph to complete in time T using one pipelined multiplier and one

non-pipelined adder, the lower bounds are our optimal solutions (nL = nu).

C Scheduling FoT'Functional Pipelined DFGs

The scheduling algorithm for functional pipelined data flow graphs is more complicated

than non-pipelined and structural pipelined, since the minimum number of functional units

needed is the minimum of the sum of the number of functional units needed for multiple

control steps. We can not simply use the "cut the longest queue" scheduling approach.

The objective of scheduling here is to make sure that all control steps that are I L control

steps apart are considered together. Since normal scheduling is not capable in such cases,

we present a scheduling algorithm tailored specifically to this problem.

Since the task initiation latency is I L, there are I L partitions among all operations

starting from partition 0 to partition I L - 1. The operations are partitioned according to

the control step in which they belong. Each partition contains operations that are I L control

steps apart. For example, if I L = 2 then partition 1 contains operations in control steps

1, ;3, 5, 7, ... By computing the lower bound, we have already determined the minimum

number of functional units allowed nfp (initially it is nfpL) for-each partition. The idea of

scheduling is to distribute the operations as evenly as possible into each of the control steps

in the same partition such that no more than nfL operations exist in a partition and these

operations can be successfully executed by n fp functional units.

We propose an algorithm called folded CTLQ scheduling as illustrated in Fig. 7. The

algorithm can be described as follows.
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1. Operations with no freedom should be assigned to control steps immediately.

2. Schedule the operation with the smallest ALAP value to the earliest possible control

step k, usually the earliest step is Tj.

:3. Check if the partition that step k belongs to has exceeded the total number of operations

n allowed in it.

4. If it has not exceeded the preset hardware constraints n, then fix the schedule.

5. If it has exceeded the hardware constraints for the partition, then delay the schedule of

the operation by one control step at a time until the assignment of the operation to a

control step meets the hardware constraints.

6. After an operation has been fixed to a control step, adjust the active ranges of operations

that are affected by such an assignment.

7. Delete the assigned operation from the list of operations which need to be scheduled.

8. Repeat the process until all operations are scheduled.

In our example the final schedule where a new task is introduced every 2 units of time

is shown in Fig. 8(a), and the assignments of operations based on the algorithm in Fig. 7

are in Figs. 8(b) and (c), where the dark gray areas correspond to the final schedule of the

operations. Six multipliers and two adders are required to successfully"execute the functional

pipelined data flow graph with I L = 2 and T = 9. In our example the lower bounds for the

number of multipliers and adders are the same number required in the optimal schedule.

The scheduling algorithms introduced here for non-pipelined, structural pipelined and

functional pipelined data flow graphs are heuristics aiming to finalize the assignment of

operations to functional units, to measure the tightness of the lower bound and at the

same time to improve the upper bound computed by the ASAP or ALAP schedules. Our

methods are not bound to the scheduling techniques employed here, any resource constrained

scheduling algorithm can be used.

IV COMPUTATIONAL COMPLEXITY AND PERFORMANCE

A Complexity

The computational complexity consists of two parts: complexity of the scheduling al-

gorithm and that of the computation of the lower bound. The worst case computational

complexityof the schedulingalgorithm is O(mlog(m) + Elog(E) + nE) [13],wherem is the
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algorithm Folded_5chedule( n,T,1L,DFG)
0 = {a II operations};
for each operation j in 0 do

if Tj == Tj

schedule operation j into control step Tj;
0 = 0 - {operation j};

end_if
end_for

do while 0 is not empty
find the operation j with the least ALAP value;
schedule operation j to the earliest possible step k;

do while the total number of operations in partition k mod I L > n
increase control step k by one;
schedule operation j to step k;

end_do

fix the schedule for operation j;
0 = 0 - {operation j};
adjust the active ranges of operations that are

affected by the assignment of operation j;
end_do

end_algorithm

Fig. 7. Scheduling algorithm for functional pipelined operations

Active Range

8,

Active Range

Tim:: Tim::

(a)

0123456789

(b)

10

8

4

2

0123456789

(c)

Fig. 8. (a) Schedule for the functional pipelined example, (b) the control step assignment
for each multiplication, and (c) the control step assignment for each addition.
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number of operations in the data flow graph, E is the number of edges denoting precedence

constraints in the data flow graph and n is the maximum number of resources of any type.

The worst case computational complexity of the lower bound computation is O(T2rn), where

T is the height of the graph and m is the total number of operations. The complexity is

calculated as follows.

1. We have to go through 1 + 2 + ... + T = T(T + 1)/2 = (T2 + T)/2 time intervals to

derive the lower and upper bounds.

2. At each step we may calculate up to m different 1Yj(t1,t2)'s in the worst case for the

algorithms in Theorems 2 and 5, so the complexity is O(T2m).

:3. For Theorem 3, we may calculate at most i 1Yj(t1, t2)'s for the sub-operations in the

interval i and there may be m operations at each step. Thus the total calculation of

1Yj(t1' t2)'s at each step requires i x m units of time. The total number of constant

time computations is 2:.7=1(i x m) x (T - i + 1) = O(T2m). Therefore, the worst case

complexity is O(T2m).

4. For Theorem 7 we have to go through I L(I L + 1)/2 sub-intervals and the worst case

complexity of computing <I>jis r~1 x T, so the complexity is T2(IL + 1)m = O(T2m).

The worst case performance is a conservative estimate, because normally at each step the

number of computations is much less than m. The dominant term is the computational

complexity of the lower bound.

The computational complexity of force-directed scheduling is O(Tm3) [2], and in [5]

the complexity is O(Trn2log(m)), while the computational complexity in our algorithm is

O(T2m). Since T is typically of the same order as m, our algorithm is of less complexity

and is the only one that can generate a lower bound. Since we consider more time intervals,

our bounds are also much tighter than that of [14]. The lower bound given in [14] is r~l

and is computed by considering only one time interval (namely, [0, T]) which is considered

in our technique.

B Performance

Our experiments consist of two parts. We tested some large randomly generated graphs

followed by some tests on benchmark examples to compare with existing algorithms.
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BI Randomly Generated Examples

The use of large randomly generated graphs for testing our technique is significant, since

most other known performance constrained scheduling algorithms only tested a few bench-

mark examples. Our test examples are randomly generated similar to the test cases used

in [1:3]. The test graphs are randomly generated with 50 operations each and can have up

to 5 different types of operations. A total of 25 graphs are considered and they are evenly

distributed by the number of different types of operations. All possible time/functional unit

trade-offs are tested for all 25 graphs. The difference between the lower and upper bounds

is either 0 or 1 for 100% of the test cases. Some of the differences are due to the scheduling

algorithm, since it becomes increasingly difficult to schedule when the number of different

types of operations increases. Nevertheless, for a simple algorithm like "cut the longest

queue" the results are excellent. Due to the limitations in the length of this' paper only some

of the results are presented in Tables II to VIII. The results which are not shown here are

of the same quality. Each table contains the number of edges of the graph, the delay and

count of each type of operation, the time constraints, the lower and upper bounds and the

difference between the lower and upper bounds.

For test graphs with one type of operation our lower bound is the optimal solution for

all the test cases as shown in Table II. For test cases with multiple types of operations, the

number of functional units of one type has to be increased no more than once to obtain a

feasible schedule as indicated in Tables III to VI. The structural pipelined cases are shown

in Table VII in which the adder is a pipelined functional unit. Shown in Table VIII are the

results of a comparison of the lower bounds using Theorem 3 and Theorem 5. The small

differences between the lower and upper bounds in our examples indicate that our bounds

are very tight and the scheduling results are very good.

B2 Benchmark Examples

In order to compare our algorithm with existing algorithms we also use the same bench-

mark examples from the literature. The results are compared to HAL [2] and [5], two of

the most notable scheduling techniques. Results in Table IX are for the differential equa-

tion example from [2]. We compare both the non-pipelined and the pipelined cases for

T = 6,7. Results in Table X are for a fifth order elliptic wave-filter adopted from [16]

which has been selected as a benchmark test example for high-level synthesis algorithms.

Results in Table XI are for the benchmark examples used in testing the functional pipelined
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scheduling technique. They are a 16-point digital FIR filter borrowed from [17], and a fifth

order elliptic filter from [16]. The results shown in Tables IX to XI indicate our algorithm

produces optimal results for these benchmark examples with less complexity compared to

existing scheduling techniques, and is the only one that can measure the optimality using a

lower bound.

v CONCLUSION AND FUTURE WORK

In this paper we have presented a new algorithm for the problem of performance con-

strained scheduling in data path synthesis which utilizes a lower bound on the number of

functional units and a simple resource constrained scheduling technique. The lower bound

is critical when the number of different operation types is large or the data flow graph is

large. Obviously the results obtained here are not limited to the technique used in this

paper. Since the bounds are very tight (shown by experiments and comparison to upper

bounds), the lower and upper bounds can be used to develop an efficient branch-and- bound

algorithm for the performance constrained problem. Moreover, the lower bounds can be used

to evaluate the quality of heuristic algorithms for the performance constrained scheduling

problem. Without the lower bound only a relative comparison between heuristics is possible.

The algorithm tends to a global optimization since it is not an iterative approach by

nature, and only has a complexity of O(T2m). The algorithm achieves excellent results

as well as being the only one so far to provide a tight lower bound while maintaining low

complexity compared to other scheduling algorithms. The algorithm has the advantage of

well-defined bounds for optimal solutions such that it can effectively guide the design process

and also provide a means to measure the quality of the solution while other methods can

not.

It is unknown whether or not a feasible schedule exists for the lower bound; however, since

the bounds are tight, the adjustment required to find a feasible schedule is usually minimal.

Because the quality of our technique depends on the resource constrained scheduling algo-

rithm employed, future work may include the development of an improved heuristic for the

resource constrained scheduling problem.
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Table II. Results for data flow graphs with 1 type of operation.
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Table III. Results for data flow graphs with 2 types of operations.

Table IV. Results for data flow graphs with 3 types of operations.

Table V. Results for data flow graphs with 4 types of operations.
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Table VI. Results for data flow graphs with ,5 types of operations.

Table VII. Results for data flow graphs with pipelined and non-pipelined operations.

1 Pipelined operation
2 Non-pipelined operation

Table VIII. Comparison of the lower bounds from Theorem 3 and ,53.

1 Pipelined operation
2 Non-pipelined operation
3 Only pipelined operations are compared

Table IX. Differential equation example from [2].
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Table X. Fifth order elliptical filter.

Table XI. Results for data flow graphs with functional pipelined operations.
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