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A simple theory of the first-order properties of holograms in thick photographic emulsions 
is presented. Following a combination by Denis* of the basic method of wavefront recon- 

I RqflQIJ 1 , 

struction with Lippmmn's method of colour photography, such hologr&m~ are produced by 
i , !  1 the interference of an object wave with a coherent reference wave, falling on the emulsion 

from opposite sides. It is shown, by using the &st Born approximation, that  such deep 
holograms have three properties which distinguish them from two-dimensional or 'plane' 
hologra~ns: (1) They have directional selectivity, that is to say the image will appear only if 
the hologrmn is illuminated in the reconstruction within a certain angular zone. (2) They 
have colour selectivity, that is to  say they will reflect only within a certain n m o w  waveband 
close to the original wavelength. (3) The second wave, which is a disturbance in two- 
dimensional holograms is as good as completely suppressed. All  three are of great practical 
value. 

It is shown tha t  holograms which are produced by strongly diffused, wide-angle illumina- 
tion, and which have a random, noise-like appearance, contain the information in the form 
of the auto-correlation function of densities or scattering powers between different space- 
elements in the emulsion. 

Photography by wavefront reconstruction now called 'holography' was initiated 
by one of us (Gabor 1948, I 949,195 I)  starting from the realization that  a light wave 
can be 'frozen' into a photographic plate simply by the superposition of a. 'back- 
ground' or 'reference' wave, coherent with the fist. When the processed plate is 
illuminated by the reference wave alone, the frozen wave will be revived; it will 
reappear as a component of the light wave transmitted and diffracted by the 
photograph, called a 'hologram'. 

Let A,, A, be the complex amplitudes of the reference wave and of the object 
wave in the plane of the emulsion. (We can drop the factor e-iot in all equations.) 
The resulting amplitude is A, + A,, but the plate records only the intensity 

For simplicity of explanation, assume that the plate is processed with a y of - 2, so 
that its intensity transmission is proportional to 12 and its transmission amplitude 
t o  I. If we now illuminate the plate with A, alone, the transmitted amplitude in 
the plane of the emulsion will be proportional to 

I A,I = A , ( A o A $ + A , A ~ ) + A o A $ A 1 + A ~ A ~ .  (1) 

Now a t  the State University of New York, Stony Brook, New York 11790. 
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If the reference wave A, is plane or spherical, A,A$ will be exactly or approxi- 
mately constant over the plate. This will be a good approximation also for the 
bracket expression in the first term, in all but rather exceptional cases (Stroke, 
Restrick, Punkhouser & Brumm 1965 a, b) .  The &st term is therefore essentially the 
transmitted reference wave. The second term, on the other hand, is the original 
object-wave amplitude in the plane of the hologram, therefore, by Huygens's 
principle it appears to issue from the original object, in its original spatial position. 
The last termis the 'twin wave'. It can be interpreted (Gabor 1952) as issuing from 
the mirror image of the original object, with respect to  the illuminating wavefront 
considered as a mirror, at  the plate. It can be also shown (Gabor 1949, 195 I)  that 
there is no need to illuminate with the original reference wave, or even with the  
original wavelength. So long as the illuminating wave is spherical, the displacement 
of its origin produces only certain optical transformations of the object and its twin. 

Wavefront reconstruction had a spectacular revival in 1963 when the laser was 
first applied to it (Leith $ Upatnieks 1962, 1963, 1964; Stroke 1964,1966). It now 
became possible to separate the three terms in equation (1) into three waves going in 
different directions, by using reference waves a t  a substantial angle to the plate 
normal. This was not possible with the light of a high-pressure mercury lamp, as  
usedin the original experiments, which has a coherence length of only about 0.1 mm. 
Moreover, it is no longer necessary to observe the rule ' y = - 2 ', because the higher- 
order terms which then appear in the transmission, additionally to those in equa- 
tion (I), produce diffracted beams of higher order which are angularly separated 
from the others. This had the great advantage that one could use for the reconstruc- 
tion the original, negative hologram, which is markedly superior to prints, for 
reasons which wlll become evident later on. Another great progress was achieved 
by the previously mentioned authors when they introduced diffuse illumination 
of the object. While in the case of a plane or spherical illuminating wave the informa- 
tion is recorded only on an area of the plate corresponding to its diffraction pattern, 
illumination coming fiom all sides makes it possible t o  spread the information on 
any part of the object over the whole plate. This made it possible to view three- 
dimensional objects with two eyes, instead of with short-focus optical viewing aids. 

A further important idea was added to holography by Denisyuk (1962) even 
before the laser became available. This was the combination of the basic idea, of 
wavefront reconstruction with Lippmann's (1894) method of colour photography. 
In both methods an interference pattern is recorded, that is to  say standing waves. 
In  transmission holograms the nodal surfaces of the standing waves are nearly at 
right angles to the surface of the emulsion, therefore one can consider these as 
approximately plane patterns. In Lippmann's colour photography the object v a v e  
was brought to interference with the wave reflected by a plane mirror backing the  
emulsion, hence the nodal surfaces were planes, parallel to the surface of the plate. 
Denisyuk combined these two methods, by letting the reference wave fall on the  
emulsion from the opposite side as the object wave, thus creating, in a fine-grain 
emulsion, scattering strata spaced by approximately half a wavelength a t  variable 
acute angles to the surface. The result was a reflecting or 'deep' hologram (some- 
times referred to as 'volume' hologram). As Denisyuk had no laser available, he 
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could give experimentally only an 'existence proof'. The first successful reflecting 
holograms in 'naturaly colours were produced by Stroke & Labeyrie (1966), fol- 
lowing the work by Denisyuk (1962,1963) and interesting ancillary work on trans- 
mission colour holograms by Pennington & Lin (1965). Stroke & Labeyrie (1966)~ 
moreover, initiated white-light reconstruction of holographic images by showing 
that the reflecting volume holograms could be made to reconstruct multi-colour 
images upon illumination with ordinary white light. ufl?y d; u L d y (  

Though several further papers have appeared on the subject of deep holograms 
(for instance Denisyuk 1962,1963 ; Friesem 1965 ; Leith, Kozma, Upatnieks, Marks & 
Massey 1966; Upatnieks, Marks & Fedorowicz 1966; Kogelnik 1967; Lin, Penning- 
toil, Stroke & Labeyrie 1966; Stroke & Zech 1966; Stroke 1967; and many others), 
a comprehensive theory is still outstanding. We propose to give one below, by a 
unified method, which reveals the essential features, in particular the absence of the 
twin object, the colour selectivity and the directional selectivity of deep holograms. 

I 

These are of particular interest for an important potential application of deep 
holograms; as projection screens for three-dimensional pictures. For completeness 
we will discuss also a question which has not yet been satisfactorily elucidated. 
'In what form is the information stored in the apparently random pattern of diffuse 
holograms? ' 1 

GENE- FORMTTLAS FOR RECORDING . m ~  RECONSTRUCTING 

DEEP HOLOGRAMS 

We assume an object consisting of a discrete set of numbered points On, illurni- 
nated in coherent (e-g. laser) light. The points 0, are assumed sfficiently spaced to 
be resolvable according to diffraction theory, and their spatial phases, relative to 
a point on the hologram, may be independent. Operating with discrete points 
greatly simplifies the calculations and it does not restrict the discussion. With 
sficiently large holograms and diffusely scattering objects ('diffuse illumination') 
the diffraction-limited resolution is in most cases so 6ne that it cannot be quite 
realized owing to technical reasons, such as photographic grain-noise and laser 
'speckle '-noise, which we do not propose to  discuss here. 

Deep, reflecting holograms can be made and used in several ways, two of which 
are illustrated in figure 1. In the first method (so far exclusively used), the object is 
at one side of the emulsion, and the point source from which the reference wave is 
issuing is a t  the other side. In the reconstruction the hologram is illuminated with 
a point source in the original position, and a virtual image of the object appears on 
the other side, and can be viewed through the hologram. In the second method a lens 
system or the like is used for producing a point focus, that is to say a virtzcal source 
at the same side of the object. In the reconstruction s real source is placed into this 
point, and one obtains a real image of the object, in the original position but with 

I all rays reversed. I n  figure 2, which explains the notation, we have assumed the 
second method, so as to have all coordinates at the same side, but the equations 

I 
apply equally to both cases. 
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FIGURE 1. TWO methods for recording and reconstructing deep holograms. 

The notation, as illustrated in figure 2, is as follows: 
P(X, Y, 8) is the convergence point of the reference wave in the taking. 
Pf(X', Y', 2') is the illuminating point in the reconstruction. 
On(xn, yn, 2%) is the nth object point in the recording. 
Oh(xA, yk, 2;) is the image of the nth object point in the reconstruction when P 

is shifted to P'. 
Q([, 7, c) is an arbitrary point in the reconstruction space. 
S(x, y, z) is a scattering point in the emulsion. 

When the points P, P', On, 0; are at  such large distances that their waves can 
be considered as plane in the areas of the emulsion which we take into consideration, 
we describe their direction by the wave vectors K, K', k, and kj, whose components 
are the direction cosines, multiplied by k = 2nlh. The components in the x, 9, z 
directions will be numbered 1, 2, 3. The time factor will be assumed as usual to  be  
e(-id, so that e(ib) is a forward wave, e-ik" a backward wave. The distances R, R' 
R,, Rh and the direction cosines are always positive. 

Photography 

The ampltude of the reference wave passing through S to the convergence point P 
is proportional to (1/R) eikR. 

From here on we neglect the variations of R inside the small regions of x, y, z, and 
-. write for the amplitudes: 

reference wave A elkR, wave from nth object point an e-ikh. 
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emulsion 

to P(X, Y, 2) 
/ (conv. point in recording) 

to P'(X', Y', 2') 
(source in reconstruction) 

$0 Q(t, ?I¶ 5) 
(observation point) 

to  o;(2:, Y;, 2:) 
(nth point in reconstruction) 

to O(x,, yn, 2,) 
(nth object point in recording) 

FIGURE 2. Explanation of notation. 

The intensity I a t  the point x, y, z of the emulsion is then 

I = (AA* + ZanaE) + [AZaE eiHR+h) + A*Can e-lk(R+R,)]. (2) 
The effect of this intensity is to produce, in a fine-grain emulsion an absorption 
which is a function of the sum of the two terms, and scattering proportional to the 
last term only. If the emulsion is bleached, the bracketed first term, so, causes only 
a,n almost uniform change of the refractive index (in practice with some haze) and 
only the square-bracketed second term s, will cause scattering. This can be written 
in the real form 

s, = Z(Aa2 + A*a,) cos k(R + R,). (3) 

Taking this as a measure of the scattering power, that is to say neglecting the non- 
linearity of the emulsion is a good approximation in the photographic materials at  
present available, in which the change in the refractive index is a t  most a few parts 
per cent of the mean. A somewhat larger error has been made by assuming the waves 
to penetrate the emulsion without a loss. I n  fact the amplitude absorption of red 
light in Eastman Kodak 649 F emulsions of 20 pm thickness is of the order of 15 %, 
much less for green and blue. We can neglect this for the present, and also the 
dimensional change which emulsions suffer during the processing, which can be 
kept within tolerable limits. 

Reconstruction 

We illuminate with Afe-i"R', a wave coming from P'. In  the first Born 
approximation this produces a secondary scattered spherical wavelet 

(slA'/Rfr) e-ik'(R'+r). 
1 
f Again neglecting the small variation of R'r, the scattering centre at x, y, will .I -. I 
I produce at the space point Q(E, 7, [) an amplitude proportional to 

I ArAxa* ei[kcR+Rn)-k'(R'+~)] + AfAZ e-itk(R+Rn)+k'(R'+~)ll (4) 
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If we make k = k', R' = R, we see that it is the first term which gives a wave con- 
verging upon r = R,. Comparing this with equation (1) we see that in the method 
shown in figure 1 b it is the 'twin' wave, with complex amplitude a: which is 
reconstructed. This method gives a real image. If we had followed the method in 
figure 1 (a), which gives a virtual image, we would have reconstructed the complex 
amplitude a,. This makes no difference, as either of these methods gives a luminous 
point in the correct position, one real, the other virtual, with an intensity a. a*. 

So far the formulae were the same as in holography with vanishingly thin 
emulsions, and they give the obvious result that i t  does not matter where we put 
the scattering points, so long as we consider them singly. Important difFerences 
between 'plane' and 'deep' holography arise only when we sum the wavelets, 
that is to  say integrate over the emulsion volume. We then find three important 
features of deep holograms which distinguish them fkom plane ones: 

(1) Directional selectivity, that is to say the illuminating point can be displaced 
only in a certain limited region without the intensity of the reconstruction dropping 
to a small value or zero. 

(2) Colour selectivity, that is to  say the intensity of the reconstnzction drops off 
with the departure of the illuminating wavelength from the original. 

(3) The second, unwanted wave, which in plane holography always contains the 
same energy as the wave which reconstructs the original, is almost completely 
suppressed. 
All three are very vaIuable properties. The third is a practically ideal method for 

getting rid of the unwanted second image. The second gives holographic images in 
natural colours. The f is t  has been proposed by van Heerden (I 963) for multiple data 
storage and has been used by several authors (for example, Leith et al. 1966), for 
multiple images in the same emulsion. It may become even more important for 
three-dimensional projection by means of holographically produced screens. 

In  order to separate directional and colour selectivity, we make k' = k, that is t o  
say we reconstruct with the original wavelength, assuming of course that the  
dimensions of the emulsion have not changed in the processing. We use again the 
first Born approximation, that is to say we neglect the loss of the illuminating beam 
as i t  penetrates into the processed emulsion by absorption and by scattering, and 
we neglect multiple scattering Both are admissible at the present stage of Lippmaim 
emulsions, which so far have given maximum (intensity) reflectances of only 5 t c  
6 %, but more accurate calculations would be necessary if further developmenl 
leads to reflectances of 20 0/, or more. 

We must integrate the first term in equation (4) which gives rise to the reconstruc 
tion over the volume of the emulsion. We use the approximation 

kR = k [ ( X - x ) 2 + ( Y - y ) 2 + ( Z - z ) 2 ] +  
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where RE = X2 + Y2 + Z2. The last term becomes important only at  small distances, 
and it makes the difference between 'Fresnel' and 'Fourier' holograms (Stroke & 
Falconer 1965; Stroke 1965). We neglect i t  here, because we can learn all the 
essentials from Fourier holograms. We put therefore, introducing the wave-vector 
components K,, K,, K3 

kR = kRo- 
xX+yY+zZ 

Ro 
= kR, - (Klx + K2y + K3z), (5 )  

and similarly for R', Rn and r. The wave-vector components of r will be called 
k,, k,, k3. Dropping a phase factor independent of the position x, y, z of the emulsion 
point, the wavelet amplitude becomes 

A'AXaz exp i[(.KiT; - K, + k, - kn,)x + (Ki - K2 + k2 - kn2) y 

+(Ki-K3+k3-kn3)z]. (6) 

This has to be integrated over x, y, z to give the reconstructed wave amplitude as 
s function of k,, k,, k,, that is to say of the direction. 

The integmtion interval in x, y is practically unlimited, hence after integration 
the factors in x, y become delta functions. This means that light corresponding to 
the nth object point will be emitted only in the directions in which 

kl- knl = - (K; - K,), 

k2 - kn2 = - (KL - Kg). (7) 

This means that the bisector of K' and in the reconstruction is the same as the 
bisector of K and kn in the recording, that is to say it is as if they were reflected at 
the same mirror. But if k, and k, are given by equation (7), k3 is also determined by 
the equation 

+ kz + kt = k2 = ( 2 ~ / h ) ~ ;  (8) 
I 

hence the third factor in equation (6) is also determined. After integration through 
! the emulsion thickness d this gives the directional selection factor 

1 The selection factor is therefore a function of the argument 

1 s = (Ka + kd) - (Ki + k3), 

a.nd it has the form of a 'slit' or 'sinc' function 

I S, = sin (+sd)/&sd. 

The first term in equation (10) relates to data in the recording, the second in the 
reproduction. Note that all the K- s and k-s are vectors of the same length; one 
can visualize them as unit vectors. By equations (7) the two interfering rays in 
the recording and the incident and the reflected ray in the reconstruction have the 
same bisector. In equation (10) the fist term is the sum of the projections of 
the two vectors used in the taking on the plate normal, and this is equal to twice their 
projection on the bisector B, projected on the plate normal N. The second term is 
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cones of extinction 
cone of ma*- 

reference ray 

FIQTJRE 3. Illustrating the directional selectivity of the reflectance of  
deep holograms. 

reconstruction region for object azimuth angles of: 

reflectance 

FIGURE 4. Extinction curves for the case of object ray at 15" and r e f e r e n c e  ray at 3C 
plate normal (or vice versa) at vwious azimuths. ~tereograpkic ~ r o j  ection. 
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reconstruction region for object azimuth angles of: 

FIGURE 5. Extinction curves for the case of object ray and reference ray both at 30' to plate 
normal a t  various azimuths between them. Stereographic projection. 

the same,  in the reconstruction. We have therefore the simple geometrical 
interpretation of the argument 

(11) 
3x7 1967  

Qsd = kd[cos (22, B) - cos (r ,  B)] cos (B, N).  

The loci of constant selection factor are therefore cones, coaxial with the bisector 
B; cos (p,  B) = const. The geometrical conditions are illustrated in figure 3. ~ e c k  

Of chief interest in the practical applications are the extinction contours; the loci 
on which &d = + ?r. These are two cones, coaxial with, and a t  the two sides of the :e?. It 
cone 8 = 0, which is the cone of maximum reflectance. Under certain conditions, ?oartmant c,:' 

when t h e  cone of maximum reflectance is narrow, only one of these two extinction , . 
cones be real. h order to obtain a representation useful for practical applica- 
tions, we have shown in figures 4 and 5, the intersections of these cones with the unit 
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sphere, in stereographic projection, so that the cones are represented by circles. w 
have assumed here, as a practical example kd = 2n/A = 100, that is to s a y  an emu] 
sion thickness of 15.9 wavelengths. (For instance, red light A = 0.63 w, refrsctiv 
index of emulsion 1.5, d = 15.9 x 0.42 = 6.7 pm.) This is a very moderate  thich@ 
for deep emulsions, but even so it is seen that when the angles betweep. t h e  referent 
ray and the object ray are not too small, the zone of visibility will over con 
angles of a few degrees only. For larger d/A ratios the width of these z o n e s  is propol 
tionally reduced. Note that all polar angles 8 in figures 4 and 5 are in +he mediumc 
the emulsion, hence these will appear magnified in the object space. 

Our thanks are due to Mr Carl Leonard for the extensive computations which le 
to these graphs. 

In equation (4) we now put K' = K, i.e. we illuminate in the reconstruction fro1 
the original position, but we make k' $ k, that is to say we illuminate with a diffem~ 
wavelength. Integration through the emulsion thickness d now l e a d s  t o  a colo~ 
selection factor sin *(k' - k) (cos 8 + cos 8,) d 

Sc = 3;(r - ~c) (COS e + 00s en) 
where 19 and 8, are the polar angles (angles with the plate normal) of the referencera 
and of the object ray, both in the medium of the emulsion. This formula  is wf 
known. For small incidence angles the first zeros of the reflectance are at 

1 1  
?-> = ?- 2d' 

For practical applications it is of interest to note that a high degree of direction 
selectivity can be achieved at the same time as a reasonably high reflectance f 
white light. Bor instance in the previous example kd = 100, d / h  = 15- 9, the zeros 
S, are at + 0.03 of the original wavelength, which corresponds approximately to 
'window' of 3 %, or about 180 A for the middle of the visible spectrum. Hence wi 
'white laser light' with about 16 wavenumbers evenly spaced, we could  achie 
uniform reflectance for white light, and yet sufficient colour purity to s a t i s f y  theej 
This can be approached by combining neon, argon-ion and krypton-ion lasers 
the recording. Of course, with the photographic media at present e a s i l y  availal: 
the totd reflectance for white light will still be of the order of 3-6 % o n l y ,  but th6 
is no fundamental reason why these media should not be further improved. 

By equation (4) the second wave has a phase factor 
/ ' 

exp [-ik(R+R,+ R'+r)]. 
Integration over x, y gives for the direction of emission, instead of the equations 

I k,+kn, = - (K;+KJ,} 
k2+kn2 = - (KL+K2). 

( 
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We have now to distinguish two chses. Equations (14) give the projection of the 
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(k? + ki)* = [(2K1 + + (2K2 + k,2)2]*. 

So long as this is smaller than k = 27r/h, the z component k3 will be real, otherwise it 
will be imaginary. A simplified discussion will be suflicient to show up the essentials. 

Pirst case, k3 real. For simplicity let the bisector of K, k, be in the z direction, so 
that K, + k,, = 0, K2 + kn, = 0. 

I n  this case k3 = k cos 8 
and integrating over the thickness d of the emulsion we obtain a selection factor 

s2 = 
sin (2k cos 8d) sin 2kd 

2kcos Od - - 2lcd ' 
(15) 

The maximum amplitude reflectance for the first wave must be multiplied by this 
factor to give the reflectance for the second wave. As kd is of the order of 100 or more, 
we obtain intensity reflectances of the order of or less, that is to say practically 
complete extinction of the second wave. Moreover, this weak wave moves into the 
emulsion, away from the observer. 

Xecond case, k3 imaginary. We now obtain an imaginary k3, that is to say a complex 
argument in the z factor of the amplitude 

exp [-i(E3+KA + kn3+ k3)z] 

that is to say exponential damping in the z direction. This means an evanescent 
second wave, and complete extinction. 

IN W H ~ T  FORM IS THE  ORM MAT ION CONTAINED IN A RANDOM HOLOGRAM? 

Holograms recorded with sufficiently diffused illumination have, to the eye, the 
appearance of completely random 'noise'. It is implicit in our previous formulae 
that they contain the full information on the object, because they have only to be 
illuminated with the original wavelength, or in the case of deep holograms, with 
white light, in order to make an image of the original object reappear. There must 
be therefore some order in the apparently random, noise-like pattern.? We propose 
to show that the information is contained in the autocorrelation function of the 
density pattern in the x, y planes, while the colour information is, as may be expected, 
contained in the thhd dimension, in the thickness. 

The signal energy 
The light intensity a t  any point of the hologram is by equations (2) and (3) 

I = (AA* + Xa,az) + Z(Aa5 + A*a,) cos k(R + R,). (16) 

The &st term, which may be called I,, is very nearly uniform over the hologram area, 
in the case of sufficiently wide-angle diffuse illumination, and nearly uniform also 

t The grating-like nature of holograms has been previously discussed by one of us (Stroke 
1964, 1966); see also Stroke (1967). 
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over its depth, if one neglects the absorption and haze of the unexposed emulsic 
The second term, i, is the signal intensity. I ts  mean value is zero, but we can co 
veniently define its 'energy' as its mean square fluctuation around this value. T1 
is perfectly in keeping with communication theory, where the signal energy 
power is dehed  as the sum of the powers of the independent, orthogonal sinusoic 
Fourier components of which it is composed. We wish to calculate therefore 

This we do in two stages, f is t  summing over the object, then averaging over t 
plane. Assuming random distribution of the phases between the object points, tl 
is, as T= 0 - 

8i2 = E(Aaz + A*an)2 cos2 k(R + R,) . (! 

We now average this over the hologram. As a first step we can replace the cosi 
square factor by its mean value 4, because the phase varies much more rapidly th 
the amplitude. Hence 

- 
8i2 = +E(Aaz + A*an)2 = +[A2Xz + 2 A A " X m - t  A*2ZzP] 

= AA*Ea,a*,. (1 

In the second step we have taken into consideration that the first and last terms r 
as often positive as negative. We obtain therefore the simple and general result tl: 
the signal energy is the product of the reference intensity AA* and the mean objc 
intensity Z G .  At a given total intensity (reference plus object intensities) thit 
a maximum when the two are equal, and then it is just one quarter of the square 
the total intensity. This is the optimum adjustment, which has t o  be rather carefu 
maintained in deep holography, though it is not a t  all critical in thin hologra~ 
where the reference beam can be 3 to 5 times stronger than the object beam with( 
appreciable loss in diEraction efficiency (Stroke 1964, 1966; Friesem, Kozma 
Adams 1967). 

The autocorrelogram of a random hologram 

In a sufficient approximation we can consider the density and/or scattering pol 
d(x, y, z) in a hologram proportional to the signal intensity a t  this point. We n 
wish to calculate the autocorrelation function 

where the averaging is over the volume in the correlogram, or a plane in it. We ha 
apart from an unimportant proportionality constant 

a(%, Y, z) = 4C(Aa2 + A*a,) (exp [ik(R + R,)] + conj.), 
with 

( 

kR=kRo-(Kl~+K2y+K3z), IcR,=kRno-(k,,x+k,,y+k,,z) 

i and, in suEcient approximation, 

K3 = [k2 - (z +RE)]* M k - (g + Kt)/2k, 

!I and similarly for &,. 



The theory of deep holograms 

n. / Substitution into equation (20) gives 

x Z(Aaz +A *an) exp [ik{Ro + R,, - 2 (z + Az)]] exp - [(K, + k.,) (x + h) 
he 
his 

1 
K:+KE+k:,+k& + (-kT2+kn2) (Y+AY)- 2k (z  + AZ)] + conj.]>,.. (21) 

,7) After averaging over x, y (not over z), this expression simplifies greatly. Only 
ne conjugate terms in the two factors give non-zero averages, and only those for 
m identical object points. The autocorrelation function is therefore 

I @(Ax, Ay, Ax) = d(x, y, z) d(x + Ax, y + A ~ ,  z + AZ) 

= AA*Xa,a: cos ( K ,  + le,,) Ax + (K, + k,,) Ay ( 

i s  This result will be best understood if we consider it separately in the x, y plane and 
in the z direction, and if we now go over to a continuous object. We then obtain in 

'y any one plane z = const. 
1% 

= AA* JJ a(k,, k2)a*(kl, k2) cos [(Kl+kl)Ax+ (K,+ k2) Ay] dk1dk2. (23) 

Here a(& k,)a*(lc,, k,) is the intensity emitted by the object in the direction k,, k,. 
In this sense, the autocorrelatiolz function of density in a plane hologram is the cosine 
Pourier transform of the intensity distribution of the object, but wifh the zero shifted 
to k, = - K,, k2 = - K,. The bisector of these rays with the reference ray is in the 
z direction, normal to the plate. The information in an apparently random hologram, 
obtained with diffuse illumination is thus contained in its autocorrelation function. 
Any area of such a 'random' hologram large enough to contain the autocorrelation 
function contains the full information on the object, except for diffraction limita- 
tions and of course with a lower signal-to-noise ratio than the whole hologram. The 
autocorrelogram extends over the area which the Pourier hologram would occupy, 
if the object were transparent (*acting, not diffusing), and if it were illuminated 
with parallel light. Diffuse illumination distributes this interference pattern in a 
random way over the whole plate area. The random-looking hologram does not 

! therefore consist of random points, but of randomly distributed patterns, each of 
which contains the full information. 



288 D. Gabor and G. W. Stroke 

Consider now the correlation in the z direction separately, again with a continuous 
object. This is 

( [ K ~ + K ~ + k ~ l - ~ - k ~ ~  
= AA* J/ a(%, k2) a*&, k2) cos 2k 1 - 4k2 ] AZ] d& dk,. (24) 

This is not a Fourier transform, but a type of 'Fresnel transform'. It differs from 
the 'shadow transforms' (Gabor 1949) now usually called 'Fresnel transforms' only 
in the factor exp (2ikAz), [exp (- 2ikAz) in the conjugate]. One could call this the 
'Lippmann factor'; a modulation in depth with one-half of the period of wavelength. 
With all rays nearly a t  right angles to the plate this factor is dominant, and the 
depth then contains essentially the colour information. With complicated and 
directionally extended objects it contains also spatial information, in a complicated 
form. As in the x, y planes, the regularity is revealed only by the correlation function. 

For simplicity we have carried out these calculations only for distant objects, for 
Fourier holograms; but these general conclusions apply equally well to near objects 
and Fresnel holograms. 

One of US (A.W .S .) gratefully acknowledges the U.S. National ScienceFoundation 
and Office of Naval Research for their generous support of parts of this work. 
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