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Abstract

This paper presents the initial results of an investiga-
tion into the question of a canonical product for a real, ra-
tional, unimodular bounded function. Here s & study is made of
the possibility of facﬁoring such a function, f(s), into a
product of functions of the same type, in which each factor
corresponds to an impedance having just two kinds of elements.
Such a factorization implies an immediate and complete realiza-
tion of the impedance corresponding to f(s) by means of a trans-
formerless network. As a preliminary, several theorems are
proved which serve to characterize those unimodular bounded funé-
tions which correspond to RC or RL impedances. These results are
then used to determine classes of unimodular bounded functions in

which the desired factorization can be carried out. Examples

which 1llustrate the procedures are given.
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(1) In defining a general u.b.f., these conditions are required only for

ls{ < 1, but for rational functions they follow for |s| =1 as well.
(2) Throughout the paper, we will assume all functions are real and ra-

tional unless stated otherwise.

(3) As usual, sgn x, the signmm of x, is defined as x/[x[ for real x, x # 0.
. 3 3 .

(L) If an @, =1 or -1, then 1/f (1) or 1/f (~1) respectively is to be in-

terpreted as . Because of the alternation property, these cases cannot

occur simltaneously.
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SOME THEOREMS ON UNIMODULAR BOUNDED FUNCTIONS AND
THEIR APPLICATION TO IMPEDANCE SYNTHESIS

oy
Irving Gerst

1. Introduction

Let f(s) be a real, rational, and unimodular brunded function (u.b.f.),
i.e. f(s) analytic and |fl<lon the unit disc® |s|< 1. As is known, the factor-
ization of f(s) into u.b.f.'s is related to the synthesis of the positive real,

rational function (p.r.f.) Z(p), which corresponds to f(s) via the bi-unique

transformation
_zp-1 (1)
F(p) 2(p) 1
£(s) = F(p) , s = P, (2)
- p+1 \

- More precisely, if f£(s) = £;(s) f,{s) where all functions® are u.b., and Z,(p),
Z;(p) are the p.r.f.'s corresponding to f, (s) and f,(s) respectively, then the
balanced bridge whose opposite pairs of arms are Z,, 1/Z; and 1/29,‘39 respect-
ively, has an impedance equal to Z(p) (Cf.[2],p.162) This process lends itself
to iteration if the factorization of f(s) can be continued.

In certain cases a complete realization of Z(p) can be obtained in this
way from a factorization of f(s) alone. In this paper we consider what is
probably the simplest situation where this is so. Namely, we investigate con-
ditions undér which f(s) can be written as a product of u.b.f.'s in which each
factor correspon&s to a p.r.f. arising from a network having just two kinds of
elements. Since such p.r.f.'s are immediately realizable, the possibility ex-
ists for obtaining a simpler transformerleés synthesls of Z(p) in this case

[

than that provided by existing standard procedures.

* In defining a general u.b.f., these conditions are required only for [s|< 1,
but for rational functions they follow for [sl=l as well.

® Throughout the paper, we will assume all functions are real and rational
unless stated otherwise. '
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In order to study the specified type of factorization for f(s), it is
first ﬁecessary to ascertain the form of those u.b.f.'s which correspond to
LC, RC, énd RL impedances respectively. We shall designate .such u.b.f.'s as
10, RC and RL u.b.f.'s respectively. Now, the form of an LC u.b.f. is known

(cf.[2],p.161). It is given by

¥ s-s: .
B9) = x 7 FE L lsgle (11,2,000), 3)
1=1

where non-real s; occur in conjugate complex pairs. Further, the role of LC
u.b.f.'s in factorization is clear [1]. They act as unit functions in the
sense that a factorization £(s) = g(s)h(s) with £(s) a u.b.f. and g(s) an IC
w.b.f, implies that h(s) is also a u.b.f. We may therefore restrict our dis-
cussion to RC and RL u.b.f.'s (but note the remark in Section 5).

No results analogous to those for LC u.b.f.'s seem to be available for
RC or RL u.b.f.'s. We therefore proceed first to characterize these func-
tions. This development which takes up most of the paper, is given in Sec-
tions 2 and 3 and the results are embodied in Theorems 1 and 2. The latter
are of interést in themselves. Then, in Section L, we discuss factorization
invo RC and FL u.b.f.'s. Some extensions and several examples complete the
paper.

As we have already indicated by our structuring of egs. (1) and (2), the
trensformation from Z(p) to f(s) may be considered to be accomplished in two
steps. The first of these, eq. (1), yields a function F(p) which is real,
rational and unimodular bounded in the right half-plane Re(p) > 0. Ve shall
refer to Mp) also as a u.b.f. In any discussion of u.b.f.'s it will be clear
from the independent variable employed (p or s), whether the right half-plane

or the unit disc is intended.
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Functions F(p) which are u.b. stand in the same relation to the cor-
responding Z(p) with regard to factorization as does the u.b.f. f(s). It is
a matter of choice which class is used. We have therefore derived, inci-
dentally, Theorems 3 and L which relate to RC and RL u.b.f.'s F(p), and from
which Theorems 1 and 2 follow directly using eq. (2). However, in Section L,
our results are stated for the u.b.f. f(s) only, with an indication of.how the
corresponding results for u.b.f.'s F(p) may be formulated.

The methods used in this paper are similar to those employed in a previ-
ous paper [3] which was concerned with another problem. Reference will be
made to this paper on occasion for additional details. We also cite a par-
tial list of papers [L4]-[9], other than those already mentionéd, which essen-
tially make use of u.b.f.'s. Of these, the paper by Reza [6] comes closest to
the present one in that an alternative argument for proving part of condition

(b) of our Theorem L could be made using his results.

2. The Zeros and Poles of RC and RL u.b.f.'s

In this section, we establish certain conditions which must be satisfied
by the zeros and poles of RC and RL u.b.f.'s, F(p) or f(s). 1In particular,
we show that in all cases the zeros and poles are real and that they alter-
nate.

Consider.the non-constant RC impedance

, n . n ’
Z&p) =k g'z("g—;' ’ P(P) =i21(P+6i)} Q(P) —jgl(p+Yj) s (L)

vwhere k > 0 and
0 <y <8 <y ...<-yn<6n. (5)
Here &, may be lacking, i.e. the last zero may be at co. For simplicity,

we assume throughout the argument that 6§, is finite, indicating later any modi-

fication which is +to be made if this is not the case.
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Applying eq. (1) to Z(p) in eq. (L), we get the u.b.f. F(p) given by

2o = kP(p) - Q(p) |
P kP(p) + Qo)

N(p) = kP(p) - Q(p) , D(p) = kP(p) + QAp) , (6)

and denote the zeros of N(p) and D(p) by -Tj and - j respectively. For x >0,

N and D can have no common zero. For if p = p were one, then a consideration
of N(p) + D(p) and N(p) - D(p) would imply successively that p = -84 for some i,
and that p = - Yj for some j, contrary to. (5). Thus the -Ty and the -Xj are
reSpectively'the zeros and poles of F(p).

We next locate the -T; and the ')‘j' Let Y. be one of the y's. Then from

eqs« (8) and (L4), we have

n
N(-vp) = k.7 (-vp#04) 5

and thus (5) implies that®

sgn N('Yr) = (_1)1“*1? (I"—‘l, 25 eees n)‘ .
Similarly,
sgn N(-6.) = (-1)T* , (r=1, 2, veey n) .
It follows that N(p) changes sign in each interval (-v ,-8p)5 r=1,2,...,0-1.

T+t

Hence, each such interval contains at least one real zero of N(p). Thus we heve

Jlocated n-1 real zeros, -Tj, of N(p). If k=1, N(p) is of degree n-1 and we nave
all of the -T; (one T; has become infinite). If k#l, then the one remaining -73

et h]
AtllL

0]

ding information on the signs taken

+
L bs real, and it follows from the prece

by N(p) that it must lie outside of the interval (-8p, -Yp)e ItS location malr

be made more precise by consldering N(p) at the real values =co .

3 .- ) ) : ) . . R R £ 5.
As usual, egn x, the signum of X, is defined as x/[xf. for real Xy X = O




If k<1, we have sgn N(o) = -1. Hence, there is & sign changz in
(-v; ;) and the remaining ~T; lies there. CSimilarly, when k > 1, sgn
¥(-) = (-1)", which implies that the remaining -T, s in (-0, -8,).

The polynomial D(p) is treated in the same way. We find that sgn
D(-vy,) = (-1)T* and sgn D(-6.) = (-1)F, for r =1, 2, v.., n, . Thus
each interval (—ér, ‘Yr)’ r=1, 2, «.., n, contains exactly one real zero,
A5, of Dp). |

Summarizing, one of the following two order relations holds for the
513 Y; and the M's and A's if the latter are each indexed in increasing
numerical order.

OSvi <X <8 <My <wya < vv <y, <A< by<Ty; (7)

<<l <8 <Th <yp < .u. <y, <Ay <. (77
In (7), T, may be missing, i.e., may be at oo, in which case F(p) has only
n-1 finite zeros.

The stated order relations can easily be shown to hold when &, is miss-
ing in (L), if we interpret 6, as . In this case only (7)’ is possible.

We have now shown that an RC u.b.f. F(p) must be of the form

m
i (p+T\1) /Q)
F(p) = n g -
+A
jgl(p 5)

‘A

where » is real; m = n-1, or n; the ﬂi and kj are distinct real numbers with,

the latter all positive; the T and kj separate each other according to one
of the following two schemes:
O<iy <Th <A <Tp < .. <Ag<T; (%)
(9)°

n1<k1<?£<12<_..<nn<)\n.

In (9), N, may be missing. Note that all the T; and Xj are positive excent

possibly T, in (9)’
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Now replace p in (8) using the transformation of eq. (2). Ve get
M
“(ﬁﬂﬂ

£(s) = ¢ %‘i———— , ) (10)

321 (s+53)

where f(s) is u.b.; ¢ is a real constant expressible in terms of u, T4 and I\j,
and o4 and Bj are given by

1+T. 1+)\1-
L= Bi = — (11)
¢4 . ] J 1. ’

&
(]

when T; # 1 and )\j #Ll. If T, =1or )‘j =1, o or By may be interpreted as
© and there is no corresponding factor (s+x;) or (s+Bj) in (10). Also vhen
m = n-1 in (8), i.e., when M, = ©, a factor (s+1) appears in the numerator
of (10). This factor can be considered as arising from (11) by teking

Ty = Th = ©®. We see then that there are three possibilities for the integers
M, Nin (10), viz: M=N=n; N=n, M=n-1; or N =n-1, M = n, where n is a
positive integer.

It follows from (11), (9) and (9) '\fthat the @; and 85 are all real and
distinct but they may take bo;ch positive énd negative values. Furthermore,
from the positivity of the )‘j’ we have lsjl > 1, as was to be expected for a
u.b.f. f(s). Consideration of the linear transformation (1+v)/(l-p) which
is involved in (11) shows that the alternation property of the T; and As is
preserved in the mapped sets oy and ij. However, the mapping may effect a
cyclical permutation in the numerical order in which the a3 and BJ- apoear &s

compared to the corresponding T; and )‘j' For example, if

PRy nk—l < )\k <‘nk <')\k+1 < ’nk_*_l s e
are five consecutive terms of the T, A sequence and if A < 1 < T, then (11).
i:nplies»that the «,8 sequence will start with the negative terms oy < Bysy < Syt

and end with.the positive terms oy _, < By .



Therefore, let us re-index each of the sets ((yi), (Bj) in increasing
numerical order. The combined set of the o's and B's when arranged as an

increasing sequence will then exhibit one of the two following order rela-

tions:
0 < By < < Ba < eee <0y < By (l?)
| B, <@y < By <@ < ese < By <oy | a2’

In both (12) and (12)’ the last term may be missing, i.e., we may have gp = @
ora; = @.
“ This completes our development of the conditions which must be satisfied
by the zeros and poles of an RC u.b.f. f(s).
The case of an HL u.b.f. is now easiiy treated. For, any RL impedance
may be written as 1/Z(p) with 2(p) as in (L). But by (1) and (2) 1/Z corre-

sponds to -F(p) and to -f(s), where F(p) and £(s) are the RC u.b.f.'s. Thus

the conditions on the zeros and poles remain as before also for RL u.b.f.'s.

3. The Representation Theorems

Having obtained necessary conditions for the o and By of the RC (or RL)
u.b.f. £(s) in (10), we next consider the real mgltipiicative constant ¢ which
appears in that formula. Since If(s)l < 1 for !sl <1, we have, in particular,
that |£(1)] < 1 and [£(-1)| <1. Let £¥(s) = £(s)/c. Then it is necesssry

that theAfollowing inequality hold":

O _,,l__]
‘Cl < MlnLlf’(l) s lfw(—l)‘
Sirce RC and RL u.b.f.'s just differ by a factor equal to -1, this condition
holds for both classes of u.b.f.'s.

We will show that the necessary conditions obtained thus far are also

sufficient, i.e., that the following theorem holds.
“ If an @; =1 or -1, then 1/£%(1) or 1/£%(-1) respectively, is to be inter-

. + Ty~
preted as @ . Because of the alternation property, these cases cannotv oOccds
simultaneously. \
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~Theorem 1. Necessary and sufficient conditions that a non-constant ra-
tional function in lowest terms given by

T (s+oy)
f(g) = i_l_.___
m (s+5 )

3=
be either an RC or RL u.b.f. are
(1) the @; and Bj are real and distinct;
(ii) for each j =1, 2, ..., N , lsjl >1 ;

(i41) M=N=n, orM=n, N = n-1, or M = n-1, N = n, n a posi-

tive integer;

(iv) the o5

value, exhibit one of the order relations (12) or (12)’

and Bj,each indexed according to increasing numerical

(v) ¢ is real and subject to the inequality

< 9 —-—-———1 T s
o [ 151 (1)I | £%(-1) | ]

where f*(s) = £(s)/c.

We can also say something more precise about the range of c, and we can
distinguish between an RC and RL u.b.f. . For this ‘purpose,‘ it is convenient
to classify the order relations (12) and (12)’ into three types. We do this
in the following way, which is dictated by considerations arising laver in
the proof.

Let S be the ordered sequence of the oy and Bj to which we have added
as a last term @, = © or By = o0 1in case f{(s) has a zero or a pole &t in-
finity respectively. Then S may be considered tc be the juxtapositiocn of two
sub-sequences S, and S,, where S contains all those terms of § which lie in

the semi-closed interval (-, -1], and S, contains all terms of S which lie



in the semi-closed interval (-1, co]. Symbolically, we can write S = (8;,5;).
0f course either S; or S, could be vacuous. Form the new sequence S'=(SE.81).
Tt is clear that S; represents a cyclical permutation of S. We can then state
the following:
Definition: S is said to be of Type I if S’ begins with a B, of Type II if 8§’
tegins with an @ > 1, and of Type III if S’ begins with an o such that -1 < «<l.
or example, consider the following three S sequences:
Sty = -l By = -3, @y = -1, By = @3
St ay = -3, B, =-2, 5 = 3, B, = ©;
=L, & = -3, 8 = -2, 0, =0, B, =3 .
Then the corresponding sequences g’ would be respectively:
S't By =, =-L, B =-3, a0, =-1;
5t oy, =3,8, =@, 0 = -3, B8 =-2;
§': 0y =0, By =3, 8 =-b, e =-3,8 =-2.

The original sequences S would therefore be of Types I, II and III respective-

ly.

We can now formulate the result to which we have already alluded, using
the classification of the sequence S and the function f*(s) previously de-
fined

Theorem 2. Let f(s) be as in Theorem 1, with c real; and let (1)-{(iv) of that

theorem hold for the .

; and Bj. Then f(s) is an RC uw.b.f. if and only if ¢

satisfies the following conditions:



(8) if S is of Type I then O < |c| < |1/£7(-1)| and

sgn ¢ = sgn £°(1) , oy £ -1, (i=1,2,...,M) ,

sgnc=f(s) » one a; = -1 ;
s-1 s=1

(b) if S is of Type II then 0 < |c| < |1/£7(1)] and

sgnc = - sgn £(1) ;

(¢) if S is of Type III then

0<|c[_<_Min. r ‘,_1 [: %l ']:
L1£7(2) £7(-1) »

and

sgn ¢ = - sgn £(1) .

Corollary. Necessary and sufficient conditions that f(s) be an RL

u.b.f. are given by those of Theorem 2 if ¢ is replaced by -c through-
out.

Theorems 1 and 2 will follow directly when we have established their

counterparts which characterize RC &id RL u.b.f.'s F(p). These are next
described.

Theorem 3. Necessary and sufficient conditions that a non-constand,

rational function in lowest terms given by

a2

7 (p+7y)
F(p) =»=

T (p*A)

j=1

be either an RC or RL u.b.f. are
(1) the T; and X5 are real and distinct;
(i1) for each j =1, 25 «espy by A5 >0
(iii) m = n, or m = n-1, n a positive integer;

. 4 3 » . N ,.‘1 *
(iv) the Ty and )‘,j’ each indexed according to incraasing numericéa.

value, exhibit one of the order relations (9) or (97

" 10.



(v) # is real and subject to the inequality

, . 1 1
0<KSM1H[£’W :lm}] ’

where ¥ (o) = F(p)/x .

To state the analogue of Theorem 2, we again first classify the order
relations (9), (9)’ into types. Let S* be the ordered sequence of Ti; and J\j.
1y,if s begins with a A, an M > 0, or an T < O respectively.

Thus, if (9) holds, S* is of Type I, while (9)’ yields an S of either
Type II or III. »
Theorem L. Let F(p) be as in Theorem 3, with » real; an-d let (i)-(iv) of

that theorem hold for the Ty and A Then F(p) is an RC u.b.f. if and only

ju

if % satisfies one of the following conditions:

(a) if S* is of Type I, then O < x szlxjﬁlni 5

(b) if S* is of Type II, then -1 < u <0 ;

(¢) if S* is of Type III, then

Corollary. Necessary and sufficient conditions that F(p) be an RL u.b.f. are

given by those of Theorem l if x is replaced by -» throughout.

o~
a L

R
So as not to interrupt the development of our results on factorization
- . x i Hov th
this point, we give the proofs of Theorems 1- L in an Appendix. However, une

Tollowing remark is pertinent.

Remark: TIn Theorems 1 and 2 we have not postulated that f(s) is a w.b.f. Iv
is a consequence of our proofs that this is so if and only if c is in the

. s oy
specified ranges. Because of this fact we may draw another conclusion from

our results.

11.°



For given arbitrary zeros and poles with the latter outside the unit
circle, a rational function f(s), as in (10), is a u.b.f. if and only if its
multiplicative constant ¢ is subject to the inequality

0< |e] <1/

2

(13)

where M = I"ax' o [£%(s)| , £° = £/c. This follows directly from the
sl= .

Maxdmum Modulus Theorem applied to f£(s} in the unit disc.
In particular, for the f(s) of Theorem 2, (13) and the proof of Theorem 2

imply that

—

|£%(-1)| , S of Type I,

Max|£¥(s) |

|s|=2 1£°Q)|  , S of Type I,

\4_.../\ I

Max [|£%(1) 1, |£¥(-1)]], S of Type III .

-~

It is easy to prove directly the first two of these formulas. The third seems

a bit more recondite. Similar results hold for F(p) of Theorem L.

L. Tactorization Theorems

We next consider the application of the results of the preceding sectlons

: . . . . R 4 Py
to the factorization of certain classes of u.b.f.'s. We discuss only the case

(BN

of u.b.f.'s £(s). At the end of this section, we indicate briefly how our re-

sults can be carried over to u.b.f.'s F(p). It is to be understood through-

out that all of our products are finite products.
3 1 1 a i T 1 - .f‘ 'S
According to Theorem 1, a u.b.f. which is a product of RC and RL u b
his

- . £
can have only real zeros and poles. We establish a partial converse of t

statement in

12.
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Igggggghi. Let the réal, non-constant, rational function f(s), in the canoni-
cal product form (10), have real zeros and poles, with the latter outside the
unit circle. Then there exists a constant ¢y > o such that for ¢ real and

o< ICI < ¢o, f(s) is either an RC or RL u.b.f. or is a product of such func-
tions.

Proof: If the zeros and poles of f(s) alternate, then c, may be taken as

Min {1/{27(2)] , 1/|f*(—1)l] , £%(s) = £(s)/c. By Theorem 1, f(s) will te
either an RC or RL u.b.f. if 0 < |¢| < c,.

If the alteration property does not hold, then consider the ordered, in-
creasing seguence, S, of the oy and Bj in (10) each suitably re-indexed. If
there are sgual o's or equal B's, they are to be assigned separate index num-
bers in the sequence. Also, if o is a zero or a pole of f(s) of order m, it
is to be entered m times at the end of S as an « or B respectively.

The sequence S may be partitioned into disjoint sub-sequences S(i),(im
1,2,...,r) such that each S(i> has its o's and £'s alternating and S is the
union of the S(i). For example, one such decomposition is to take each as
separately and each Sj separately as sub-sequences. Corresponding té each
such sub-sequence S(i), form the rational function f;(s) = cifi(s) where

-x‘ .
fi (s) has its zeros and poles at the -a; and -Bj respectively of S(l), and

has multiplicative constant 1. Let'

Cio = I{in [ \11 !] E) (l"‘_L, 3 ecesy I‘)
f;(l) f ( 1)

If now, we take Cy = nt Cigs then for any real c, such that o < ]c] < ¢, we
i= -
can find real ci, (i=1, 2, ..., r) so that ¢ = r ¢y, and for each i, o< leil i<cy, -
i=a ¥

By Theorem 1, each f;(s) with this choice of c;, is either an RC or an RL u.b.f.
Evidently £(s) = mf f.(s). This completes the proof of Theorem 5.
, i=1
Theorem 5 establishes that the factorization of a real, rational funciion,

f(s), having only real zeros and poles is always possible in the stated form for

13«



sufficiently small lcl. The question arises as to how large we can take Icl,
i.e., what is the value of the positive constant, cgi such that factorization
in terms of RC and FL w.b.f.'s is possible for o < |c]| < c;é and impossible

* : .. .
for |e] > cn 2 The existence of such a constant ¢ can be established using
| [e) 0 <

by

the ideas of Theorem 5, and the fact that, in any event, [c[ < 1/M where
M= Maxlsi=1]f*(s)} , ¥ =.f/c,for f(s) to be u.b. In order to
consider this question, we must allow a more general type of decomposition of
the sequence S than that used in Theorem 5. Namely, in terms of the corre-
sponding function, f(s), we must make provision for a situation where f(s) =
f,(s) £f2(s) and £;(s) has a zero and f,(s) a pole at the,same point s = -5,-
Then s, does not appesar in S. Thus, we are motivated to make the following
definition.

Let S(l) and'S(e) be two numerically ordered sequences of «'s and 8's. By
the product, sci)k 3(2) we mean a third numerically ordered ssquence S whose

terms consist of all the terms of both s(‘)and s(z), suitably re-indexed, ex-

o

ept that if an o (B) of S(l) is equal to a B (@) of s(z), both terms are de-
leted from S, (cf. [3] p. 68). We write s = s®) x s{2) ang speak of the
factorization of § into the factors s(l)and S(z). The product thus defined

is sean to be both commutative and associative.

()]
»

The determination of ¢, is still open in the case of a gensral seguenc
In practice, one can try different decompositions of § in order to improve the

constant c, of Theorem 5. However, for certain special classes of sequences,
A

S, the value of ¢, can be given explicitly as the following theorem shows.

o]
Theorem 6. Let f(s) be given as in Theorem 5. If the sequence S correspond-
ong to f(s) can be factored into a product of sequencef5<1), (i=1,2,..., 1)

such that (a) each s(1) is or Type I, or (b) each s(i) is of Type II, then f(s).



i

is factorable into RC and RL u.b.f.'s for all values of ¢ for which f(s)

3¢
w

wb., 1.e., for o< |c| < 1/M, M = Max! | £%(s) | f/c. 1In addition,

sl=1
3¢ \ 3
= | £7(- 1) or M= |f (1)} eccoréing as (&) or (b) holds respsctively.

Proof: Suppose (a) holds. We employ the construction of Theorem 5 but invoke

(a) of Theorem 2 and its corollary. We have f(s) = £.(s) for o < |e|<n’ |1

i=1 + i=1

Bubt by the remerk at the end of Section 3

Max £y (s)| = |£7(-1)] , (4= 1, 2, .., 7)

s|=1
Hence v

EA r 3 ‘X‘
M= Max [£%(s)| = Max 7 |£% (s)] = lf (-1)] = £(-1) ,
st=1 i=1 l

and the theorsm follows.

The case when (b) holds is treated in the same way except that (b) of
Theorem 2 and its corollary are used. This completes the proof of Zheorem 5.

In applying Theorem 6, it would be helpful to know when the sequencs S can :
factored into sequences of the spécified type. Such conditions can be given.
They are best expressed in terms of the sequence S’ = (SQ, Sl) which.has been
defined earlier in connection with Theorem 2. The same definition carries over
to the more gerneral sequences S considered here. We also make use of the "ex-
cess fuﬁction," E(x), which has already occurred in [3] in connection with an-
other problem.
Definition: In any sequence of o's and B's let E(x), where x is any term in
the sequence, denote the difference between the number of 8's in the sescquencs
up to and including x and the number of o's in the sequence up to and includ-
ing x.

Then we can state

15.



Theorem 7: S can be factored into a finite product of sequences of Type I
if and only if E(x) > o for every term x of the sequence S’.
Theorem 8: S can be factored into a finite product of sequences of Type II

f no o, is in the open intervel (-1, 1) and E(x) < o for svery

i
i

-y
g
=R

33 only
term of the sequence S’.

Theorem 9: Let S satisfy the conditions for factorization given in Theorem 7

or Theorem 8. Then S may be factored into a product of m = MaxxES'IE(X)[ but
no smaller number of sequences of the specified type.

The proofs of these theorems may be carried out by induction and because
of their straightforward nature, will be omitted.

It is clear from the relation between Theorems 1 and 2, and Theorems 3
and L, as brought out in the Appendix, that results corresponding to Theorems
¢ can immediately be written down for a funcition F{p) given by (8) where

the T, and A, are real with the latter positive. One simply replaces S and S

by 87, ¢ by x. £(1) or f*(-l) by F*(®) or F*(o) respectively.

In this section, we list a number of miscellaneous remarks about various
aspects of the preceding investigation.
(2) It is clear that condition (a) of Theorem 6 can be weakened toc allow S al-

so to have sub-sequernces s(1) of Type III as long as the assoclated function

£fi(s) is such that
Min | |- B
g — - = —_— .
Lo "\l R Y | 7% ‘
Y 35 (-1) (A1)
& similar remark applies to condition (b) with the above minimum now being

1w Y
i1/ ()] .
1+ i 71 .
(b) Although f(s) in Theorems 5 and 6 has real zeros and poleg, it is easily

secen that the corresponding impedance Z(p) can have zeros and poles which ars

16.



(c) In Theorems 1 and 2 we can get a variety of forms for u.b.f.'s by form-
ing the composite function f[g(s)] where g(s) is u.b. For example, replacing

© gives a particularly simple form which still has a network interpre

ta
(o4
it
~
n
o

(&)

® is an LC u.b.f.

tion since s

[¢]

3 - i i i
(&) It can be shown that none of the classes of u.b.f.'s considered in this

- 8]

aper, including the composite functions mentioned in the previous remark

'y

correspond to so-called singular impedances Z{p), i.e., impedances such that
Z(iwy) = ai, a, wy real and # 0, |

(e) If £(s) is 2 u.b.f. having real zeros and poles,where some of the zeros
lie in the open interval (-1,1), then f(é) can be written as a product

g(s)h(s) whore g(s) is an IC u.b.f. and h(s) is u.b. having real zeros and

one of the zeros in (-1,1). This procecdure obviates the consid-

g
o]
—
0]
]

-
5
ct
jay
o]

sratlon of Type III sequences but, in general, it may complicate the realiza-
tion of £{s). in example will suffice to illustrate the technique.

Consider £(s) = c(=+1/3)(s+5)/(s+2)(s+L). We can write £(s)=g{s)a(s)
wiere g(s) = 3(s+1/3)/(s+3),h(z)= c(s+3)(s+5)/3(s+2) (s+L). Then g(s) is an LC
u.b.f. by (3), and h(s) is an RC u.b.f. by Theorem 2(a) when O < ¢ < 9/8.

By Theorem 5, we have the simpler alternate factorizaiion into f{s) =

£,(s) £,(s) where £,(s) = ¢y (s+1/3)/(s+2) and f£,(s) = co(s+5)/(s+k) , ¢ =

162, 0 < [ey| <3/2, 0 < |ey| < 3/L.

17.
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6. FExamoles

1. Consider the impedance

1.5p
34.5p% = SL.9p® + 29.3p + 5.3

Transforming Z(p) into £(s) by (1) and (2) and factoring f(s), we find

_ (5-2) (s+L)(s+5) .
H8) = a2y (sv3) (s+0.5)

By Theorem 5, since the zeros and poles of f(s) are all real, factoriza-
tion of f£(s) into RC and RL u.b.f.'s is pdssi‘ble for some range of the multi~
plicative constant. We will see whether the given multiplicative constant,
1/10,1is in this range.

T

he sequence S for f(s) is S:ioy = -2, By =2, B = 3, 05 = L, By = L.5, ¢ =5.

Hence, the sequence S’ is

S’z 91=2: 52::310'?:)4’ 83':)-1'5;0’3:53 d1=—2.

L

We next calculate the function E(x) for S’. We have E(B,) = 1, E(8,) = 2,

L

=

Elop,) = 1, B(8.) = 2, Bloa) = 1, Bley) = 0 . Since E(x) >0 for every temm
of S’, Theorem 7 applies, and Theorem $ then indicates that S can be factered
into a product of two sequences of Type I. Further, by Theorem 6, since

|f*( -1)| = 36/7, we get the range 0 < | ¢ | < 7/36 for the multiplicative con-

stant. Thus the given f(s) is factorable.

There are many ways of factoring S into the product of two Type I segquencss,

s = s() x s(2), We choose s(2): 5§1)= 3, gfl) =53

o) of®) = -2, 8(2) = 2, of®) = L, 5?) = L.

and form f(s) = £,(s)f,(s), where

N (s+5) s v o {e-2)(s+])
iy Yy = ———— - (S/ - Cg ! ~
file) = el gy 2 (8+2) (s+h.5)




I <us e,

Here ¢, ¢, must be 1/10, and by Theorem 2

0< ey < |1/ei(-1)] =172,
0< |ea| < 11/25C-2) = 718 .

We choose ¢; = 1/2, ¢, = 1/5. The impedances corresponding to f, and f, are

then
O+ 15.5p0% + 12.4o + 1.
Z(p) = 2, g (p) - 2L 1 ABID P LT,
p 1?.513 + 1906p + 5'3
By Theorem 2(a), since sgn ff(l) = + 1 and sgn f:(l) = -1, we know that

Z, will be an RC impedance and Z, an RL impedance. 2Z(p) is then realizad by 2

balanced bridge shose opposite pairs of arms are Z,, 1/Z, and 1/Z,, Z, resspect-

2. Consider the following function,f(sL having real zercs and polec:

<) = (s-1) (s+1)
| o) = e ) (o)

Let us determine a range for ¢, as guaranteed by Theorem 5, for which 7(s)

’.Ju

s factorable into RC and RL u.b.f.'s. We have

S: B, = -3, B, = -2, o =-1, @y =1,

S’: oy =1, By = -3, B2 7 -2, g =-1.

_— k) -— [‘ / — .—
E<(‘/2> = -1, b(ﬁj) = 0, E(B;) = 1, E(Q’;) = 0.
Since E(x) is neither non-negative or non-positive, a factorization of S
-intc Tactors which are either exclusively of Type I or Type II is not possible.

We must therefore employ the general procedure of Theorem 5 and try various

factorizations of the secquence S.




Ve ghall choose two factorizations out of those which are possible.
(2) Let £(s) = £,(s)f.(s), where

. s+l
’ 1?(3) = Cp N
S-=

The sequence's(l) for fy is of Type I. Hence, by Theorem 2(a),
0< ley| < l1/85(-1)] = 1.5 .

As for the sequence 8(2), it is of Type II. Hence, by

Theorem 2(b),
0< le| < [1/65(1)] =1

Since ¢ = ¢;¢,, f(s) will be factorable for O < [c| < 1.5 .

(b) Let £(s) = £,(s)f,(s) where

-1
f1<s) = Cy ’2—_‘3“ s

Again we nave (1) of Type I and S(2) of Type II, so that

0< ley| < |1/£7C-1)| = 2 ,

0< leo| < (/55D | = o5,
and, therefore, f(s) is factorable in this way for O < |c| < 1.

It is conjectured that the factorization in example 2(a) provides the
maximum range of ¢, i.e., c? = 1.5. On the other hand, it is easily found thal
Maxl | 1lf%(S)l = .. Thus f(s) is a u.b.f. for 0 < |c¢| < 2.5, so thet factor-
izatzon into RC and RL u.b.f.'s is not possible for the full range of c.

20.



Proor of Theorems 3 and h.

We remark that Theores 3 is implied by Theorem L and its corollary.
We have only to see whether condition {(v) of Theorem 3 is implied by con-
.. R - ) . . e az
Qitions (2) and (b) of Theorem L and its corollary, since condition (c¢)
ccept for notation is alread i b )
except for notation is already equivalent to (v).

Yow if S° is of Type I then
0 < 1/F (O\= k/*r'n <1 =1/F(00)

whnenm=n; and whenm = n - 1
0 < 1/F°(0) < o = I/F ().

Ir §* is of Type II,

1/F (0) = % A/ B >1=1F (@) .

n
j7oi=l
Thus,in every case,condition (v) of Theorem 3 follows. We therefore

a2ddress ourselves to the proof of Theorem l; and its corollary.

o Fo T 4
We already know from Section 2 that condit sons (i) - (iv) of Theo-

rem L and its corollary are necessary and that » is a real cons
There remzins the proof of sufficiency for (1) -
2C and RL u.b.f.'s.

fication of the multiplicative constent % for &

Applying (1) to F(p) gives




-

Since Z(p) in (1L) is replaced by 1/Z(p) when x is replaced by -y, any
condition on x characterizing F(p) as an RC u.b.f. will give a corres-
i ponding condition on -x for F(p) to be an RL u.b.f. and vice versa.
Thus, it will suffice to establish our cofxditions for » positive, in
order to establish both Theorem L énd its corollary.

*  As before, it follows that the numerator and denominator of the
fraction in (1L) have no common factors when » # 0. If Z(p) is repr
sented as in (L) with P and Q relatively prime, then we can take the

-éi and the —yj as the zeros of

n n . _
jgl (P“Xj) + igl (P"‘ﬂi) =0 (15)
anda
' n _ m - 16)
| hu (o+dy) = % 0 (prm.) =0 (

respactively.

We now consider x to be a2 real variable. Then eq. (16) defines p

as an algebraic function of y having n branches. Denote these by ——vJ\,{,,
(.37 =1, 2, «ve, n). We shall investigate the behavior of these branches

. L. . - fonm O + PN
(i.e. the root locus of (16))as x varies along the real line from O to +x.

" N ~ ~ . < p + £
First, note that argument of Section 2 may be repeated here for

. A g s - DX
eq. (13} to show that for resl x all of its roots are real. Now im [31, p.59,

it has tesn proved that when the —Y k/») are real, they are strictly mono-

+ (s
ton.u.c fonctions of #. To determine the dl“PCthn in which the Vj )

f at by properly
vary we oroceed as follows. If » = 0, we see 1rom (16), that by properly

j indexing the ’\”j(%), we have -Y:(0) = Ay (3=1, 2,..., ). Let q De

= ent -V {5
one of 1, 2, ..., n. In the nelghborhooa of » = 0 we can represent .q\f’)




e ———

by a Maclaurin series:

- Y (1) = =X+ aggn*eve a7
where 4
mg & 12Ioh
®
Fron (16), we find by differentiating implicitly that

] |
an T s

alq = n °

Ifa

From this point on, the argument depends upon the type of sequence s¥

under consideration. First, let S* be of Type I. Then, from (18) and (9)

= ..(::_L_)_q___l = +1
(-1)%

for each q = 1, 2, ..., n. Hence (17) shows that for small , as x in-

sgn a_lq

3

creases positively from O, —‘Yq(u) increases from the value ")‘q' By the
italicized statement above, -Yq(n) will be incxfeasing with increasing
for all real .

When » — +w,the rToots of equation (16) are the -7 (including
one root at @ if m = n - 1). Hence as y ranges positively from O 10 +w,
‘\’j(n) decreases from k:j to some 1, - In view of the order relation (9),
the only way this can occur and still mzintain the monotonic character
of the va.z;iation is that Yj(n), (3 =1, 2, +»., 1), varies from )\j 1o
Tj.30 while Yy decreases from )y to - @ and then from +o to 7 -

Replacing x b;y -#, the same argument shows that roots

call them -5j(_n), which are equal %o '"Yj("”)’ increase from Ay to 739

23.

of eq. (15),
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(j =1, 2, «.., n). Figure 1 represents the mauner in which both §'s and

v's vary.

AN - e Y / . | . VS ot SN
o .Y - M £ S L3 £ 5 G
Root Locus for Type I Sequence
FIGURE 1
For small positive », since the §, and are both clcse to the 3
’ 3T 3’

-

t is clear that the order relation (5) holds. As » increases positively
(5) will continue to hold as long as v, remains non-negative. Now v, be-

comes zero when # = o in (16) where

Thus when O < n < n _, the order relation (5) holds.

We must still snow that k in (L) is positive. When m = n, (L) and
(1L) yield k = (1+n)/(1-#). Since 0 < xu, < 1 for a seguence of Type I,
#>0. Whenm =n -1, k = 1.

Thus Z(p) given by (1L) is an RC impedance. This completes the

roof of the sufficiency of condition (a) in Theorem L and its corollary.

o)

We next show that for x > »_ or for » < 0 , Z(p) in (1) is not an

O

RC impedance. This is clear for u > M, @S the preceding argument shows

Py

taat (5) will be viclated. In fact, for x > N Z(p) is not even positive
. 3

Wnen m = n, this follows for 1 > x > " since vy, is then negative;

and for n > 1 since k = (1+#)/(1-») is negative. When » = 1,

For m =n -1, y, is negative for all »n >« -
Next, suppose Z(p) in (1L) were an RC impedance for any # = #, < 0.

nen the F(p) with # = -», > 0 would correspond to 1/2(p), i.e. would

- . : . £ wrha 3 31 1, Q0
be a L impedance. This is mpos‘sl‘qle,n_;l‘_y iew of :rr}c_z‘ff ~has. Jusy becﬁﬂ

about {1L) for » > 0. Thus condition (a) of Theorem L and its corollery

has been oroved necessary.

2l.
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The other two cases, namely s* of Type II and IIT are treated in ex-
actly the same way. We omit the details but indicate the salient features

of the argument.

5

For S of both Types Il and III, the monotonic variation of the &'s and
v's as x increases from O through positive values is shown schematically in
Figure 2.

T &+ M=y M &< M=y 5.0 Ty ¢ A=y
0

— Sz A
g = g e L4}

o = 3% A o B3 A
Root Locus for Type II‘and ITT Sequence

FIGURE 2
For small positive x, 63 and y4 will be close to A4y and hence the é's

and v's will be in the order relation for an RL-impedance which is
0< 6 <y <8 eoo <bp<y , | (19)

where y, may be w. Since both the §'s and y's approach the T's when »— @,
we see from Figure 2 that (19) will hold,up to and including that value of wo
for which first 8, = 0 or vy = 0. Only the latter possibility can occur

vhen S* is of Type IZ, since §, > T, >0 for all » > 0. As Y = © when # =1,

the admissible range for s is then 0 < » < 1.

) n “
For S* of Type III, 0 < » < }ﬁn_[~n X,/ e My lJ s

vhere the first quantity in the bracket represents the value of n which yields
8 = 0. That k >0 follows as before. In this way we arrive at conditions (®)

and (c) in the corollary of Theorem L.

This completes the proof of Theorem L and its corollary.
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Proof of Theorem 1 and 2.

We apply the transformation (2) to £(s). This gives an F(p) as in (8)
where -
M
7T (:]_'*”CY:L)
T

= N
331(“5;])

’ j.fnoai”—l;

g'(lmi)

x=-—2c—i—ﬂ~—w—-—-—- s ifana'i"-l.

N
j21 (1+Bj)

(Bere n’ means that the factor corfesponding to o = -1 is omitte&.)

The sequence S" formed by’ suitably indexing the 7's and \'s is seen to
be the map, term by term, of the sequence S¥ = (S5, 8,) previously de-
fined, under the transformation = (a’i - 1)/(ai +1), Ay = (Bj - 1)/

(ﬁj +1). Furthermore, the three types of sequences S go into the simi-

—

larly mubered types of sequences S*.' (Tnis correspondence, in fact,
was the basis of our classification of S). It may thus be verified that
conditions (1) - (iv) of Theorem 1 imply that the corresponding condi-
tions (i) - (iv) of Theorem 3 hold for the function F(p) Jjust obtained.
In view of the bilinearity of the transformation (2), the converse is
also true. We may therefore apply Theorems 3, L, and the corollary to
Theorem i, to obtain the required necessary and sufficient conditions
which ¢ must satisfy.

W& restrict our discussion to the application of Theorem L to F(p),

and there to the case when S is of Type I. The application of Theorem 3

and the discussion of the remaining cases in Theorem L are treated in ex-

{ actly the same way.
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By Theorem li(a), for an RC u.b.f., when no ay = -1, we must have

M, n

Mpe T . s
0 _ 1:‘”1.k l) ‘.:lk‘] . T k .,__L) IVI (0 .:_.1\
<n=c- 3 al n '\z /3 1) 1(0, -1y T
7(1+g.) ™ Y H 1=
=1 i=1 *

Thus, 0 < ¢ _<_l/f*(-1) if sga £7(1) = +1, and 1/£7(-1) <c <0 if sgn
£5(1) = -1. This statement is equivalent to condition (a) given in
Theorem 2, when no oy = -1.

If an @, = -1, then again by Theovem L(a), we get

M
/(L) %)\,

i= . b /,.;'-!\
0<nm-p it T 3 KB Y ()
- J=1(p,+1) 17 (:-1)
i (1+8,) 7 J
= ni izl i
Fence
.Ti' (Bj“l)
i=
O <c¢<L * = N7, 3
—-— IV f"w .-1
“2”‘11(0./ -1) (-1)

)/ T (1+5 )_J = +1'; all sigrsin the inequality are re-

versed if the quantity in the bracket is negative. This statement is

z

7 SRR \ N . -
equivalent to {2) of Theorem L when an o = -1.

This completes our discussion of Theorems 1 and 2.
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