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Abstract

Fast recursive solutions for the equilibrium state probabilities of discrete

time queuing systems are presented. A form of boundary balancing is used
to arrive at their solutions. Cases examined include the Geom/Geom/K/N
queue, a queue with a varying number of servers and the Manhattan Street
metro- politan area network.



1 Introduction

The trend of modern communication is to integrate a variety of traffic services

into a single transmission facility. In such an environment, all transmissions

are in digital form regardless of its original nature. This is particularly true
of proposed ATM architectures.

In a digital network, usually a group of data bits are treated as a single

entity and given a name such as "packet", "cell" etc.. This group of data
is either a part of, or the entire message that came from some user and

is destined for some other user of the network. Grouping puts the routing
information common to all the data contained in the group together in the

header of the group. By manipulating the header of the group, all nodes of

the network thru which the group of data passes can then successfully route
the data to its destination. Such systems are often operated on a slotted
time basis. The slots in these systems corresponds to a fixed duration of

time during which this group of data can be transferred. In this paper "cell"

will be used to denote this group of data, in accordance with terminology
used in ATM technology. As a result of this slotted nature, this kind of
system is best described in discrete time.

Consider a slotted network. Unless the load of a network is extremely

light, there will be times when newly arrived messages are blocked because

all of the network resources available to the node, where the message is

originated, are being occupied at that moment. To remedy this situation,
input buffers are needed to store arriving cells before they are passed to the

switching mechanism of the node. Input buffers temporarily smooth out load
fluctuations and thus keep the blocking probability down. Because of this
fluctuation in network load there will also be times when more than one

network resource is free. If during that slot, there is more than one message
waiting in the input buffer, then instead of just sending one message on to
the network, one can send more. This idea is known as bulk service.

Two different queuing models are discussed in this paper. One is a discrete

time queue with multiple servers. If the arrival process is Bernoulli and

the service discipline is geometric, then the queue posseses the memory less

property and is the discrete time analog of the continuous time M/M/K/N
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queue. The other queue model is a discrete time queue with varying number

of servers. Again the arrival process is assumed to be Bernoulli but the
service discipline is now deterministic with a service time of exactly one slot.

An example of this kind of queue is the Manhattan Street Network which

will also be discussed. Using the Bernoulli process enables us to describe
the state of the input buffer by a discrete time Markov chain and use the

Markovian property to develop the state equations.

Because of the multiple service property, it is impossible to find a prod-

uct form solution for the state probabilities. B'-lt as will be seen shortly,

these two queuing models have exactly the same structure as the type A

structure mentioned in [9], so fast recursive solution can be developed for the

calculation of the equilibrium state probabilities. The direct procedure for

calculating the non-product form equilibrium state probabilities, solving N

simultaneous linear (global balance) equations, requires time on the order of
O(N3). The recursive procedure presented here requires time O(N) and is
extremely simple to compute.

In section 2 recursive equations for the determination of equilibrium state

probabilities for a Geom/Geom/K/N queuing system will be presented. Sec-

tion 3 contains recursive equations for the equilibrium state probabilities of

a discrete time queuing system with a varying number of available servers.

A special case of this, input buffer in a deflection routing Manhattan Street

Network (MSN), is discussed in section 4.

2 Discrete Time Queuing System with Mul-
tiple Servers

Consider a general discrete time queue shown in Fig. 1, where p is the arrival
probability of a customer at a server during a time slot and s is the service
completion probability of a customer during a slot. Consequently this corre-
sponds to Bernoulli arrival process and geometric service time. Also define
N as the capacity of the queuing system and K as the number of servers.

This is a Geom/Geom/K/N queue, which is the analog of M/M/K/N queue
in discrete time. The state of the queue is defined to be the number of cus-
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tomers in the queue (including the ones in the servers), denoted by random

variable Xn (where n denotes nth slot). Shown in Fig. 2 is the state transition

diagram of this queue. Note this is exactly the type A structure mentioned
in [9].

The goal of the presented analysis is to find the equilibrium probabilities

of queue states given p and s, and from these other important statistics of

the queue, such as mean delay, blocking probability etc..
Here equilibrium probability of a queue with k customers is denoted as:

Pk = limn-oo Pr'{Xn = k}. When K is larger than one, finding the algebraic
form of Pk is a tedious job. Thus when the numerical result of the queue

performance in terms of different parameters of the queue is needed, a nu-

merical solution is more attractive. As proposed in [9], a recursive solution

is proposed here. This is arrived at by checking boundaries between adjacent

states and equating the flow of probability flux from left to right across the

boundary to the flow from right to left [2], [4], [1], [8]. This balancing can be
referred to as "boundary balance". Define,

ai,j lim Pr{Xn+1 = j I Xn = i},n-oo

{

On < k or k < a
1 k = 0

k!(n~k)! otherwise

min( n, K)

Vi, j E [0,N]

(~)

[n,K]*=

In the usual case, a customer can arrive at the queue with probability
p, and after entering a server, it can finish the service in i time slots with

probability s( 1 - S)i-1. This means that it is possible for a customer to

enter and leave the queue in the same slot. To find the transition probabil-
ities, all possible combinations of customers arrivals and departures have to

be considered. Two sets of equations is obtained. The one step transition

probabilities from state n to n - I (except from N to N) are,

-

(
[n+ 1, K]*

)
1+1

(1 )[n+1,Kj*-1-1
an,n-I - p I + 1 s - s

+ (1 - p) ([n, [<]*) sl(l - s)[n,Kj*-1

-1 :::; I :::;K, Vn -# N
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and the transition probability from state N to N is,

aN,N = p[(I~) s(1 - s)K-I + (1 - s)K] + (1 - p)(1 - s)K

Now if a customer can not enter and leave the queue in the same slot

there will be a different set of state transition probabilities. This delay can

be called the synchronization time. One example where this case might arise

is when time is required to process a header in a network node. The one step

transition probabilities from state n to n - l (except from N to N) in this

case are,

a =p
(

[n, J{]*

)
S [+1

(1 - s) [n,K]*-[-l
n,n-[ l + 1

+ (1 - p) ([n, :{]*) s[(1 - s)[n,K]*-[
-1 :S l :S J{, \In =1=N

and the transition probability from state N to N is,

aN,N = p[(~) s(1 - s)K-l + (1 - s)K]+ (1 - p)(1 - s)K

According to the probability flow balance relation [4], when the queue
is in equilibrium, the probability flows crossing the boundary from state i

to i - 1 will equal the flow from state i - 1 to state i (Fig. 3). Expressed
mathematically,

K+i-l i-I

ai-l,iPi-l = L L ak,jPk, i = N, . . . , 1
k=i j=k-K

From the balance equation, the probability of the lower states can be de-

termined from that of the higher states. Thus once the probability of highest

state (queue full) is known, all other states can be found recursively. Using
the property of probability conservation,

N

L Pk = 1
k=O

4



\ve can arbitrarily assign PN and find all other Pn's subject to this PN and

then normalize their sum. The equilibrium probability is then obtained.
Written out explicitly,

1. Let PN = 1.0
2. Initialize ai/so
3. i = N - 1

i+K i

4. P. = ~" "ak. Pk, a;,i+l L... L... ,J
k=i+l j=k-K

5. i = i-I

6. repeat step 4 and 5 until i < a
7. Find L Pi.
8. Divide all P/s acquired in step 1 and 4 by sum of

step 7, this is the desired result.

One thing one has to be very careful about during numerical evaluation

is the problem of overflow or underflow. This might occur if the queue size
is large, and because of the repeated multiplications due to recursive calcu-

lations, the computer arithmetic operation might overflow or underflow at

times. To get over this potential problem, one can use scaling techniques.

That is during the recursion, software can automatically scale up or scale
down the intermediate result.

With Pk's known, we can proceed to find other statistics that are of

greater interest.

I = Throughput

= Pr{ a new customer enters the queue (per slot)}

= Pr{ new customer arrival and no blocking}

= Pr{ new customer arrival} . Pr{ no blocking}

- p( 1 - Pb)

H = Pr{ arriving customer being blocked}

= Pr{ queue full and no service .completion I
customer arrival}

- Pr{ queue full and no service completion}
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= Pr{ queue full} . Pr{no service completion}
K= PNso (for this type of queue So = (1 - .'I) )

L = Avemge queue length= lim E {Xn}n->oo
N

= L kPk
k=l

vV = A vemge waiting time

- L (Little' .'Iformula)
1

(slots)

3 Discrete Time Queuing System with Vary-
ing Number of Servers

Assume a buffer is placed before some servers (e.g. communication link)
which are also fed by other buffers (Fig. 4), and the sharing rule is determined
by some control mechanism so that no "collision" will occur. Then because of

the sharing of servers the number of servers available to this buffer varies with

time. A network node with a buffer on each incoming trunk, and where the

queued packets compete for the outgoing trunks according to some priority
rule is an example. Now consider certain "slotted" communication systems.

Here transiting cells (cells passing thru the node on the way to some remote

destination) are given priority in access to servers over locally originating
traffic (traffic whose source is at the node). Thus in such a discrete time

queue, at each time epoch (defined to be the start of a time slot), the cell in
the local input buffer sees a varying number of empty servers.

In analyzing such a queue, the state (Xn) can be defined to be the number

of sells in the buffer at time slot n. These cells are either being serviced by
the servers or waiting to be serviced. It is assumed in here that the cell
arrival process is Benoulli, and the cell service time is one time slot. It is also

assumed that the server availability probability is independent of the state

of the queue. With these assumptions, it is clear that the state of the queue
is Markovian.

Consider a queue of the above type. Assume the capacity of the queue is
N, and f{ servers are in this queuing system. Also assume L is the maximum
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number of cells from this queue allowed to be served at a single time slot.

Usually L = K, but there might be cases where for some reason (e.g. cost)

the number of distributed queues are limited to L (L < K). In this case at
most L cells are allowed to enter the server simultaneously.

Define .sk = Pr{ k .servers available to this queue} (on per slot basis) and
which can be of any kind of distribution, providing l:f'=o Sk = 1. In the

following it is assumed that Sk is determined either analytically, numerically [11]

or thru experimental data. For N ~ L (N ~ 1, L:S K), the one step state
transition probability (ai,j) from state i to j are discussed below. Note that,
since only a single arrival and multiple departures of up to L can occur during

a time slot, any state transitions violating these conditions corresponds to

a null event. As in previous section, again two cases is examined. First,

assume synchronization time (defined previously) is required.

1. If i < j, due to a single arrival, only j = i + 1 is possible. Depending
on i, two different cases exits,

(a) if i = 0 then only one event can happen,

. one arrival, regardless of server availability.

aO,1= p

(b) if i =I-0, i < N then only one event can happen,

. one arrival, no departure.

ai,i+1 = pso

2. If i = j, depending on i, four different cases exits,

(a) if i = 0 then only one event can happen,

. no ani val.

ao,o = 1 - p

(b) if i = 1 then two events can happen,
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. no arrival, no departure.

. one arrival, one departure.

K

al,1 = (1 - p)SO+ pI>k
k=1

The summation finds the probability of at least 1 server being
available.

(C) if 1 < i < N then two events can happen,

. no arrival, no departure.

. one arrival, one departure.

ai,i = (1 - p)so + PSI

(d) if i = N then three events can happen,

. no arrival, no departure.

. one arrival, one departure.

. one arrival, no departure (arrival cleared when buffer is full).

aN,N = (1 - p)so + p[so+ SI] = So + PSI

3. If i > j, depending on j, three different cases exits,

(a) if j = 0 then only one event can happen,

. no arrival, i departure.

K

ai,O = (1 - p)I>k,
k=i

l~i~L

(b) if j = 1 then two events can happen,

. no arrival, i-I departures.

. one arrival, i departures.
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K

ai,l = (1 - p)8i-l + pI>k,
k=i

i'5.L

K

aL+l,l = (1 - p) 2.::>k'
k=L

i=L+1

(c) if j > 1 then two events can happen,

. no arrival, i - j departures.

. one arrival, i - j + 1 departures.

(1 - p)Si-j + PSi-j+l,
K

(1 - p)Si-j + PLSk,
k=L

i-j<L-1

i-j=L-1
ai,j =

K

(1 - p) LSk,
k=L

z-j=L

All other transition probabilities not mentioned here correspond to null

events and the corresponding transition probabilities are simply zero. There

are in total (L + 1) + N( L + 2) - L(~+l) non-zero transition probabilities
with only 3L + 3 distinct values, so the computational cost for finding these
transition probabilities is small.

Now assume there is no synchronization time.

1. If i < j, due to a single arrival, only j = i + 1 is possible. For i < N
only one event can happen,

. one arrival, no departure.

ai,i+l = pSo

2. If i = j, depending on i, three different cases exits,

(a) if i = 0 then two events can happen,

. no arrival.

. one arrival, one departure.
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ao,o = (1 - p) +p( 1 - so) = 1 - pSo

(b) if 1 Si < N then two events can happen,

. no aaival, no departure.

. one arrival, one departure.

ai,i = (1 - p)so + PSI

(c) if i = N then three events can happen,

. no arrival, no departure.

. one arrival, one departure.

. one arrival, no departure (arrival cleared when buffer is full).

aN,N = (1- p)so + p[so + 51]= So+ PSI

3. If i > j, depending on j, two different cases exits,

(a) if j = 0 then two events can happen,

. no arrival, i departures.

. one arrival, i + 1 departures.

K K

ai,O = (1 - p)I:Sk + P I: Sk
k=i k=i+1

K

- (I:Sk) - PSi,
k=i

1SiSL

(b) if j ;:: 1 then two events can happen,

. no arrival, i - j departures.

. one arrival, i - j + 1 departures.
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(1 - p)Si-j + PSi-j+l,
K

(1 - p)Si-j + PLSk,
k==L

i-j<L-1

i-j=L-1
ai.j =

K

(1 - p) L8k,
k==L

z-j=L

Again all other transition probabilities not mentioned here correspond to

null events and the corresponding transition probabilities are simply zero. In

this case (2N+l)(~+L)-L2transition probabilities are non-zero with only 2£ + 4
distinct values.

Since the state transition diagram for this queue is similar to the Geom/Geom/K/N
queue, we can expect that the probability flow balance equations are also sim-

ilar (Actually they are the same if £ = K):

i+L-l i-I

ai-l,iPi-l = L L ak,jPk, i = N, N - 1,. . . , 1
k==i j==k-L

To find Pn for all n, one can use the same recursive algorithm mentioned
in the last section with a change in step 4 to:

1 i+L i
Pi = - L L ak,jPk

ai,i+l k==i+lj==k-L

4 Input Buffer for the Manhattan Street Net-
work

The Manhattan Street Network (MSN) is a type of metropolitan area network
proposed by N.F. Maxemchuk [5, 6] of AT&T Bell Laboratories in 1985. It

is a two connected regular mesh network (Fig. 5). For a NxN MSN, the N
nodes in the same row or the same column are connected in a unidirectional

loop. Adjacent rows and adjacent columns alternate direction like the streets
of Manhattan.

Each node in a MSN has two input links and two output links connecting
it to other nodes of the network. Locally generated traffic enters the node
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thru a local link. Assume that there are two packet buffers in the node to

temporarily store the incoming packets for processing. Thus one filled packet
buffer corresponds to one occupied output link. At any given time slot at

most two packets can arrive at the same node on the input links and leave for

other nodes through the two output links. There is thus no internal blocking

in the nodes. Deflection routing is used in the MSN. That is if two packets

in a node's packet buffers prefer the same output link, one packet is sent to

the preferred link and the other is "deflected" to the non-preferred link.

New traffic can only enter a node if at least one of the node's two packet

buffers is not occupied by a transiting packet. So if both packet buffers are

occupied, local traffic is blocked. Thus input buffers are necessary to reduce

this blocking probability [7], [3]. A properly sized input buffer will reduce

the blocking probability and maximizing the throughput with respect to a

specific routing strategy.
From the structure and operation of the MSN described above, the in-

put buffer can be viewed as a discrete time queue with varying number of

servers. Here the servers are the packet buffers in the node. Thus the method

described in the last section can be applied here.

In applying the results of previous section to the MSN, two cases could

arise (in MSN, [{ = 2). The probabilistic equations governing the input
buffer state probabilities for these two cases are listed below. It is assumed

that Sk is binomially distributed, i.e.

Sk = Pr{ k packet buffers empty (per slot)}

(~) sk(1 - s)K-k

If at most one node packet buffer is allowed to be accessed by the local
traffic during a slot, then the state transition diagram appears in Fig 6 and
the boundary balance equations are,

PI - P Po
(1 - so)(l - p)

pso PI
(1 - so)(l - p)

P2 -
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p80 PN-l
PN = (1 - 80) (1 - p)

P Pk8k-l
k = 0

(1-80)k(1-p)kPO, k= 1,...,N

where,

Po = (1 - 80 - p)(1 - p)N(1 - .so)N
(1 - 80)N+l(1 - p)N - pN+18~

This is in fact a one dimensional product form solution for the state probabilities.
For the case where both node packet buffers are allowed to be accessed by the

local traffic during a slot, the state transition diagram is as Fig 7 and the boundary
balance equations are,

pPo = (1-p)(1-80)P1+(1-p)82P2

P80P1 = [P.s2+ (1 - p)81 + (1 - p)82]P2 + [(1 - p)82]P3

P80Pi = [P82+ (1 - p)81+ (1 - p)82]Pi+l + (1 - P).s2Pi+2

P80PN-2 = [P82+ (1 - p)8l + (1 - P).s2]PN-l + [(1- p)82]PN

P80PN-l = [P82+ (1 - p)8l + (1- p)82]PN

Solving explicitly one has:

PN = 1.0

p82 + (1- p)8l + (1- P)S2pPN-l = N
pSO

Pi = [PS2+ (1_- P)Sl + (1 - P)S2]Pi+l+ (1 - P)S2Pi+2
p80

i = N - 2,N - 3,.. .,1

Po = (1 - p)(1 - 80)Pl + (1 - p)82P2
p

this is followed by a normalization.

13



5 Conclusion

Some comparison of the effectiveness of recursive solution is listed in the following
table. The algorithms were implemented using MATLAB. The performance is
measured in terms of flops (floating point operations). In the table the "iterative

method" corresponds to solving matrix equation [7T]= [7T][P]iteratively, while the
direct method corresponds to solving the matrix equation by the Gauss elimination
method.

The performance improvements shown here is conservative as N = 10,20 is a
relatively small buffer size. As N is increased the improvement can be expected to
be even more dramatic. Note,

The ability to recursively solve for the equilibrium probabilities very efficiently
is promising for such uses as numerical performance evaluation and real time net-

work management. We note in closing that it would be straight forward to apply
this technique to discrete time queues with a state dependent arrival probability
and to a single server discrete time queue with batch arrivals. ;:e
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N 10 10 10 20
K 2 2 2 4
s 0.05 0.1 0.5 0.5
p 0.8 0.5 0.5 0.5

recur szve 1396 1396 1396 5318
iterative 9503 307,55 10262 17681

direct 4348 3,576 3576 17263

(000

aO,1 ...

"O,N J
IP] = "::0

al,1 ...
al,N

aN,O aN,1 ... aN,N

[7T] = (Po PI ...
PN)
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Figure 1: A Discrete Time Geom/Geom/K Queuing System

Figure 2: State Transition Diagram of Geom/Geom/K Queuing System



0..-2,;-[

0.''''1,1

o.'-l,i-j 0.'"

o.i-L;-2

<=
I

Other S~ate

Tro.nsi~:o,'S

Figure 3: Boundary for Boundary Balance Relation

,-' ,
r-O-
~
p-
i '

'~

.

Figure 4: Discrete Time Queue with Varying Number of Servers



/~', . ,

': .'. \
\---:~ . r:-o.~u-<~ ' f-;:'\)

. i)".. --,- \ ' .", , ,,<. ,--'-. .,.C r-Y
',~' /: ,--j . ..~ i

I .' j

/ ' , 1 ;. 'i '\
~ ' (~ ,-~ ~,' :. ,,\---1-. ( .) \_2_/, ,. \--1-:-;\ 1)
<?iY:Y:yrT

/ . ' ,. 'i\
/\ : C,/", ~ ~

:.
'--!., ') -L-, ( e.;;r-;--'''' .,,:'-,---, 'n, \ I

'('j ! '0 i 'C/ . V i
T i ! I j , . I

( , ill. , , i\
, 1',:\ ' : ' )"--0,--L0 ( 0 1) : 0, I '~3 O I

YJ 1JJUiJ,
\
\
\

RL
~

~. c= I !
""~.-' "'..~. L- I

I I :
I,,,., .,. ',"" ,~",,~'"

Figure 5: 4x4 MSN

~ JJ 0 JJ CD 0 JJ

PSI PSI

C:-:::)C:-s.) (!-p)(l-s.) (1-:::)(;-50) (l-p)(!-s.) (l-p)(l-s.) (l-p)(l-s.) (l-p)(l-s.)

~ , -

(1] ~:-o)s."p(l-s.)

lIJ 0-(, -0)50

Figure 6: State Transition Diagram for MSN with L=l



[iJ ~ 0

(\-;J)s. (\-p)s. (1-;J)s.

0 0 00

0

(\ -p)5. (! -p)s.

[iJ l-p

IT] (1-p)5.+P5,

[II ,(! -p)5.+p(\-5,)

[iJ (1-p)5.+p(\-5.)

Figure 7: Sta.te Transition Diagram for MSN with L=2

0 p

([-;:>)(\-5.)

Q; 5.+(!-p)5,

S P5.


