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ABSTRACT

An improved iterative scheme, which optiﬁizes both
poles and residues, is developed for approximating a function
by a sum of exponentials. In the pole optimization, the damped
least squares Taylor method keeps pole increments small, wﬁile
pole constraints are employed to insure stability. A more di-
rect matrix inversion technique simplifies the residue opti-

mization.
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INTRODUCTION

In a recent paper by Chatterjee and Fahmyfl], an iterative
scheme was presented for approzdmating a desired impulse response f(t) by
n

a finite sum of eiponentials of the form Zl o5 exp .(-qi- t) where o5 and
i=
qi are real and q1 > 0. The performance iﬁ'dex uséd was the mean square
error, and it was minimized by optimizing both the poles (qi) and the
residues (ozi). “At the risk of oversimplification, this iterative pro-
cedure may be described as follows. First, the 1eas£ squares Taylor
methodl2] is utilized to obtain optimum pole locations with residues
fixed a priori. Second, the optimum residues é.re obtained by using the
well-known Kautz orthonormal set[3]. Once an initial pole is chosen judi-
ciously, the iterative cy‘cle continues until the preassigned number of
poles and iterations are achieved.
, ) | |

Since this iterative techmique optimizes both the poles

and the residues it yvilelds a lower performa.née index than that' obtained

by the Kautz method [3]. However, inherent in this approach is the lack

of control over pole increments; hence, for large numbers of poles un-~
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stable ~solutions (qi = 0) may emerge, and as;sunrptions for the least
squares Taylor method may be vioj.ated. Moreover, a rigorous proof
for the convergence of the iterative technique has.not been given.
The purpose of this correspondence will be to (1) a.mend‘ the pole op-
timization so0 as to preclude intemperate pole increments and unstable
solutions, (2) reformulate the residue optimization so that.optima.l
residues are obtainefi without ma.king use of the rather involved Kautz

orthonormal set, and (3) verify the conirérgence‘of this technique.

PROBLEM_FORMULATION

qu comparision purposes, the nomenclature of Chatterjee and
Fahmy[l] will be used in this paper. It is cesired to employ an iter-

ative process to appro:dfnate £(t) on  L,[0,0) by the exponential function
n
_ ), @ (m)

where £ and m denote the respective iterations on the residues and

poles. The error functional to be minimized is

el = (f) [e(t) - g(6)]% at . ' (@
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POLE OPTIMIZATION:

bay

(k)

n

0Py x)
Aqi(k>] a ., ngzt (Aqi( )2

ir
(+1) ) , . &)
% Y Agy
and the Aqi(k) are small, a linear gpproximation may be used so that
n,
38k 1 (t)
() =~ t ji A
gk,k+l ) gk,k( ) i=1 5 (x)
4G
Using the damped least squares Taylor method 1 to minimize Jlgl as
well as the pole increments, Aqi(k), the error criterion
n
[ Leces ) - L -‘-(—--agk’k(t)
r{t) -~ gk,k t - L )
0 i=1 aql

will be used, where \® is a positive constant.

the linear approximation in Eq. (L) remains valid during the iter-

ation.

- To minimize E with respect to Aq.
: J

. n
a(zz;(k))‘ ] ‘g EOE 8,k (®) - zi

(k)

+ 2)\2 qu =

must be satisfied.

0

1=,

'agk’k(t)

This insures that

k) .
) the equat;ons

][

aqi(k>

Rewriting Eq. (6) gives

l, eee , 1

2g 1 (¥)

J

k)

} at

(3)

(L)

(5)

(6)

(7)
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(x)
where I denotes the nxn identity matrix and 4 is an wm real sym-

metric matrix with elements

(x) (x)
k 2
2 0 2y ; (8)
Jji
(x) (X))
(qj v )
(k) k
Ag and b are the column vectors described by
(k) x) (%) (k) 77T
A’g} = [Aql qu s e Aqn ] F) (9)
and n
o (3, (x) a.,
k J 3 k (k)
b_( ). 121 - yj( ) j tf(t) exp (~qj t) dt
J
0
k
(q ( )+ ql(k))z
or :
n 5
w2 oy (x)
b = i=1 + oL, ———(i-- F(s) J = 1,e0.,ny (10)
o ©. e o ® 5= )
2 =q,
j:f £(t) is Laplace transformable.
| | (x)
By inspecting its principal minorg it can be shown that A is
k
a positive definite matrix; thus A( ) + 2% I is positive definite also.
Eq. (7) then yields the solution
K (k) -1 (k)

Now let us inspect the A‘q(k) given in Eq. (11). Consider the rate .

(k)

k
of change of ¥ as g migrates in the direction of Ag ~, 1.e.,
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aE(g(k)+aA3 ) &

LTI T L),

(k)

+ )\2:5:] is positive

—~

where B is a positive scalar[r’] . Since [ A

ine XL er 1T .
dsfinite, LA + 21 is also, so it follows from Eq. (12) that

. L (k) .

E decreases in the direction Aq defined in Eq. (11); the downhill

~ : . : (k) s e el
behavior of E is assured. Since A is positive definite it is an
even simpler matter to show that the least squares Taylor method

- o)fz] onves  ded 4 ()
(. = 0) also converges provided the Aq. are small. Note that

i

the minimization of the error criterion E given in Eg. (5) indeed guar-

antees the minimization of the error functional J[g] given in Eq. (2).

To insure the stability of the approximation, the constraintsd

© 3

are imposed on the minimization procedure. For a stable RC real-
£ t
ization may b t 1 to zero and some convenient pos-
Uin y be set equa aq '
itive number so that the poles are confined to the negative real
axis of the corplex plane. Such constraints are orly used as a

check at the end of each iteration. That is, if a pole is found

to violate one of its bounds it is set equal to the extreme value

¢




it

allowed and frowzen there for a fixed number of iterations.

RESIDUE OPTIMIZATION:

The pole optimization yields

k) .
@) - E: “i( oy (‘qi(k 1)t>’ . (1)

B 1 =

Let

(k+1)

. p (g t) (15)

k+l,k+l

n
}i (k+1>

be the best least squares approximation to £(t) e L, [0,e) from among

k+1) :
the linear combinations of h, = exp (-qi( t), which are linearly
i

(k+1)
independent. It is well~known[7] that the optimal residues ai

are obtained by solving the normal eguations:

k+1 + k+1
Ofl( )(hl’h) + Oy (k l>(h2,h.) + ese 4+ O ( )(hn_,h) = (f,h-)
J J v n d J
¢ =1, ees 0. (16)
Rewriting Eq. (16) gives
k+1
(k+1) : o
where H is an nxn rezl syrmetric Gram matrix with elements
B l .
(h,,n) = J hh dt = ; . (18)
3’ 1> 0 31 qj(k*l)+ q (k+1)
i




(x+1) ‘
a(k*fL) and d are the colurn vectors described by

~

+ + : + . + T
Ei(k 1) _ [ al(k 1) o (k+1) “n(k 1)] , -

o (1) | (k+1)

£(t) exp (- t) dt
J 0 ? qj ) ’

or

(k+1) _

d F(s)

J s

_ (k'*'l) J=1, ... n _ (20)
%

if £(t) is Laplace transformable.

) (k+1) | s - .
Since H is a positive definite matrix, Eq. (17)

~

yields

| (k+1) [H(m)]-l )

A (21)

k+1 '
Although the resulting a( ) is same as that obtained from the Kautz

orthonormal set, Eq. (21) uses a more direct computation.
’ s
Thus, the (k+1) th cycle of the iteration is completed and

the performance index is évaluated from

~ P.I.

Tf (%) (’c)]2 dt
0" T Bk

> T. . m (ko T
Lf(t)]z -2 3(k+l)] L[ o

()] (o) ]
O o JE Tl

]
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If the performance index exceeds the specified tolersile errvr for

the preassigned number of iterations, distant poles ar

al

added to improve the approximation.

CONCLUSION

A flow chart of the algorithm for computing the optimum
approximating function is given in Fig. 1. It incorporates all
the refinements presented here. A subsequent paper will cover
this material in more detall and discuss a method of optimizing
the po‘:l;_.es and residues simultaneously; various numer:%cal results

will alsfcg be given.
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NP =

MF =

PINT

(1)

i

DrQ(I) =

FLOW CHART LEGEND

Pole

ﬁesidue

Maxdimum number of iterations to be performed
Maximum nunber of poles to be tried
Multiplying factor

Tolersgble error

Ditto

Performance index

Pole count

Iteration count

Pole increment’

T [ f(t)]zdt
0

£(t) exp (-g5t) dt

O—8

(%) exp (~qit) dt
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