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Abstract

In recent work we suggested a new channel sharing method for cellular communications. The method,
called Channel Borrowing Without Locking (CBWL) allows real-time borrowing of channels from ad-
jacent cells without the need for channel locking in co-channel cells. CBWL provides enhanced traffic
performance in homogeneous environments and also can be used to relieve spatially localized traffic over-

loads (tele-traffic "hot spots"). It can be applied in currently deployed as well as in next generation
systems without additional costly infrastructure. CBWL permits simple channel control management
and easy implementation.

This paper describes "fast channel returning", an enhancement of the CBWL scheme. With fast
channel returning, a borrowed channel is returned as soon as a regular channel becomes available. CBWL
with fast returning reduces unnecessary channel borrowing and improves the performance of CBWL.

System are modeled by multi-dimensional birth-death processes. An efficient method that uses macro-

states, decomposition, combinatorial analysis and convolution algorithm is devised to find blocking prob-

abilities. The results, which are also validated by simulation, indicate that channel fast returning can
enhance system performance of CBWL scheme.

The research reported in this paper was supported in part by the U.S. National Science Foundation under Grant

No. NCR 9025131 and in part by IST/SmO under Grant No. NOOOI491-J4063, administered by the U.S. Office of
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1 Introduction

A family of new channel assignment and sharing methods for cellular communication systems

has been presented in [1] and [2]. The methods are called fharmel Qorrowing without Jacking

(CBWL). CBWL can be used to enhance traffic capacity of cellular communication systems and

to accommodate spatially localized communication traffic overloads (or "hot spots"). Variations of

the schemes can be considered- but for convenience of presentation and explanation we consider

a basic hexagonal layout with base stations (wireless gateways) using omni-directional antennas
nominally located at cell centers. The system has a total of CT channels. With a cluster of size,

N, the C:T channels are divided into N groups with about C = CT/N channels in each group.

As in fixed channel assignment (FCA), each gateway is assigned a group of channels which are

reused at gateways of other cells that are sufficiently distant for the co-channel interference to be
tolerable. However, in CBWL, if all channels of the gateway of a cell are occupied when a new

call arrives, channel borrowing is employed according to certain rules.

C:hannel locking has been suggested in other channel assignment strategies such as dynamic

channel assignment (DCA) and hybrid channel assignment (HCA) [;~]to limit co-channel interfer-

ence. That is, gateways within the required minimum reuse distance from a gateway that borrows
a channel cannot use the same channel at the same time. Because of the difficulty in maintaining

the reuse distance at the minimum value when channel locking is used, DCA and HCA generally

perform less satisfactorily than FCA under high communication traffic loads [41, [51, [6].

In CBWL, a channel can be borrowed only from an adjacent gateway. The borrowed channels

are temporarily transferred to the gateway that borrows the channel but are used with reduced

transmitted power such that the co-channel interference caused by the channel borrowing is no

worse than that of non-borrowing scheme. Therefore, channel locking is not necessary in CBW'L
schemes. The borrowed channels can be accessed only in part of the cell. To determine whether a

mobile station is in the region that can be served by a borrowed channel, each gateway transmits a

signal with the same reduced power as that on a borrowed channel. The signal is called borrowed

channel sensing signal (BCSS). If the BCSS is not above some suitable threshold at a mobile

station, a borrowed channel cannot be used by the mobile station; otherwise, the mobile station

will use a borrowed channel if all its gateway's channels are occupied and any its neighboring

gateways has a channel available for lending. Thus, there are two types of new call originations-

those that arise in parts of a cell in which a borrowed channel can be used if one is available, and

those that arise in parts of a cell where borrowed channels cannot be used. We denote these as

A-type calls and B-type calls, respectively.

Neighboring gateways are identified in the following manner. With respect to the given gate-

way, choose the first adjacent gateway. The position of the reference adjacent gateway can be

arbitrary, but once chosen for a given gateway, all other gateways label their neighbors in a cor-

responding manner. The remaining five adjacent gateways are numbered sequentially proceeding

clockwise from the first. The given gateway is labeled gateway O. The C channels of a gateway are
divided into seven distinct groups. The seven groups are numbered 0, I, ..., 6. The channels of

group 0 are reserved for exclusive use of the given gateway. Channels in the other six groups can

be lent to neighbors. The ith neighbor can only borrow channels in the ith group. The numberf
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of channels in the ith group is denoted Ci, i = 0, 1, ..., 6. Thus C = L~=o C\. For convenience
we consider a symmetrical arrangement with C1 = C2 = ... = C6 = l. An example of the channel

layout structure of CBWL is shown in Figure 1.

Figure 1: Channel structure of CBWL (cluster size =7).

CBWL with the structure described above has three advantages: 1) In the scheme, a gateway

does not need to transmit and receive on all channels of its neighboring gateways. It only needs

to access the channels that are assigned to it and the borrowed channels of six groups, one group

from one neighbor. Therefore, the transmitter of a gateway only needs to access a total of C + 6l

channels instead of 7C channels. The cost and complexity of a gateway are reduced. 2) The scheme

eliminates the possibility that two co-channel gateways lend the same channel simultaneously to a

pair of closely located gateways (which would result in unacceptable co-channel interference). :3)

With careful organization, the scheme can ensure that no adjacent channels are used in a given

cell even though channel borrowing is employed.

As described in [1], channel rearrangement can be used in CBWL. With channel rearrange-

ments, if a new B-type call arrival finds all channels of its gateway occupied, the call is still noti
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necessarily blocked. If at the same time an A-type call in the cell is using a regular channel, and

at least one neighbor can lend channels to the given gateway, the A-type call will use a borrowed

channel from a neighbor and give its regular channel to the B-type call. In this way, calls that

cannot use borrowed channels directly also benefit from the borrowing scheme. Therefore, the

difference of blocking probabilities between two types of calls is lessened and the number of calls

that can use borrowed channels (directly or indirectly) is increased. For convenience, We call

CBWL without channel rearrangement as CBWLjNR and CBWL with channel rearrangement as

CBWLjCR.

Further discussion and comparison of the various channel assignment schemes including FCA,

DCA, HCA, Generalized FCA, and Directed Retry is presented in [1]. The reader is referred to

[4] -[9] for specific details of the schemes.

It may not be unusual in these schemes for any given gateway simultaneously to borrow from

and to lend channels to its neighbors-even to the same neighbor from which it has borrowed.

This is increasingly likely as traffic loading increases. Thus there can be unnecessary borrowing.

Since borrowed channel can only be used by a fraction of users in a cell while regular channels can

be accessed by all users in a cell, unnecessary borrowing limits the performance of the scheme at

high traffic loading. To increase the number of potential users that can be served by a channel,

the number of unnecessary borrowing and lending channels must be reduced. One way to alleviate

this problem is to use a cut-off priority structure in which gateways that have more than m( < C)

channels occupied, will not lend. Thus at high loading some channels will be available only for calls

that arise in the cell. CBWLjNR and CBWLjCR with cut-off priority structure were presented

in [2].

Fast returning of borrowed channels is another way to reduce unnecessarily borrowed channels

in CBWL. Without fast returning, a borrowed channel is returned only after the call that uses the

borrowed channel is completed. With fast returning, a call that is using a borrowed channel will be

transferred to a regular channel as soon as one is available to service it and the borrowed channel

is returned to its owner. The returning process of borrowed channel is accelerated. Thus, no call is

served on a borrowed channel if a regular channel (that can accommodate it) is idle. If a gateway

has borrowed more than one channel, various strategies can be used to determine which borrowed

channel to return. The simplest is to choose one at random. This is relatively easy to implement

and to analyze. We use this method in our analysis. Other possibilities include: returning the

borrowed channel which was first borrowed; and, priority oriented strategies that tend to return

those channels that belong to adjacent gateways with the highest channel occupancy. A channel

that becomes available can be one that is freed because of the completion of a call in the given

cell, or, one that is returned by another borrowing gateway. Thus fast returning a channel can

initiate a series of channel returns, bringing the system to a channel use pattern with few calls on
borrowed channels.

We call the CBWLjNR that uses fast returning as CBWLjNR-FR; the CBWLjCR that uses
fast returning as CBWLjCR-FR.

If a gateway X receives a channel borrowing request from a neighbor Y, the request is or is

not granted depends on the current channel occupancy of X. The following rules are observed.

1. X will deny the request, if the total number of occupied channels of gateway X is more thani
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In. Thus gateway X gives a cut-off priority of C - In channels to the calls arising in its cell.

2. X will deny the request, if the number of channels that are lent from X to Y is equal to t.

:3. X will deny the request, if the number of total channels of cell X that are lent to other

gateways (including Y) is equal to n.

In Section 2, the two types of schemes are modeled and analyzed. Numerical results from analysis

and simulation are given in Section :3.

2 Traffic Analysis of CBWL with Fast Returning

2.1 Assum ption

1. For simplicity, we limit our analysis to a homogeneous system. That is, each gateway has

the same number of channels and the same offered traffic. Our algorithm can be extended

to non-homogeneous and hot spot cases.

2. New calls in a cell arise at an average rate A (new call arrivals per second per cell) according

to a Poisson process, and calls originate uniformly throughout the service area. Call holding

times have a negative exponential probability distribution with mean 1j 11-.

:3. The fraction of new call arrivals that can use borrowed channels is p.

4. We note that borrowing requests to a given gateway from an adjacent gateway arise from an

overflow process (at the adjacent gateway) and therefore do not conform to a Poisson process

[10]. However at the adjacent gateway, borrowing requests are randomly split into six parts,

only one of which is directed to the given gateway. The random splitting tends to smooth

the peakedness of the overflow traffic directed to the given gateway. Thus the borrowing

requests directed to a given gateway from an adjacent gateway can be approximated by a

Poisson process with intensity A'.

2.2 Traffic Analysis ofCBWLjNR-FR

2.2.1 Equilibrium state distribution ofCBWLjNR-FR

Consider a gateway in CBWLjNR-FR and denote the number of used channel of the gateway as

:r, the number of channels that it borrows from its neighbors is denoted as y. With fast returning,

if a regular channels becomes available, the gateway will transfer a call that is using a borrowed

channel (if any) to the regular channel. The released borrowed channel is returned to the owning

gateway. Thus, no channels are borrowed if a regular channel is available. Mathematically, if

x < C:, then y = o. If x = C and y > 0, when a regular channel is released, a call that uses

a borrowed channel is transferred to the regular channel and the borrowed channel is returned.

After completion of fast returning, x is not changed and y is decreased by one. Therefore, unlike

the model for CB\\'LjNR (without fast returning) [1], [2], state of y must be known.

f
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At any given time a gateway is in one of a finite number of states. A state is identified by

a vector 1 = (io, il, i2, i3, i4,i5, i6). The component io is the total number of calls that are served
through the given gateway, (either on channels that belong to the given gateway or on channels

that are borrowed from adjacent gateways). The meaning of io is different from that in CBWL/NR

where io denote the number of the given gateway's channels that are occupied by the calls originate

in the given gateway's own cell. The number of channels at the gateway that are (currently) lent

to the kth neighbor is ik, (k = 1,2, ...,6), where 0 :::;ik :::;Ck. Thus, in state I, the total number
of calls that are served through a given gateway as well as on channels that are lent to adjacent

gateway is given by
6

J (I) = L i k .
k=O

The total number of channels that are (currently) lent to all adjacent gateways is

(1)

6

L(I) = L ik .
k=l

(2)

From the last section, the maximum number of channels that a cell can lend at any given time is

Lmax = Inin( 61,rn, n) . (:3)

Permissible states of 1 = (io, iI, i2, . . . , i6) must satisfy the constraints given in below:

0:::; io :::;C + 61

0:::; ik :::;I k = 1,2,. . . ,6

0 :::;J(I):::;C + 61

0 :::;L(I):::; Lmax

(4)

The set of all permissible states can be partitioned into two sets: 8I, and 82, The set 5\

includes all permissible states, I, for which J(I) :::;C. In any state in 81, the gateway does not

borrow any channel. The set 82 includes all states I, for which J(I) > C. If a gateway is in a

state that belongs to 82, at least one channel is borrowed.

With seven dimension, the number of states can be very large. We will merge the seven

dimensions into two dimension in order to reduce the number of state. The probability transition

rate in the merged dimension must be able to find easily. As in [1] and [2], we find that the

distribution of numbers of channels that are borrowed by each neighbor is in product form. If

we merge the six-dimensional variables that represent the number of channels lent to each of six

neighbors into a one-dimensional variable that represents the total number of lending channels, a

convolution algorithm can be devised to calculate the transition rate in the merged variable.

Equilibrium balance equation of two-dimensional variables, (u, v)

We introduce a macro-state variable v = 2:::%=1ik, which represents the number of channels

(belonging to the given gateway) that are lent to all neighbors. Calls that are on these channels
ARE NOT served through the given gateway. Another variable, u = io, represents the number of

calls that ARE served through the given gateway. This includes calls that are served through thef
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given gateway on channels that the given gateway BORROWS from its neighbors. From (4). all

permissible states of ('U,v) are constrained by the following conditions:

O:S; 'U :s; C + 6l

O:S; v :s; Lmax

0 :S;'U+ v::S;C + 6l .

(5)

Let n be the set of permissible states ('U,v). Define a function, Z('U,v), such that

Z( 'U,v) ~
{

I if ('U,v) E n
0 if ('U,v) rf.n

(6)

Denote p( 'U,v) as the equilibrium probability of state I. In statistical equilibrium, the proba-

bility flow out of each state ('U,v) must equal to the probability flow into that state. Application

of this principle leads to a set equations which must be solved to find the state probabilities.

In those permissible states for which 0 ::s;'U+ v < m, the transitions out of ('U,v) consist of

four parts: that due to new call arrivals; that due to channel lending to neighbors; that due to the

completion of the calls of the given cell in state ('U,v); that due to the returning of channels that

were lent to neighbors. The transition out of state ('U,v) due to new call arrivals is given by

{transition out due to new call arrivals} = A .

If the state of a gateway permits to lend channels (0 ::s;L(I) ::s;Lmax), the transition out of state

('U,v) due to channel lending to neighbors is the sum of channel borrowing rate from six neighbors
given that v channels are lent. Note that if v 2: l, it is possible that a specific neighbor borrows l
channels from the given gateway, according to our rule, the neighbor cannot borrow any channel

from the given gateway. For a given v, there can be many different combinations of ik's (k = 1,

. . . , 6) such that 2::%=1ik = v. Each combination can have different channel lending rate (if ik < l,
the borrowing rate from the kth gateway is A', if ik = l, the borrowing rate from the kth gateway

is 0). Therefore, an average rate of borrowing requests from neighbors given that v channels are

lent, p( v), is used as the rate of transition out due to channel borrowing demands. The rate is not

given but can be determined.

{transition out due to channel borrowing demands} = p(v) .

The transition out due to completion of a call served through the given gateway is given by

{transition out due to completion of a call served through the gateway} = 'Ufl- .

The transition out of state ('U,v) due to the returning of channels that had been lent to neighbors

is the sum of channel return rate from six neighbors given that v channels are lent. Without fast

returning, returning rate from the kth adjacent gateway is ikfl-. The sum of channel returning rate

from six adjacent gateways can be uniquely determined by v. That is Vfl-. With fast returning,

if ik > 0 (k = 1,...,6), when one of C regular channels of the kth adjacent gateway becomes

available, a borrowed channel is returned by the kth adjacent gateway. The returned channel mayi
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belong to the given gateway or to other gateways. Therefore1 with fast returning the channel

returning rate from the kth adjacent gateway is a complicated function of ik. Denote the channel

returning rate from kth adjacent gateway as fl(id. The channel returning rate from all neighbors

is the sum of flCid's. For a given v, there can be a lot of different combinations of ik's (k = 1,
. . . , 6) such that 2::%=1ik = v. Each combination can have different channel returning rate. Given
that v channels are lent, we can find an average channel returning rate. We denote the rate as

/3(v). Thus

{transition out due to returning of channel} = /3(v) .

Now let us consider the probability transition components into state (u, v) with 0 :::;U+ v < m.

The probability transitions into (u, v) consist of four parts: that due to new call arrivals from a

permissible state (u - 1,v); that due to channel lending to neighbors; that due to channel returned
from neighbor; and, that due to completions of calls that are served by the given gateway. The

first part is given by

{transition in due to new call arrivals} = A .

The transition into (u, v) due to channel lending is given by

{transition in due to channel lending} = p(v-I) .

The transition into (u, v) due to channel returned from adjacent gateways is given by

{transition in due to channel returning} = j3(v + 1) .

The transition into (u, v) due to completions of calls that are served by the given gateway is

{transition in due to completions of calls that are served by the given gateway} = Ufl .

In any permissible state (u, v) with 0 :::;u + v < m, the flow balance equation is

[A+ p(v) + Ufl+ /3(v)]p(u, v) = Ap(U- 1,v)Z(u - 1,v) + p(v - l)p(u, v - I)Z(u, v-I)

+(u + l)flP(U + 1,v) + j3(v + l)p(u, v + I)Z(u, v + 1)

(0 :::;U+ v < m) (7a)

In any permissible state (u, v) with u + v = m, no channel is lent, the flow balance equation is

[A+ Ufl+ j3(v)]p(u,v) = Ap(U-1,v)Z(u -1, v) + p(v - l)p(u,v -l)Z(u,v -1)

+(u + l)flP(U+ 1,v) + /3(v+ l)p(u, v + I)Z(u, v + 1)

(u+v=m) (7b)

In any permissible state (u, v) with m < u + v < C, the transition in due to channel borrowing
demands is zero. The flow balance equation is

j

[A+ Ufl + j3(v)]p(u,v) = Ap(U-1,v)Z(u -1, v)

+(u + l)flP(U+ 1,v) + /3(v+ l)p(u, v + I)Z(u, v + 1)

(m < u + V < C) (7c)
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In any permissible state (u, v) with U + v 2: C, all channels of the given gateway are occupied.

A new call arrival will use a borrowed channel if the gateway can borrow one from neighbors.

The more channels the gateway borrows, the smaller the probability that its next borrowing is

successful is. Thus, channel borrowing rate is a function of the number of channels that have been

borrowed by the given gateway. Denote a(y) as the average channel borrowing rate given that y

channels have been borrowed. The transition out of (u, v) due to channel borrowing is

{transition out due to channel borrowing} = a( u + v - C) .

In any permissible state (u, v) with u + v = C, The flow balance equation is

[a(O) + Uf-L+ !3(v)] p( U,v) = Ap(U - 1, v )Z( U - 1, v) + (u + 1)f-Lp(U + 1, v)

+!3( v + 1)p( u, v + 1)Z( u, v + 1)

(u + v = C) (7d)

In any permissible state (u, v) with C < u + v ::; C + 61,The flow balance equation is

[a(u + v - C) + Uf-L + !3(v)]p(u,v) = a(u + v - C - l)p(u - 1,v)

+(u + l)f-Lp(u+ 1,v)Z(u + 1,v) + !3(v+ l)p(u, v + l)Z(u, v + 1)

(C < u + v ::; C + 61) (7e)

If m = C: (no cut-off priority), the flow balance equations are only distinguished for three cases.

For any state in 0 ::;u + v < C, balance equation is given by (7a). For any state with u + v = C:,

the balance equation is given by

[a(O)+ 'Uf-L+ !3(v)]p(u,v) = Ap(U -l,v)Z(u - 1,v) + p(v - l)p(u,v -l)Z(u,v - 1)

+(u + l)f-Lp(u+ 1,v) + !3(v+ l)p(u,v + l)Z(u,v + 1)

(u + v = C)

(7f)

For any state in C < u + v ::; C + 61, the balance equation is given by (7e).
Figure 2. shows the state-transition diagram of an example of CBWLjNR-FR with C = 5,

m = 4. In the figure, for simplicity, the maximum number of channels that a gateway can borrow is

;3. For homogeneous hexagonal cellular system. the maximum number of channels that a gateway

can borrow is multiples of six.

Probability, p( u, v), is not in product form. Gauss-Seidel iteration [11] is employed to find

the solution of the equations. Since the number of states has been reduced greatly in the two-

dimensional model, the computation work is reduced. To solve the equations, the value of p( v),
!3(v) and a(y) must be found.

A verage lending rate, p( v)

For a given gateway, the average rate of its kth adjacent gateway's borrowing requests to it is

A' when ik < 1, and the channel returning rate to it from the kth neighbor is f-L(ik) (see Appendix
A). Define J(x) as

i

x

J(x) ~ (A')XjIIf-L(t).
t=l

(8)
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Figure 2: State-transition diagram of two-dimensional macro-state (u, v) for
a CBWLjNR-FR with C = t5 and In = 4 and In = 4 and 6[=:3.

Given that v channels of the given gateway are lent to total neighbors, the distribution of number

of channels that are borrowed by each of neighboring gateways is in the following product form:

6 6

Pr(i1,i2,i:3,i4,is,i61I>k = v) = b(lv)
n f(ik)..

k=l k=l
(9)

in which, b(v) is normalization constant. It is equal to the sum of all probabilities that defined by
(9) .

Using the convolution algorithm that is described in [2], we can calculate the normalization

constant b(v), and the probability that exactly 6 - t adjacent gateways have borrowed exactly [

channels from a given gateway given that total v channels of that gateway are lent. The probability

is denoted as b(t, v) jb( v) in [2]. If 6 - t gateway have borrowed [ channels, they cannot borrow any

more channels from the given gateway, the rate of borrowing requests from all adjacent gateways
becomes tA'. Thus,

A' 6
p(v)=-

( )
Ltb(t,v).

b v t=l

A verage channel returning rate from all neighbors, {3(v)
Define a six-vector

(10)

16 ~ (i1,i2,i3,i4,is,i6).

Define S(v, 6) as the set of six-vectors whose components sum to v. That is

6

S(v,6) ~ {16 = (i1,i2,i3,i4,is,i6): O:Sik:S [,Lik = v} .
k=l

(11)

The returning rate from the first, second, ..., sixth gateways are j.1(i1), j.1(i2), ..., j.1(i6),

respectively. The overall channel returning rate from all neighbors is the sum of j.1(i1), j.1(i2), ...,

i
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fl(i6)' Consider all possible 16 that are in 8(6, v), we can find the average rate of channel returning

from neighbors by (9). That is

/3(v) = b(
1

)
L

[
IT I(id t fl(id

]
.

v 16ES(v,6) k=l t=l
(12)

Although (12) can be used to calculate f3(v), we will not use it since many numerical operations

are required. In Appendix B, we have shown that f3(v) can be easily computed from b(t, v)jb(v),

which can be found through the convolution algorithm. Specifically,

)..' 6

f3(v) = b(v)~tb(t,V-1)
v = 1,. . . , Lmax (1;3)

Channel borrowing rate, aU)

The quantity, a(j), is channel borrowing rate of a gateway when it has borrowed j channels.

For CBWLjNR-FR, only a fraction of calls in a cell can use borrowed channels. The fraction

is )..p. The probability that a borrowing request is accepted by adjacent gateways given that j

channels have been borrowed by the given gateway is denoted as Pbs(j). The probability, Pbs(j)

will be determined in Appendix C. Thus,

a(j) = )..PPbs(j) j = 0, .. . ,61. (14)

Once p(v), f3(v) and a(j) are found, the equations (7) are determined. We can use usual

numerical method to find p( u, v).

2,2,2 Some Important Probabilities and Performance Measurement

From state probability p( u, v), some important probabilities and blocking probabilities of each

type of calls can be computed.

Probability of number of borrowed channels, PbrU)
From p( u, v), the distribution of borrowed channels can be calculated. The distribution is

necessary for determination of fl(i) (in Appendix A). With fast returning, a gateway uses borrowed

channels, only if u + v > O. The number of borrowed channels is equal to u + v - C. Thus,

Lmax

Pbr (j) = L p(C + j - v, v) ,
v=O

j = 0,1, . . . ,61 (15 )

in which Pbr(O) is the probability that no channel is borrowed and all channels of the gateway are
occupied.

Probability that all channels of a gateway are occupied Pc

The probability that all channels of a gateway are occupied is the sum of state probabilities

with u + v ~ C. From (15), we have

i

61

Pc = L Pbr(j) .
j=O

(16)
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Probability that a borrowing request of the given gateway is denied by a specific

adjacent gateway: PI

A borrowing request from a given gateway will be denied by a specific adjacent gateway if any

of the following three events are true in the neighbor at the time that the borrowing request arises:

1) E1, all channels of the neighbor are occupied; 2) E2, the total lending channels of the neighbors

equal to the maximum possible number, Lmax; ;3) E3, the given gateway has already borrowed its

maximum allowable channel quota, (I channels) from the neighbor. Thus, the probability, Ph is
the probability of the union of E1, E2 and E3. That is,

PI = Pr{E1 UE2 UE3} = Pr(Ed + Pr(E2Ed + Pr(E3E2Ed (17)

The first two terms of (17) are the probability that event E1 or E2 occurs at an adjacent gateway.

We denote the probability as Pe, which will be used to find Pbs(j) in Appendix C. We calculate it
first.

The event E1 includes all states with u + v :2:m. Its probability can be divided into two parts:

one is Pc, other is the sum of p(u, v)'s with m ::; u + v < C. That is,

Lmax C-I-v

Pr(Ed = Pc+ L: L: p(u, v) .
v=O u=m-v

(18)

The event E1E2 consists of all permissible states with v = Lmax and u + v < m. That is,

m-1-Lmax

Pr(E2E1)= L: p(u, Lmax) .
u=O

(19)

Thus,
m-1-Lmax Lmax C-1-v

Pe = Pc + L: p(u, Lmax) + L: L: p(u, v) .
u=O v=O u=m-v

(20)

The third term in (17) is derived as follows. Since it is a homogeneous system, if 8 adjacent

gateways of the considered gateway have borrowed I channels from the gateway, the probability

that the given gateway is among those 8 gateways is 8/6. Thus,

Lmax-1 6 <;

Pr(E3E2Ed = L: L: ::"'Pr(s gateways borrow I channelslv channels are lent)6v=[ s=l

.Pr(O ::; u + v < mlv)Pr(v channels are lent) . (21)

From [2], we know that the probability that 8 adjacent gateways have borrowed I channels given

that v channels are lent is b(6 - 8, v)/b(v). And from the definition of conditional probability, we

can get
m-v-1

Pr(O::; u + v < mlv) = L: p(u,v)/Pr(v channels are lent) .
u=O

(22)

Thus,

i

- - Lmax-1 6 b(6 - 8, V) 8 m-v-1

Pr(E3E2Ed = E E b(v) 6 E p(u,v).
(2:3)
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From (17), we have

Lmax-l 6 b(6 -.5, V).5 m-v-l

Pi = pe + ~ ~ b(v) 6 ~ p(u, v) .

The averagerate borrowing requests to a neighbor, ,XI

First we consider the average channel borrowing rate of the given gateway from a specific

neighbor. Denote the rate as ).,". The channel borrowing rate of the given gateway from the

neighbor given j channels are borrowed is a(j). Thus, the average channel borrowing rate is

(24)

6/

).," = ~ L Pbr(j)a(j) .j=O
(25)

Denote ).,' as the average borrowing request rate of the given gateway to the specific neighbor.

The probability that those requests are accepted by the neighbor is 1 - Pi' That is

).,'(1 - Pi) = ).," . (26)

From (26), we find
6/

).,'= , 1 ) L Pbr(j)a(j) .Pi j=O
(27)

Blocking probability

In CBWLjNR-FR, the blocking probability of calls that cannot use borrowed channels is

denoted as (3NR-FR. Those calls are blocked if all channels of a gateway are occupied. SO, /'3NR-FR=
Pc' The blocking probability of calls that can use borrowed channels is denoted as aNR-FR. Those

calls are blocked if all channels of a gateway are occupied and their borrowing requests are rejected

by all neighbors. If the given gateway has borrowed j channels, the probability that the borrowing

requests are denied by neighbors is 1 - pbs(j) [see Appendix C: (C.3]. Thus,

6/. . 6/ . S2 6! aU - .5l, 6 - .5, l - 1) 6-s

aNR-FR = f; Pbr(J)[1- Pbs(J)]= f; Pbr(J) S~l .51(6 - .5)! aU, 6, l) [Pe].

The overall blocking probability BNR-FR is

(28)

BNR-FR = paNR-FR + (1 - p)(3NR-FR . (29)

2.2.3 Iterative procedure

As in [1] and [2], an iterative procedure is used to obtain Ph Pc, Pe and)..'. The iterative
procedure is described as follows:

Step 1: The procedure starts with an arbitrary guess of ).,1,pe and a group of f-l(i)'s, i = 1, ..., l.
Our experiences show that f-l(i)'s are close to C and they do not vary significantly with i.

Step 2: Use the last updated)..' and f-l(i)'s in convolution algorithm that is describe in [2] to
calculate b(t, v)jb(v). Then, p(v) and (3(v) can be found from (10) and (1:3).

Step ;3: Use the last updated Pe in (C.3) to find Pbs(j), which is used in (14) to find CI'(Y).i
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Step~: Use updated p(v), /:J(v) and a(y) in (h)-(7f). Solve the equations by Gauss-Seidel itera-

tion to get p( u, v) 'so

Step.): From p(u, v)'s get PbrU), Pc, Pe and PS' Update /-l(i) by (A.;3). Update the overflow traffic

A' by (27).

Step 6: Compare old A', Pe and /-l(i) with updated ones. If the differences between old values and

new values are greater than desired quantities, go back to step 2 and start a new iteration.

Otherwise, stop.

2.3 Analysis of CBWLjCR-FR

If the number of the gateway's channels that are used by A-type calls is zero, channel re-

arrangement cannot be used for a new B-type call. Therefore, in CBWLjCR-FR, to know the

number of a gateway's channels that are used by A-type and B-type calls, we need two state

variable: ia and ib. Variable, ia, is the number of channels occupied by A-type calls and ib is the

number of channels occupied by B-type calls. We denote Pa as the probability that B-type calls

cannot make channel rearrangement. To find Pa, a two-step decomposition procedure is used. The

method divide all state space into Lmax + 1 subspaces, each of which corresponds to a fixed value

of v = L~=lik (v = 0,1,...,Lmax)' The conditional distribution, Pr(ia,iblv) can be calculated
separately for each fixed v. However, because ia and ib cannot be completely separated from

the other variables, the decomposition method is an approximation. If ). ~ A', the interactions

between ia and ib are much stronger than the interactions between io and other ik's (k 2: 1). We

can calculate Pr( ia, ibIv) separately for each fixed v and neglect the interactions between (ia, ib)

and other ik's (k 2: 1) as if those interactions do not exist [14]. The agreement between results of

simulation and analysis validates this approximation.

2.3.1 First Step

In the first step, the purpose is to find the probability that a gateway lends v channels to

neighbors, PI(v). In this step, we use macro-states (u, v) in CBWLjNR-FR in which ia and ib

are not distinguished. The equilibrium state distributions of the states (u, v) can be calculated

from (7). However, to use (7) in CBWLjCR-FR, channel borrowing rate of a gateway, a(j), is

not defined by equation (14). Because with channel rearrangement, not only A-type calls can use

borrowed channels directly, but some B-type calls can also use borrowed channels indirectly. The

probability that a B-type call can use channel rearrangement is 1 - pa, so the borrowing rate that

raised by B-type calls is (1 - p)(l - Pa).' Thus, the average channel borrowing rate given that j
channels are lent to adjacent gateways is

aU) = ).(p + (1 - p)(1 - Pa)]PbsU). (:30)

From p( u, v), the probability PI(v) can be found by

j

C+61-v

PI(v) = L p(u, v)
11.=0

v = 0, 1, . . . , Lmax . (;31)
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The probabilities. Pc, PI, and Pe can be determined from p(u, v) as in CBWLj:.JR-FR. A

probability that will be used in the second step is the probability that no channel is borrowed

given that v channels are lent and all channels are occupied. The conditional probability is given

by
C+6t-v

pnb (v) = p(C - v, v) j L: p(u, v)
u=C -v

v = 0, . . . ,Lmax . (:32)

2.3.2 Second Step

In the second step we find pa. Given v channels are lent, we construct balance equations of

ia and ib. The two-dimensional equations can be solved for every possible v to find conditional

distribution, Pv(ia, ib). From the distribution, we can find the probability that all remaining

channels of the given gateway are occupied by B-type calls given that v channels are lent, Pv(O,C-

v). It is the probability that B-type calls cannot use channel rearrangement given that v channels

are lent. Thus, Pa can be found from

Lmax

Pa= L:Pv(O,C-v)pt(v).
v=O

(:3:3)

Denote Pv(ia, ib) as the equilibrium distribution of (ia, ib) given that v channels are lent. If v

channels have been lent, all permissible states of ia and ib are constrained by following conditions:

Zb

-:5.C-v

< C-v (:34)

0-:5.

0-:5.

Za

0 -:5.ia+ ib-:5.C - v .

Denote )\1 and ),2 as the arrival rate of A-type and B-type calls, respectively. That is,

),1 = p), , (:35)

and

),2 = (1 - p), . (:36)

If a gateway is in a state (ia, ib) with ia + ib = C - v and ia > 0, a channel will be borrowed

through channel rearrangement when a B-type call arrives. If the channel borrowing request is
accepted by an adjacent gateway, an A-type call is transferred to the borrowed channel and the

released regular channel is given to the new B-type call. Thus, the gateway's state is changed to

(ia - 1, ib + 1). Denote this transition rate as ),3' If the gateway has borrowed j channels, the

probability that its borrowing request is accepted by its neighbors is Pbs(j). Thus,

),3 = ),(1 - p) t Pbr(j)Pbs(j) .
j=O Pc

(:37)

The channel releasing rate by A-type calls or B- type calls at state, (ia, ib), with ia + ib < C:- v is
ia/-lor ib/-l, respectively.

j
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V./e consider the channel releasing rate in a state with ia + ib = C - v, In those states. the

gateway may use some borrowed channels with probability of 1 - Pnb(v), or it may not borrow any

channels with probability of Pnb(v) (:32). State transitions are different for the two cases. When
a channel is released by an A-type call, if the gateway does not borrow any channel, the state is

changed to (ia - 1, ib) with the rate of Pnb(v)iaf..l. When a channel is released by a B-type call

and no channel is borrowed, the state is changed to (ia,ib -1) with the rate of Pnb(v)ibf..l. If the

gateway borrows at least one channel and a channel is released, the released channel is at once

given to a call that uses a borrowed channel, and the borrowed channel is returned to its owner.

Because the call that is transferred from the borrowed channel must be a call of type A, the size of

,in is increased by one. If the channel is released by an A-type call, the size of ia must be decreased

by one. The overall effect is that the (ia, ib) is not changed. If the channel is released by a B-type

call, the size of ib is decreased by one. Thus, the state is changed to (ia + 1, ib - 1) with the rate

of (1 - Pnb(v))ibf..l.

The state-transition diagram of the conditional probabilities for C - v = 6 is shown in Figure ;3.

'La

Figure ;3: An example of transition diagram for macro-state (ia, ib) of
CBWLjCR-FR, (C - v = 6).

The flow balance equations of Pv(ia, ib) are as follows:

f
[A+ (ia + ib)f..l]Pv(ia,ib) = AIPv(ia - 1, ib) + A2Pv(ia, ib - 1)
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+(ia + 1)jlPv(ia+ 1, ib) + (ib + 1)jlPv(ia,ib + 1)

(0 S ia + ib < c: - v - 1)

[A+ (C - v - 1)jl]Pv(ia,ib) = AIPv(ia- 1, ib) + A2Pv(ia, ib - 1)

+Pnb(v)(ia + 1)jlPv(ia + 1, ib) + Pnb(v)(ib + 1)jlPv(ia, ib + 1)

(ia + ib = C - v - 1)

[A:3+ Pnb(v)iajl + ibjl]Pv(ia, ib) = AIPv(ia - 1, ib) + A2Pv(ia, ib - 1)

+A3Pv(ia+ 1, ib - 1) + (1 - Pnb(v))(ib+ l)jlPv(ia - 1, ib + 1)

(ia + ib = C - v, ia > 0)

(C' - v)jlPv(O,C - v) = A2Pv(0,C - V - 1) + A3Pv(1,C - v-I)

(ia = 0, ib = C - v)

(:38)

where Pv(x,y) = 0, if x < 0 or y < O.

The balance equations are solved by Gauss-Seidel Iteration. Substitute Pv(O, C - v) in (:3:3)as

Pr(O, C:- v Iv) and Pa is computed. In (:3:3),Lmax + 1 groups of equations of (:38) with v from 0 to
Lmax must be solved. However, the number of equation groups to be solved can be reduced greatly.

Since fast returning reduces the usage of borrowed channels, the probability that a gateway lents

a lot of channels is quite low. In our algorithm, when PI(V) is less than a desired precision, the

contribution of the corresponding term in (:3:3)to Pa is very small. It is not necessary to solve the

equations that corresponds to that v.

2.3.3 Blocking probability and average rate of borrowing requests

Blocking probability

Besides pa, in the two-step procedure, we also find probabilities, Pc, Pi and Pe. From them,

blocking probability can be determined. First, the blocking probability of A-type calls, aCR-FR, is

the same as aNR-FR (28). If a B-type call can use channel rearrangement, it has the same blocking

probability as an A-type call. If a new B-type call find all channels occupied and it cannot use

channel rearrangement, it will be blocked. Thus

{3CR-FR = (1 - Pa )acR-FR + Pa.
Pc

(:39)

The overall blocking probability in a gateway is

BCR-FR = paCR-FR + (1- p)f3cR-FR . (40)

Average rate of borrowing requests from one gateway to another gateway A'
In CBWLjCR-FR, the average rate of borrowing requests from one gateway to another gate-

way, A', is the same as equation (27). However, now a(j) in this equation is defined by (:30).

2.3.4 Iterative Procedure

An iterative procedure is used to obtain A' and Pc, Pi, Pe and Pa simultaneously.
i
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step 1 Guess reasonable values for Pc, Pj, Pe, pa, f-l(i)'s, i = 1, ..., t. Use pc, Pj, Pa in (27) to
calculate A'.

step 2 Use last updated ),' and f-l(i)'s in convolution algorithm to calculate b(t, v)jb(v). Then.

p( v) and /3(v) can be found from (10) and (1:3).

step;3 Use last updated Pe in (C.:3) to find Pbs(j), which is used in (:30) to find a(y).

step 4 Use newly updated p(v), /3(v) and O'(y) in (7). Solve the equations by Gauss-Seidel iteration

to get p(u, v) 's.

step 5 From p(u, v)'s get Pbr(j)' P[(v), Pc, Pe and Pj. Update l1(i) by (A.:3).

step 6 For any v, with P[(v) large enough, (v = 0, ..., Lmax), solve (:38)by Gauss-Seidel iteration
to get Pr(O, C - vlv).

step 7 Calculate Pa with equation (:3:3).

step 8 Update A' using Equation (27).

step 9 Compare old Pc, Pk, Pj, Pe with updated ones. If all of them agree within the desired

number of significant figures, the iteration is stopped. Otherwise, go back to step 2.

The reasonable initial values of Pc, Ph Pe, Pa, l1(i)'s is that 0 < Pc < 1,0 < Pj < 1,0 < Pa < 1,
0 < Pe < 1, and Pa < Pc < Pe < Pj, Pe ~ Pj, l1(i)'s, i = 1, ..., t, are about C and do not vary
much with i. If we choose initial values in those ranges, we found that the algorithm converged.

3 Numerical Results And Discussion

In our numerical examples, we consider CBWLjNR-FR and CBWLjCR-FR schemes for a

mobile system with 24 channels in each gateway. For simplicity, we assume in the homogeneous

case, that the system has a very large (essentially infinite) number of cells. Thus we do not need

to distinguish the boundary cells and the internal cells.

Figure 4 shows overall blocking probability of CBWLjNR-FR obtained by numerical computa-

tion plotted against offered traffic in a cell. Simulation confidence intervals of 95% are also shown.

Figure 5 is a similar plot for CBWLjCR-FR.

From the figures, we can see that the results of analysis are close to those by simulation. In

Figure 5, a slight difference of results from analysis and simulation occurs when P = .:3and heavy

offered traffic (more than 22 Erlangs). In that condition, a lot of channel borrowing is involved

and ),' is increased significantly. The assumption of A' ~ ), that is used in the decomposition

method is void. Thus, the results of analysis underestimate blocking probability in this range.

The results displayed in Figure 4 and 5 compare the performance of FCA (for which P = 0) to the

CBWL scheme with P =0.1, 0.2 and 0.:3, It is seen that CBWLjNR-FR cannot improve system

performance significantly. While CBWLjCR-FR can reduce the blocking probability by order of
magnitudes.

f
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Table 1: The offered traffic per cell of CBWLjCR-FR for 2% blocking prob-

ability, BCR/FR = .02,(C = rn = 24,1= :3).

Figure 6 depicts blocking probability of B-type calls, {JNR-FRand overall blocking probabilities,

BNR-FR for a CBWLjNR-FR scheme ( blocking probability of A-type calls, QNR-FR is too small to

show in the figure). Also shown is the blocking probability BFcA for the fixed channel assignment.

Figure 7 is a similar plot for CBWLjCR-FR. Like CBWLjNR and CBWLjCR, it is seen that

for CBWLjNR-FR resulting blocking probabilities are ordered by f3NR-FR> BFCA > BNR-FR >
QNR-FR. Thus channel borrowing without channel rearrangement causes very different blocking

probabilities for the A-type calls and B-type calls. From Figure 7, it is seen that for CBWLjCR-

FR, blocking probabilities are ordered by BPCJA> (JCR-FR > BCR-FR > QCR-FR. The differences

between BCR-FR, QCR-FR and (JCR-FR are much less that of CBWLjNR-FR. The heavier offered

traffic is or the larger p is, the smaller the difference is.

Figure 8 shows the comparison between the blocking probabilities of CBWLjNR, CBWLjCR,

CBWLjNR-FR and CBWLjCR-FR. It is seen that the blocking probabilities are ordered by

BFcA > BNR-FR > BNR > BCR > BCR-FR. We note that the performance of CBWLjNR-FR is

poorer than that of CBWLjNR. That can be explained as follows. With channel fast returning,

the borrowed channels are used as less as possible, the probability that a gateway's all channels are

occupied is increased, thus the probability that B-type calls are blocked is increased. Hence, the

overall blocking probability is also increased. However, with channel rearrangement, fast returning

can significantly enhance system performance of CBWLjCR-FR.

Table 1 shows a comparison of offered traffic that can be accommodated at a 2% blocking

probability for CBWLjCR and CBWLjCR-FR. Specifically, it tabulates the percentage increase

(in offered traffic) in comparison with the corresponding FCA scheme. When the fraction of A-

type calls, p, is increased, the offered traffic is increased. For p = 0.:3,traffic increases about :34%.
The offered traffic that can be accommodated increases very fast with increase of p for p < 0.:3.
When p is greater than 0.:3, the increase is slowed. It means that increasing p beyond p > 0.:3

helps little to improve system performance for CBWLjCR-FR. The effect is not a severe limitationi

22

CBWLjCR-FR CBWLjCR
p offered traffic percent

{JCR-FR
offered traffic percent

(Erlang)
Qc R-FR

(Erlang)mcrease mcrease

0.0 16.6:3 0.0% .0200 .0000 16.6:3 0.0%

0.1 18.6:3 12.0% .0222 .0000 18.22 9.6%

0.2 20.84 25.:3% .0248 .0004 19.74 18.7%

0.:3 22.28 :3:3.9% .0251 .0080 21.00 26.:3%

0.4 22.66 :36.:3% .022:3 .0165 21.97 :32.1%

0.5 22.75 :36.8% .0206 .0195 22.72 :36.6%

0.6 22.76 :36.9% .0201 .0200 2:3.18 :39.:3%

0.7 22.76 :36.9% .0200 .0200 2:3.:37 40.5%

0.8 22.76 :36.9% .0200 .0200 2:3.42 40.8%
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for CBWLjCR-FR scheme, because co-channel interference usually requires small p for CBvVL

schemes. In comparison with CBWLjCR (without fast returning), the maximum value of p that

permits a fast increase of offered traffic is reduced from 0.5 to 0.:3. Thus, CBWLjCR-FR can be

used in system with smaller p. Table 1 also shows j3cR-FR and ClCR-FRgiven BCR-FR = .02. vVe

notice that !3cR-FR has a peak at about p = 0.:3. The effect can be explained as follows. When

p is increased from 0, for a fixed BCR-FR = 0.02, the offered traffic that a cell can accommodate

is increased. The increasing of offered traffic causes Pc and PI to increase, this causes increase of

j3cR-FR. But, when P is increased, the fraction of A-type calls is increased and the probability

that a B-type call cannot use channel rearrangement, Pa (which is defined in (:3:3),the probability

that all channels of a gateway are occupied, and no channel is occupied by A-type calls) becomes

relatively small. The decrease of Pa causes the decrease of j3CR-FR. When p is greater than 0.:3, the

rate of decrease is greater than the rate of increase, (3CR-FR thus is decreased. When p continue

to increase, j3CR-FR approximates to BCR-FR and ClCR-FR.

4 Conclusion

Our analysis and simulation have shown that fast returning with channel rearrangement

(CBWLjCR-FR) can enhance the performance of CBWL schemes. CBWLjCR-FR exhibits ex-

cellent performance. It is especially useful in cellular systems with the small channel reuse factors,

since they require small p. The difference between blocking probabilities of the users in different
locations is reduced.

Appendix

A Channel Returning Rate from An Adjacent Gateway, JL(i)

Channel returning rate from a neighbor

In CBWLjNR-FR, the channel returning rate is accelerated. Assume all C channels of gateway,

Y, are busy and Y borrows j channels from its six neighbors, i of them are borrowed from gateway,

X. We consider the channel returning rate from Y to X. If one of i channels that are borrowed

from X is released, the channel is definitely returned to X. If one of C channels of Y is released,

Y randomly chooses one of j calls that uses a borrowed channels and transfers the call to the

channel that is just released. The borrowed channel is returned to its owner. The chance that the

owner is X is i j j. Thus, the rate of channel returning from Y to X is

z
R(i,j) = (i + -:C)11

J
i = 0,..., l, i s:; j s:; Lmax . (A.l)

Denote Pb,.(j) as the probability that a gateway borrows j channels from its neighbors. Denote

Pr(iJj) as the conditional probability that given that the gateway borrows j channels, it borrows

exactly i channels from a specific adjacent gateway. Denote Pr(j Ii) as the conditional probability

that given that a gateway borrows i channels from the specific adjacent gateway, the gateway

;-
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borrows j channels from all neighbors. From Bayes' Theorem,

Pr(jli) = - Pr(ilj)pbr(j),~I+,
2:: Pr(ilj)Pbr(j)

i=O,...,l. j = i, .. . ,5l + i. (:\.2)

J='

Define /-l(i) as the average channel returning rate from the given gateway to the specific adjacent

gateway if the specific adjacent gateway borrows i channels from the given gateway. Thus,

fi Pr(ilj)Pbr(j)R(i,j)
SI+i , '

)
j,

(
'

) -"'Pr(jli)R(z,J = SI+i
(

" '

) (J
'

)/-l z - ~ 2:: Pr z J pbr

i = 0,..., l . (A.:3)

J='

ThE' probability Pbr(j) is calculated in (15). The conditional probability Pr(ilj) is determined in

following paragraphs.

Conditional probability, Pr( ilj)

In our analysis, we assume a homogeneous system and use the strategy that when a gateway

needs to borrow a channel, it randomly chooses a neighbor that has free channels for lending and

directs a borrowing request to that gateway. Therefore, given that a gateway borrows j channels,

the probability that one of j channels is borrowed from each neighbor is equally distributed.

Thus, the distribution of number of channels borrowed from each neighbor given that j channels

are borrowed is the same as the distribution of randomly distributing j identical balls into six

distinct boxes if each box can have no more than l balls. The probability can be obtained by using

combinatorial analysis.

Denote a(j, k, l) as the number of ways to distribute j identical balls in k distinct boxes if each

box can have no more than l balls. From Appendix D , we have

S

a(j, k, l) = 2::( -1)S (
k

) (
j + ~ - 1- 8(l + 1)

)s=o 8 J - 8 (l + 1)
(A.4)

where S is the largest integer that is less than or equal to j / (l + 1).
The probability Pr(ilj) is the fraction of number of ways that we first place i balls into a given

box, then distribute j - i balls into remaining 5 boxes. Thus,

Pr(ilj) = a(j - i,,5,l)
a(j,6.l)

j =1,...,6l, i=O,...,l. (A,5)

B AverageChannel Returning Rate from Adjacent Gateways

From (8), we have following equation,

f( id/-l(id = )..'f(ik - 1) (B.l )

f
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Exchange the order of summation and production in the brackets of (12), and using (B. 1) to reduce

the size of is. The terms in the brackets in (12) can be expressed as

6 6 I)

g f(i,) ~~(i,) =,\' ~u(i, - 1) If(i, - 1) k =2,6
k-l8

f(ik) (B.2)

where the u (x) is defined as

U(X)={ ~

O:;x:;1
otherwise.

Substituting (B.2) into (12, we have

)...' 6

/3(v) = b( ) L: L:u(is -1)
I

f(is -1) IT
v 16ES(v,6)s=1 k = 1 6,... ,

k-l8

f(ik) (B.;3)

We recall the definition of (11 and since 2::%=1ik = v, we find the term in the brackets of (B.;3)
is the product of components of a 16 E S( v-I, 6). We introduce a transform in which for a

16 E S( v, 6), if its component, is, is greater than zero, we construct a new vector I~ E S(v - 1,6).

The five components of I~ are the same as those of 16, except its 8th component, i~ = is - 1. Thus

each 16 can transform into up to six I~'s. With this transform in (B.3), each u(is - 1) is changed

into u(i~ + 1). Thus,

/3(v) = b(

)../

)
L: t u(i~+ 1) IT f(i~) .

v 16ES(v-1,6) s=1 k=l

For all possible value of i~(O, . . . , I), only when i~ = I, u(i~+ 1) = o. Thus, if t components of
an I~ that are less than I, the second summation in (B.4) is just t. Recall in [2] that we define
b(t, v-I) as the sum of all possible 2::%=1f( ik) that exactly 6-t components (id are equal to I and

6 .
2::k=l Zk = v-I. Thus,

(B.4)

)...' 6

/3(v) = b(v) ~tb(t,v - 1) .
(B.5)

C Probability that Borrowing Requests Success Given that j Chan-
nels Are Borrowed, pbs(j)

If a gateway ,x, has borrowed j channels, the j channels may borrow from different adjacent

gateways. If j ~ 81 (.5= 1, ...,6), it is possiblethat sl ofj channelsare borrowedfrom.5neighbors.
Thus, those oSneighbors will not lend any channels to X. The remaining 6 - 8 neighbors may

or may not lend channels to X depending on their states. In (20) of section 2.2.2 we have foundi
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the probability that one adjacent gateway deny the borrowing request of X even though X has

not borrowed l channels from the neighbor is Pe. By considering the coupling between adjacent

gateways as the average rate of borrowing requests, A, and including the rate into the model for

state analysis of a gateway, the state probabilities of a gateway can be determined completely

without the knowledge of the states of other gateways [1]. Thus, the states of adjacent gateways

can be considered as "independent". Therefore, the probability that 6-8 neighbors deny borrowing

requests of X even though X has not borrowed l channels from the neighbors is p~-s.

Denote pg(81j) as the probability that each of 8 neighbors lends l channels to X given that X
has borrowed j channels. Thus,

S2

pbs(j) = 2: pg(8Ij)(1 - p~-S) j = 0,... ,6l (C.1)
S=S1

where 51 and 52 are the minimum and maximum number of neighbors that lend exactly l channels

to X if j channels are borrowed by X, respectively. Specifically, 81 = max(O, j - 6( l - 1)) and 82
is equal to the maximum integer that less than or equal to j / l.

Since we use the strategy that a gateway send borrowing demand randomly to one of neighbors

that have available channels for lending, and in homogeneous system, every gateway is considered

to be the same, every way to distribute j channels among six neighbors is equally likely. Thus,

we have a similar problem of distributing randomly j balls into 6 boxes with each box having at
most l balls. The total number of ways to distribute exactly j balls into six boxes is denoted as

a(j, 6, l) (D.9). The number of ways to distribute j balls into six boxes so that 8 boxes have l balls

can be obtained by following ways: The number of ways to choose randomly 8 boxes from the six

boxes is 61/[(6 - 8)181]. We assign l balls to each of the.5 boxes. Then we distribute the remaining

j - 5l balls into the remaining 6 - 8 boxes with each box getting at most l - 1 balls. The number
of ways is a(j - sl, 6 - 8, l - 1). Thus,

61 a(j-8l,6-8,l-1)

pg(8Ij) = 8!(6 - 8)! a(j, 6, l)
j = 0, . . . , lJ /8lJ (C.2)

From (C.1) and (C.2),

(
.
) - ~ 61 a(j-sl,6-8,l-1)

{ - 6
.
-s

}
Pbs J - L.- '(6 )I (

.
6 l)

1 Pe
S=S1s. - S . a J, ,

j = 0, . . . ,6l . (C.:3)

D N umber of Ways to Distribute Balls into Boxes

We want to find number of ways to distribute j identical balls into k different boxes if each

box can have at most l balls. This problem can be solved by generating functions [15]. Function

g(;l:) is a generating function of a combinatorial problem if g( x) has the polynomial expansion

g(x) = Co + C1X + C2X2 + ... + Cjxj + ...

and Cj is the number of ways to distribute j objects in the method that the problem requires.

Therefore, if we can model our problem into a generating function and find Cj, our problem will
be solved.i
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Let f(x) = 1 + x + x2 + ... + xl. The power of x in f(x) corresponds to the number of balls

that are distributed into a specific box. Because the way to distribute s identical balls into a

specific box is unique. all coefficients of f( x) are 1. Consider the coefficient of xj in the expansion

of [J(.c)]k. It is the number of different formal product of [J(x)]k whose sum of exponents is j.

Each of k f(x)'s represents the number of ways to distribute balls in each of k boxes. Thus, the

coefficient of xj in the expansion of [J(x)]k is equal to the number of ways to distribute j identical

balls into k distinct boxes. Thus, our problem has a generating function

g(x) = [J(x)t . (0.1 )

The next step is to find the coefficient. Rewrite this generating function as

(

I

)

k
. 1 - X +1

g(x) = (1 + x + X2 +... + xl)k = = (1 - x)-k(1 - XI+1)k.1 - x (D.:2)

The first factor can be expanded as

.

(
k

) (
k+l

)
.

(
.s+k-l

)(l-x)-k=l+ 1 x+ :2 X2+...+ .s x8+... (0.:3)

and the second factor can be expanded as

(1 - xl+1)k = 1 - ( ~ ) Xl+1 + ( ~ ) x2(1+1) - .. . + (_1)8 ( ~ ) X8(1+1)+ .. .

+( -1)k ( ~ ) xk(I+1) .
(DA)

Denote the first factor as

(1 )
k 2 8

- X - = ao + a1x + a2x +... + a8x +... (D.S)

and the second factor as

(1 ,1+1
)
k b b 1+1 b 2(1+1) b 8(1+1) b k(I+1)

- X = 0 + 1+1X + 2(1+1)X + . . . + 8(1+1)X + . . . + k(I+1)X . (D.6)

From the rules of multiplic.ation of polynomials, we can know the coefficient of xj in the expansion

of g(:r) is given by
s

Cj = 2: aj-i(I+1)bi(I+1) .
i=O

(D.7)

where S is is the maximum integer that is less or equal to j /(l + 1). From (0.:3) and (DA), we
have

s

Cj=2:(-I)i
(

~
) (

j-i.(l+.I)+k-l
)i=O Z J - z(l + 1) .

(0.8)

Define aU, k, l) as the number of ways to distribute j identical balls into k distinct boxes with at
most l balls in each box. Thus,

i

S

a(j, k, l) = 2:( -1 r
(

~
) (

j - i.(l +.1) + k - 1
),=0 Z J - z(l + 1) .

(D.9)
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