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Abstract

The existence of an 'asymmetric half-plane spectral factorization for a non-

negative two-dimensional matrix-valued spectral density is established under

general conditions; namely, that the density and the logarithm of the deter-

minant of the density are absolutely integrable on the torus. The proof con-

sists of first obtaining a symmetric half-plane factorization by applying a one-

dimensional spectral factorization algorithm, and then modifying the factors to

get the desired form. An efficient algorithm for calculating the two-dimensional

spectral factorization is thereby obtained; Wilson's one-dimensional factoriza-

tion algorithm appears to be the most suitable for this purpose. In the case

where the initial array is of finite extent, it is shown that the factors have con-

stant (minimal) order in the 'causal' direction. It follows that if a finite-support

array has a quarter-plane spectral factorization, the spectral factors must also

be of finite support.
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1 Introduction

The problem of spectral factorization is fundamental in numerous areas of circuit,

systems, and signal theory, and has been extensively studied by many researchers

[1, 2, 3]. In two-dimensional signal processing, it arises in the design of recursive

filters from an amplitude response specification, and in the derivation of autoregressive

models for stationary stochastic processes [4,5, 6, 7, 8,9, 10]. Each of these problems

has its multivariable or multichannel counterpart which is also of importance; in

this context, the problem is to find asymmetric half-plane spectral factors for a non-

negative square matrix-valued function on the torus.

The purpose of this paper is to establish the existence of such spectral factors

under general conditions, and to give an efficient algorithm which calculates these

factors. The conditions considered (in addition to the obvious positivity condition)

are that the original matrix-valued function, and the logarithm of its determinant,

are absolutely integrable on the torus.
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It is well-known, of course, that in the multidimensional case the factors can not

in general be of finite order [11]; from the scalar case, the best which can be hoped

for is the following [4]. If the original array has nonzero terms from -N to N in the

vertical direction, and from - M to M in the horizontal direction, and the asymmetric

half-plane decomposition corresponds to horizontal scanning, then each approximate

factor should have order N in the vertical direction, and infinite order in the horizontal

direction. It is shown below that this continues to hold in the matrix case.

It follows from the proof that anyone-dimensional spectral factorization algorithm

can be used to give a two-dimensional algorithm; however, algorithms based on New-

ton's method [12, 13] have some properties which make them particularly suitable in

the present context; they are also quite efficient in the absence of roots on the unit

circle.

Finally, we note that although we can always assume in practice that the density

to be factored is rational, the proof is given under general hypotheses for two reasons:

first, since in the multidimensional case the factors are in general nonrational, there

is no simplification in assuming a rational density; and second, a general proof shows

that the assumption of rationality is not essential, and so the properties of the factors

are unlikely to be critically dependent of the order. The latter point is particularly

important in that most rational models are actually simplified approximations to

much higher-order models.

The paper is organized as follows: in section 2, the notation is introduced, and

III section 3 the algorithm is described and some comments on its computational

complexity and convergence rate are given. Examples are given in section 4. The last

section contains conclusions and mentions some open problems; proofs are contained

in the appendix.
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2 Definitions and Notation

The following notation will be used throughout.

The unit torus, will be denoted by T2:

T2 = Hz!' Z2) Ilzll = 1 and IZ21= I}

The set of absolutely integrable p by p matrix-valued functions on T2 will be denoted

by Ll (T2), and the subset of square-integrable such functions will be denoted by

L2(T2). The set of absolutely integrable scalar-valued functions on T2 will be denoted

by L~(T2). Elements of Ll(T2) and L2(T2) will be denoted by uppercase letters, and

their two-dimensional inverse Z-transforms by the corresponding lowercase letters.

The unit matrix will be denoted by 1. As usual, an upper * denotes conjugate

transpose. The inverse Z-transform as used here is defined by

f( m, n) = 1/ 47r2f~1r f~1r F( e-j{)l, e-j02 )d(h d02

The asymmetric half-plane which defines causal filters will be denoted by A; we

will take this to be set

A = {(k, 1) 11> O}U {(k, 1) 11= 0 and k >= O}

we will refer to the second coordinate (the 1 direction) as the vertical, or causal,

direction, and the first coordinate (the k direction) as the horizontal, or noncausal,

direction. An element F of Ll (T2) is causal if, and only if, f( k, 1) = 0 when (k, 1) is

not in A.

A causal element G of Ll(T2) is said to be outer (or minimum-phase) if

log Idet G(ejOl, ej02)1E L~(T2) and

log Idet g( 0,0) I = 1/ 47r2f~1r f~1r log Idet G( ejOl, ej02) I dOld02.
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In the case where G(Z1' Z2) is a polynomial in z1and Z2, this is equivalent [9, p. 590]

to G(Zl, Z2) having no zeros on the open unit bidisk defined by

u2 = {(Z1,Z2) IIz11:::; 1 and IZ21:::; I}

Given a positive Hermitian element H of L1(T2), a spectral factorization of H

will mean a factorization of H as

H = GG*

where G is causal, stable (i.e., in L2(T2)) and outer. This factorization, when it exists,

is unique up to multiplication by a constant, unitary matrix; it will be made unique

by assuming that g(O, 0) is lower triangular, with a non-negative, real diagonal.

Note that in the above definitions, stability of a transfer function has been defined

in terms of square-integrability, rather than absolute summability of the inverse Z-

transform; although this is not strictly correct, it has been done to simplify the

presentation, since, in the general case the spectral factors may not have an absolutely

summable inverse Z-transform. (This will happen, for example, if H is discontinuous

on T2, since absolute summability of the inverse Z-transform implies continuity on

T2)

With this background, the algorithm can now be described.

3 Spectral Factorization Algorithm

The main result of this paper is the following.

Theorem 1 Suppose that K is a non-negative p byp matrix-valued element of L1(T2)J

and that log(det K) E Lf(T2) .

Then K has a spectral factorization:

K = GG*
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Further) if the inverse Z-transform) k(m, n)) of K is zero outside the set

{(m, n) I - N :::;n :::;N}) then the inverse Z-transform)g(m, nL of G is zero outside

the set {( m, n) I 0 :::;n :::;N}.

The detailed proof of this theorem is contained in the appendix; here the following

remarks may be made.

First, the proof actually provides a two-dimensional matrix spectral factorization

algorithm; the spectral factor G can be found as follows.

For each el E [-7r,7r], let Kel (e) = K(el, e). Then (using any of the known

one-dimensional spectral factorization algorithms) find the spectral factorization of

each K el (e):

Kel = Gel GOl

Now let

p(el) = 1/27rf~1rGel (e)de

and let F(ed be the one-dimensional spectral factor of p(el)p*(el). Then the re-

qui red two-dimensional spectral factor is given by

G(el, (2) = Gel(e2)p-l(edF(el)

The two-dimensional factorization can therefore be calculated by means of a family

of one-dimensional factorizations.

Second, the step in which the Gel (e) are calculated essentially gives the noncausal

symmetric half-plane factorization; the only adjustment needed is to take gel (0, 0) to

be positive Hermitian instead of upper triangular. Thus the algorithm finds both the

noncausal symmetric half-plane factors and the causal asymmetric half-plane factors.

(It may be worth remarking that the three-term factorization into causal symmetric

factors and a one-dimensional factor does not always exist in the general non-algebraic

case. )
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Third, the theorem has a consequence for which is of some interest, as follows.

Corollary 1 If K (in the theorem above) has a quarter-plane factorization G, and

k( m, n) is zero outside the set {(m, n) I - N ::; n ::; Nand - M ::; m ::; M}, then

g( m, n) is zero outside the set {(m, n) I 0 ::; n ::; Nand 0 ::; m ::; M}.

In other words) if a polynomial non-negative matrix has quarter-plane spectral

factors) then the spectral factors are also polynomial.

Proof:

From the theorem, the half-planespectral factor Gmust have the property that

g(m, n) is zero outside the the set {(m, n) I 0 ::; n ::; N}. If we interchange the role

of the two coordinates, we get another half-plane spectral factor G with the property

that g(m, n) is zero outside the the set {(m, n) I 0 ::; m ::; M}. Since the quarter-

plane spectral factor G is a half-plane spectral factor in both cases, and the spectral

factors are unique, (assuming that the g(O,O) have all been normalized in the same

way) it follows that G must coincide with both G and G, and so the support of 9

must be contained in the intersection of the supports of 9 and g, as required.

4 Examples

4.1 Implementation Details

As was mentioned previously, the implementation reduces to a family of one-dimensional

factorizations. In theory, this is an infinite family parameterized by the unit circle; in

practice, of course, it is discretized. Anyone-dimensional factorization algorithm may

be used; however, since there is a family of problems to be solved here, it is ad van-

tageous to use an algorithm which is easily adapted to continuation methods. This

is especially true since the continuation version of the spectral factorization problem

is an additive decomposition problem which is easily solved by using a Fast Fourier
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Transform. From this point of view, the most natural one-dimensional spectral fac-

torization algorithm to use is Wilson's [12, 13]; this was used for all of the examples

below. The only real disadvantage of this is that it has problems with zeros on the

circle.

When the additive decomposition is implemented by means of the FFT on a q

by r grid, and the number of operations required to calculate this FFT is Jqr, then

the number of operations required per iteration of Wilson's spectral factorization

algorithm is O(p2 Jqr+ p3qr), since both matrix multiplication and inversion are O(p3)

operations. Thus, for Cooley- Tukey-type FFT algorithms, the number of operations

per iteration is O(p2 qr log qr + p3qr). Typically, the first factorization requires ten or

fewer iterations, and subsequent factorizations require about five, in the absence of

zeros on the circle.

Since the spectral factor is in general of infinite support in the non-causal direction,

it is necessary to take q to be the full horizontal width of the two-dimensional signal

under consideration; however, if the original matrix density K is of finite order, then

the factor G has a vertical order no larger than that of K, and so in many cases it

will be possible to take r to be considerably smaller than the vertical dimension of

the signal.

For reasons of space, only low-order examples will be presented here. In all of

these examples, calculations were done in single precision, the DFT was taken on a

32 by 32 grid, and, in the absence of zeros on the unit circle, the one-dimensional

spectral factorization algorithm was run until the the update term was a floating-

point zero; divergence in the case of zeros on the circle was prevented by stopping at

12 iterations.
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4.2 Example 1

In order to test the algorithm, the following (z-domain) matrix, which is known to be

asymmetric half-plane stable, was chosen.

(

1 + 0.5zt + 0.5z2 - 0.125ztZ2 Z2+ .25ztZ2

)
G(zt, Z2) =

0.5 1

Then GG* was calculated and evaluated on the unit torus, to give

.. ..

(

K (() () ) K (() () )

)
GG*

( () () ) (
() () )

11 t, 2 t2 1, 2
eJ t, eJ 2 = K eJ t, eJ 2 =

K2t(()t,()2) K22(()t,()2)

where

K11(()t,()2) = 2.578125 + 1.375cos ()t + 0.875cos ()2- 0.25 cos(()t + ()2)

+0.5 cos(()t - ()2)

Kt2( ()t, ()2) = 0.5 + 0.25ej()t + 1.25ej()2- 0.0625ej()tej()2+ 0.25e-j()t ej()2

K21(()t, ()2) = 0.5 + 0.25e-j()t + 1.25e-j()2 - 0.0625e-j()t e-j()2

+0.25ej()t e-j()2

and

K22(()t, ()2) = 1.25

The algorithm was then applied to K and yielded G with errors of the order of 10-7.

The number of iterations in the one-dimensional Wilson factorization algorithm

was typically five or six to final convergence for each value of ()t.

4.3 Example 2

To test the algorithm in the situation where finite-order factors did not exist, the

constant term in the K of example 1 was changed to

(

3 0.5

)0.5 1.5
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- n- n- -

and the factors of the resulting K were calculated. As expected, the factors were no

longer of finite order; they were zero, however, (to an accuracy of the order of 10-6)

outside the set indicated by theorem 1. Again, the one- dimensional algorithm was

allowed to run to final convergence; in this case, the typical number of iterations was

four or five.

4.4 Example 3

In order to test a case with a zero on the torus, the same procedure as in example 1

was followed, using

K( ejlh, e)fJ2) =

(

Kll ((}I, ()2) K12( ()I, ()2)

)K21({)I, ()2) K22({)I, ()2)

where

Kll((}I, (}2) = 2.8125 + 1.75cas {)l+ 0.75 cos (}2- 0.5 COS((}l+ ()2)

-0.5COS((}1 - ()2)

K12((}I, (}2) = 0.5 + 0.25ej(}1+ 1.25ej(}2- 0.125ej(}lej(}2+ 0.5e-j(}lej(}2

K21({)I,(}2) = 0.5 + O.25e-j(}1+ 1.25e-j(}2 - 0.125e-j(}1e-j(}2

+0.5ej{)1 e-j{)2

and

K22({)1,(}2)= 1.25

which has a zero at Zl = Z2 = -1.

In this case, when (}lreached the value at which the zero occurred, the algorithm

failed to converge; for this reason also, it was preferable to re-initialize the algorithm at

each step of (}l, rather than using the the factors from the previous (}l. In addition, the

number of iterations was limited to 12; when these steps were taken, the algorithm
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reconstructed G to an accuracy of the order of 10-3; this is about what might be

expected, since 10-3 ~ 322..

To test the effects of zeros close to, but not quite on, the torus, example 3 was re-

peated with a random perturbation of the coefficients of the order of 10-7. In this case

the algorithm converged after 20 iterations; the values of G obtained, however, still

had errors of the order of 10-3. The algorithm therefore produces approximately the

same errors for zeros on the torus as for zeros very close to the torus; the convergence

behavior of the algorithm, however, appears to be a very sensitive indicator of whether

the zeros are merely close to the torus, or actually numerically indistinguishable from

being on the torus.

5 Conclusions and Discussion

The existence of asymmetric half-plane matrix spectral factors has been established

under general hypotheses, and an efficient algorithm for calculating these factors has

been given. It has also been shown that if a polynomial matrix density has a quarter-

plane spectral factorization, then the spectral factors are also polynomial. Among

the remaining problems the following seem to be the most important: first, to find a

method for obtaining approximate factors which are of finite order in the horizontal

direction; and second, to improve the performance when there are zeros or singularities

(especially indeterminacies) on the torus. In connection with the latter problem, it

should be emphasized that the Wilson algorithm used here is by no means the only

efficient way of implementing the one-dimensional factorizations. Finally, it is of some

interest to extend the algorithm to higher dimensions, since moving multisensor and

multispectral moving images are of some importance (for example, in self-navigating

vehicles and HDTV), and are among the multidimensional applications where real-

time processing, and therefore spectral factorization, are genuinely necessary.
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A Appendix: Proof of Theorem 1

The idea of the proof has already been outlined in the discussion following the state-

ment of the theorem; the main task remaining is to verify the conditions necessary

for the existence of the one-dimensional factorizations, and to verify that the two-

dimensional factor is indeed spectral.

The unit circle will be denoted by T, and Ll(T), etc., will have meanings corre-

sponding to those used for TZ.

If, for each 01 E [-11",11"], the function K01is defined on T by

K01(O) = K(Ol'O)

then, since K E Ll (TZ) and log(det K) E Lf(TZ), it follows immediately that

KOl E Ll (T) and log(det K(1) E Lf(T) for almost all Ot, and so, for almost all Ot,

KOl has a unique spectral factorization

KOl = GOlGel

where GOlhas the properties:

GOl E Lz(T)

log(det G(1) E L~(T)

(1)

(2)

(3)

(4)

log Idetgol(O)1 = 1/211"J'!:.7rlogldetGo1(ej9)1 dO

gOl(n) = 0 for n < 0

and gOl(0) is lower triangular with positive real diagonal.

Also, if k(m, n) = 0 for Inl > N, it follows immediately that kOl(n) = 0 for

Inl > N, and so gOl(n) = 0 for n > N, for almost all 01.

Note that, apart from the normalization of gOl(0), GOl(Oz) is the noncausal sym-

metric half-plane factorization of K( Ot,Oz).
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To find the asymmetric half-plane factorization, we define

P(Ol) = 1/21rJ~1rGOl(0) dO = gOl(0)

In order to establish that P P* has a one-dimensional spectral factorization, we need

to show that

PP* E Ll (T)

Lf (T)

(5)

(6)log( det P P*) E

The second of these properties follows immediately from

J~1r log(det P( Ol)P*(°d )dOl = J~1r log( det gOl(0)gOl(0) )dOl

= J~1r1/21rJ~1rlog Idet G(h (ej9) 12dOdOl

= 1/ 21rJ~1rJ~1rlog det K (OI,(2) dOld02

< 00

where the second equation follows from equation 3 above.

For the first property, it is sufficient to show that J~1r IIP(Ol)1I2dOl < 00, where

IIQII denotes the matrix norm defined by IIQII2= TrQQ*. We have

IIP(Ol)11 = 111/21rr1r GOl (O)dOII

~ 1/21r J~1r IIGol (O)lldO

< (1/21rf~1r IIGol(O)1I2dOf/2

from the Schwartz inequality.

It then follows that

J~1r IIP(Ol)1I2dOl ~ 1/21rJ~1r J~1r TrK(OI, O)dOdOl

< 00
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Thus P P* E LHT), and so P P* has a spectral factorization

P(Ot)P*(Od= F(Ol)F*(Ol)

where F satisfies the conditions 1 - 4 above, and is again made unique by the assump-

tion that j(O) is lower triangular with positive real diagonal. Noting that property 6

implies that P(Oltl exists for almost all 01, we define

H(Ol, (2) = GOI(02)P(Od-l F(Ol)

It now follows immediately that HH* = K, and H E L2(T2). To show that H is the

asymmetric half-plane spectral factor, it remains only to show that H is outer, and

that h( m, n) has its support on the asymmetric half-plane.

To verify the support of h(m, n), we have

h(m, n) = 1/471"2f~1rf~1rH(Ol, (2)e-jmOle-jn02dOld02

= 1/471"2f~1r f~1r GOI(02)P(01)-1 F(01)e-jmOle-jn02dOld02

= 1/271-J~1r(1/271"f~1rGO/(2)e-jn02d02) P(Ol)-lF(Ode-jmOldOl

- 1/271"f~1r901(n)P(Ol)-lF(Ode-jmOldOl

and the last integral is zero for n < 0, since the integrand is identically zero. Also, if

k(m,n) = 0 for Inl > N, we know that 90l(n) = 0 for n > N, for almost all 01, and

so we get h(m, n) = 0 for n > N also.

For n = 0 we have

h(m,O) = 1/271"f~1r(1/271"f~1rGOl(02)d02)P(Ot)-lF(Ol)e-jmOldOl

- 1/271"f~1rF(Ode-jmOldOl

- 0 for m < 0

(7)

(8)

(9)

since F is a spectral factor.
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We therefore have shown that h(m, n) has asymmetric half-plane support, and

that if k(m,n) = 0 for Inl > N, then h(m,n) = 0 for n > N

To show that H is outer, we have, from equation 8 and the fact that F and G01

are outer,

log det h(O, O)h*(O, 0) = log Idet 1/271"J':11"F(OddOl12

- 1/271"J':11"logdetF(01)F*(01)d01

= 1/271"J':11"log det gOl (O)gOl (0)d01

= 1/471"2J':11" J':11" log det G01(0) G01(0) dOd01

- 1/471"2J':11"J':11" log det H( O}, (2)H*( O}, 02)d01 d02

where the last equation follows from the fact that H H* = K = GG*.

It follows immediately that H is outer, and so is the required spectral factor.
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