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ABSTRACT

Random sequential adsorption (RSA) can be described as the s --+ 0 limit of an s-

species mixture of particles with a particular Hamiltonian. Here we use this mapping to

systematically derive a general theory of sequentially adsorbed systems using a liquid-state

approach. This theory generalizes the standard model of random sequential adsorption in

several basic ways. We also exploit an approach to correlation pioneered by Boltzmann,

which yields the Kirkwood-Salsburg hierarchy for the correlation functions of this model,

from which we obtain further results that include bounds on convergence for the virial

series. We further derive a Percus-Yevick type integral equations for the two-point corre-

lation function of RSA. Finally, we use the virial theorem and zero-separation theorem for

RSA to give a scaled-particle theory for this model.

1. Introduction

The adsorption of large molecules and molecular aggregates, such as polymers, col-

loids, and proteins, upon membranes and surfaces is frequently associated with a large

binding energy so that the time needed for the surface involved to become saturated with

particles is small compared to a typical desorption time. In such cases, the correlation
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functions are substantially different from those associated with equilibrium. It has been

shown to be a good approximation, at least in some cases, to use for such processes an

idealized model known as random sequential adsorption (RSA).1-14 In this model,

hard, i.e., non-overlapping particles are placed on a surface, one at a time, each in such a

way that it does not overlap those already in place. Once placed, a particle is quenched,

i.e., frozen in that location.

Previous approaches to RSA have been of two kinds. The first involves application

of ideas from kinetic theory. Evans and coworkersll and Dickman et. al.7 have developed

sets of kinetic equations to describe the RSA process both on lattice and in the continuum.

A second approach to the RSA model uses probability theory and statistical geometry to

exploit the fact that all interactions in that model are of the excluded-volume type. This

was in fact the approach to RSA originally used by Widomj1 It proves to be an application

of a general method originally due to Boltzmann15, who useg it to formulate a theory

for the thermodynamics of hard-sphere systems at equilibrium. One of us has shown

elsewhere16 how Boltzmann's program can be completed and generalized, and how, when

so completed, it is related to the scaled-particle theory of Reiss, Frisch, and Lebowitz,17

the potential distribution method of Widom,1 and the Kirkwood-Salsburg equations18

As discussed in some detail in ref. (16), a remarkable aspect of our generalizations of

Boltzmann's method is that it is not limited to systems at equilibrium. This was exploited

in the work of Torquato and Ste1l19to obtain the n-point matrix functions for composite

media in terms of n-particle probability distribution functions. These equations, which

are of the Kirkwood-Salsburg and Mayer-Montroll type, are valid for both equilibrium

and non-equilibrium systems. The first of these equations, from which the others can be
-

derived by "turning on" extra particles into the system, gives a formula for the average

space available to an (N + 1)8t particle being added to a system of N particles. (Boltzmann

called this the available space.) Widom 1 used this equation as the starting point for his

study of RSA, exploiting the fact that the available space is simply related to the adsorption
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rate of particles. More recently, the Kirkwood-Salsburg equations have been used in the

context of the RSA by Tarjus et. al.12

In this paper, we generalize and extend previous results on RSA by giving a complete,

systematic liquid-state theory for this class of models. To do this, we combine two distinct

theoretical approaches. The first is a differential replica method previously developed by

one of us13 that enables us to reduce a large class of models containing quenched degrees

of freedom13,21 to limiting cases of equilibrium, many-body systems. The second is the

method of Boltzmann already described.

This work has several goals. One of them is to systematize and generalize a number of

approximations and formal expansions that have previously appeared in the literature. In

particular, we are able to obtain the general term in a number of fundamental expansions

for RSA correlation functions. Another goal is to extend the standard RSA model described

above in several directions, in order to give a more realistic treatment of the physical

systems to which RSA can be applied. In real adsorption problems successive particles

may interact with those already adsorbed via long-range, e.g., electrostatic, forces; thus

their placement will not be random. The adsorption may proceed at a finite rate rather

than the infinitesimal rate assumed by the naive RSA model, so that a nonzero density

of particles will simultaneously be adsorbing. The short-range interactions may not be

sufficiently repulsives to be modelled as hard-core; this may be very important at high

adsorbate density. All of these effects can be treated naturally once we describe the general

RSA process in terms of liquid-state theory.

Our final reason for discussing the RSA process in detail is that it represents an

important example of class of models of disordered materials, for which the correlation

functions do not correspond directly to an equilibrium Hamiltonian system, but which can

nevertheless be treated using the methods of liquid-state equilibrium theory. This work is

part of a long-term project of finding effective Hamiltonians for such materials in order to

use the machinery of equilibrium statistical mechanics (integral equations, renormalized
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perturbation theory, etc.) to calculate their properties.

The study of sequential adsorption was originally limited to one- and two- dimensional

problems, i.e., to adsorption on lines and surfaces. However, the generality of our study

makes it reasonable for us to frame our discussion here, except when noted otherwise, in

d-dimensional space.

This paper is organized as follows: in Section 2, we use the method of differential

quenching, essentially an iterated replica method, to develop a Mayer series for the par-

ticle adsorption rate. We show how to extend this calculation to the general RSA model

mentioned above. We also give a representation for RSA as a limiting case of an equilib-

rium Hamiltonian system. In Section 3, we extend the development of Section 2 to give a

set of two- point correlation functions for RSA. We discuss several sets of such functions

that naturally enter the analysis of this system. Finally, we give a set of Ornstein-Zernike

equations satisfied by the RSA correlation functions and suggest natural closures for them.

In Section 4, we define n-point correlation functions for RSA, and give a set of Kirkwood-

Salsburg equations these satisfy. In Section 5, we develop a scaled-particle theory for

RSA. It is shown that scaled-particle theory for sequentially adsorbed systems, unlike that

previously developed for equilibrium systems, is nonlinear. We solve the simplest ap-

proximation scheme of this kind numerically and discuss the solution. Section 6 gives a

summary of our conclusions.

2. A Generalized Replica Method for RSA, and an Effective Hamiltonian

In this section we will use a recently developed generalization of the replica method

to provide virial series for the particle adsorption rate and correlation functions of RSA.

We will exhibit an s-state Hamiltonian spin model whose thermodynamic quantities and

correlation functions become those of RSA in the singular limit s -+ O. Finally, we will

then use this Hamiltonian formalism to discuss the very general RSA model described in

the introduction.

RSA can be described13 as an example of a differentially quenched system, i.e., one
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in which the system is repeatedly quenched after each particle is added and allowed to

equilibrate. Such differentially quenched systems are readily treated by generalizations of

the continuum or liquid-state replica method. Since the latter is not yet widely used, we

explain its basic features, then give the generalization needed to treat RSA.

The liquid-state replica methodl3 converts quenched thermodynamic averages into

standard thermodynamic averages in a system with an effective Hamiltonian. To see this

let us consider a system whose particles are divided into two components or fractions,

the first of which, termed component 1, is allowed to reach equilibrium at temperature

TI as a result of pairWise interactions between particles at positions Xl and X2 of the

form Vll (x) with X = X2 - X j. (In the simplest case, Vll depends only on the magnitude

of x, which is the distance between the particles.) We then quench component 1, or

freeze it in place, before introducing component 2. Molecules of component 2 have the

interaction V22(X) with each other and the interaction VI2(X) with component 1 atoms.

The mean free energy for this system is calculated by performing an ensemble average

over the degrees of freedom of component 2 molecules, treating the degrees of freedom

of component 1 molecules as parameters. The thermodynamic quantities calculated from

this free energy are then averaged over the degrees of freedom associated with component

1 molecules to give the averaged thermodynamic quantities describing the two-component

partly quenched system. This double ensemble average is computationally quite difficult.

The liquid-state replica methodl3 converts this average into a single ensemble average.

It has been shown that the Mayer expansions for the thermodynamic quantities for this

two-component system are derived from the corresponding Mayer expansions for the fully

equilibrated system by simply excluding from the calculation all graphs not obeying a

particular constaint. Specifically, a Mayer graph is excluded if each vertex corresponding

to a component 2 atom is not part of an unbroken chain of such vertices connected to

a root vertex also of component 2. Madden and Glandt22 originally derived this result

using a general argument from probability theory; a derivation was subsequently given
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by us23,24 using the replica method developed in [13] and [21]. Further results on the

quenched-annealed mixture obtained from the replica formalism can be found in ref. [25].

Sequentially adsorbed systems can be described as a generalization of this two-

component system in which each molecule is a separate component. One can construct a

sequentially adsorbed system by a process of differential quenching, in which one particle

at a time is added to a surface containing the previously adsorbed particles and allowed

to equilibrate before being quenched or frozen in place. Conversely, one can arrive at an

effective equilibrium system for RSA by repeatedly applying the replica formalism, once

for each particle, each application undoing a quench operation. From these considerations,

it follows that the Mayer expansions for this system are derived from those for an equi-

librium polydisperse or infinite-component system by discarding all Mayer graphs that do

not obey a particular constraint.13 Specifically, a graph is discarded if it does not have

at least one uphill path leading from each field point to a root point. An uphill path

is defined to be a sequence of vertices, each successive pair connected by a Mayer bond,

such that in traversing the path from field point to root point, the species labels of the

vertices encountered increase monotonically. (Here, every particle in RSA is considered to

belong to a different species, and they are given species labels in the order in which they

are introduced.) We emphasize that this prescription for providing Mayer expansions for

the bulk properties of partly quenched systems is extremely general. It applies to systems

arrived at by an arbitrary annealing schedule, or sequence of quench operations. Interest-

ingly enough, it seems that an isomorphism onto a non-additive spin system of the type

provided here for RSA also exists for an arbitrary annealing schedule.

The adsorption rate ~ in RSA can be immediately related to the probability that a

randomly chosen point is the center of a disk of diameter a which contains no particle

centers, or equivalently, to the expected space available to the center of a disk of diameter

a which is to be inserted into the system. For the usual case of hard particles, we find

it useful to introduce a "fugacity" and "chemical potential" for RSA by means of the
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equations

cp = !!. = e-PP.IA3z (2.1)

which is the relationship between 4>and I-' in an equilibrated system of hard particles. We

discuss in detail the Mayer expansion of the adsorption rate; we will give the corresponding

recipe for the RSA correlation functions in the next section. The coefficient of pn in the

Mayer expansion for f31-'is given by 11n! times the sum of all topologically distinct, single-

rooted, labelled Mayer graphs. In the equilibrium theory of liquids,26 the factor 1/n!

results from the classical, i.e., indistinguishable nature of the particles. The labels on

the field points can be any n distinguishable symbols; they need not be integers. In the

RSA calculation, the labels on field points represent possible orderings of the n different

species labels assigned to these vertices. For any such ordering, there are Nn In! possible

assignments of species to the vertices in a Mayer graph. The root point is assigned to

the last particle added to the system, i.e., to the species N. According to the uphill path

constraint, this must be so, because no field point in any graph can be assigned to a

species with bigger label, i.e., to a particle added later. Thus, apart from the uphill path

constraint, which eliminates some labelled graphs, the Mayer expansion for the chemical

potential in RSA is the same as that in an equilibrium, hard sphere system.

We now use this observation to directly map RSA onto a limiting case of an equilibrium

system. We consider each particle in a many-body system to belong to a different species.

Also, assume that associated with each particle is an internal "spin" degree of freedom Ui

that can take any of s different values, from 1 to s. Then we define a system with the

pairwise interaction between the particle of species i and the particle of species j, j > i,

to be given by

~j(X) = VHS(X )617;1 (2.2)

with vHs( x) a hard-disk interaction of range a. This somewhat unusual equilibrium system

has the property that, in the limit s ---+ 0, all of its correlation functions (including the
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one-point function p/z) become those of RSA. To see this, note that the sum over spin

states weights each field point with a factor of s unless it is connected by a Mayer bond

to a vertex corresponding to a species of larger index. Thus, only Mayer graphs satisfying

this last condition will survive the s -+ 0 limit. But this last condition is equivalent

to the uphill path constraint. Incidentally, we note that the fact that the Hamiltonian

(2.2) depends on particle labels is not unusual; it is a common occurrence in treating

polydisperse systems. 27,28

In the s -+ 0 limit, the thermodynamic quantities of this model become the basic

physical quantities that describe RSA. For example, we have

4»= lim £
8-+0 Z

(2.3)

also

PRSA = ~
I

P (2.4)
ds 8=0

Here the quantity P on the RHS of eqn. (2.4) is the equilibrium pressure for the Hamiltonian

model defined by the interaction (2.2). The physical meaning of the RSA pressure PRSA

can be understood by imagining a large but finite realization of an RSA model using

soft spheres in a box with hard walls. H one attempts to contract the walls of the box

infinitesimally, the RSA pressure is the force per unit area that one encounters. This

definition implies that the virial theorem, relating the RSA pressure to the two point

correlation function of that model, will be valid. One can see this implication by using the

resealing proof of the virial theorem due to H.S. Green.29

The Hamiltonian mapping just given suggests a natural generalization of RSA: we

replace the pairwise interaction (2.2) between species i and j, j > i, with

Vij(x) = V(X)6CTil+ <p(x) (2.5)

The two potential functions in this model, v(x) and <p(x ), can be chosen independently

to give a variety of interesting models. H the potential v( x) in (2.5) is zero, the inter-

action (2.5) will give an equilibrium system with potential <p(x). H the potential <p(x)
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is zero, it gives various models of sequential adsorption. Choosing v( x) to be a hard-

sphere interaction gives the model usually called RSA. Choosing v( x) to be the sum of

a hard-sphere interaction and a Coulomb potential gives a model for the correlated but

irreversible adsorption of charged, hard particles. This system could be realized experi-

mentally by placing a static charge on small latex spheres, then allowing them to adsorb

strongly onto a surface. We note that unless the potential v(x) has a hard core, the re-

sulting RSA model will have no jamming density. Nevertheless, one can ask whether the

asymptotic behavior of the adsorption rate will still be a power law in the elapsed time,

as it is in naive RSA.

In the general case, the interaction (2.5) corresponds to a model of correlated and

partly reversible sequential adsorption. Allowinga general potential <p(x) that acts between

each pair of particles independent of their spin state is equivalent to making the binding to

the substrate partly reversible. To simulate this general two- potential RSA model e.g., on

a computer, one begins with an arbitrary placement of particles on a surface, then evolves

this distribution to a steady state by cycling through the particles in order of increasing

species number and attempting to move each to a new location. If a candidate move

involves placing particle i at Xi, it should be accepted with probability p determined by

the Boltzmann factor

p = exp[-pE(Xi)]/ J exp[-pE(Xi)]d3xi
(2.6)

where

E(Xi) = L V(Xij) +L <p(Xij)
j<i j"l'i

Depending on the relative strength of the two interactions v(x) and <p(x), this process will

(2.7)

give a more or less reversible adsorption process.

Finally, we note an interesting class of models, now under study, which involve sequen-

tial adsorption on a substrate that is either porous or heterogeneous, so that only part of

the surface is available for adsorption. We construct the RSA process as before as a system
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with many layers or components, each consisting of a single particle. But instead of adding

these components successively to a vacuum, we add them to a finite-density hard sphere

system, which is itself defined to be the first layer in a generalized sequential adsorption

process. The rules for calculating Mayer series for such generalized sequential adsorption

processes have been described previously. The additional component of hard-sphere parti-

cles can be thought of as impurities or obstacles having the pairwise interactions V11(x),

V12(x), resp. with each other and with the sequentially adsorbing particles. We choose

V12(x) to be a hard-core interaction so as to exclude adsorption inside the obstacles. For

V11(x), it is advantageous to use a parameterized potential that can range from no inter-

action to a hard-sphere interaction. The square-mound potential, V11(x) = 1/71 for x < 1

and 0 for x > 1 is an example. The somewhat different choice that defines the permeable

sphere model3° has proven expecially simple in the context of the Percus-Yevick approxi-

mation. Here Vi1(x) = 0 for x > 1 but the condition on V11 for x < 1 is replaced by the

condition that ViI yield the radical distribution function, 911(x) = Afor x < 1, 0 ::::;A ::::;1.

3. Ornstein-Zernike Formalism for Sequential Adsorption

In this section, we define several different two-point correlation functions for RSA,

each of which is useful in the analysis of this model. We also present an Ornstein-Zernike

system for RSA and discuss it in terms of the Hamiltonian formalism presented in Section

2.

It is most natural to first define RSA correlation functions that are a limiting case of

the correlation functions of the Hamiltonian model defined in Section 2. These functions

inherit virial expansions, integral equations, etc., from the equilibrium correlation functions

from which they are derived. One can then use these functio~s to study the detailed

structure of an RSA model.

We define the two-point correlation function of the Hamiltonian system of Section 2

as follows: 9rrTj (x) is the probability density associated with finding a particle of species

i in spin state (1i and a particle of species j in spin state (1j, the two of them separated by
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a distance x. The s -t 1 limit of this function gives, depending on the spin indices (Ji and

(Jj, two correlation functions useful in describing RSA. In this limit, the "species" of our

original model become particle labels, describing the sequential order in which particles

are placed. We will use the particle labels i and j, with the convention that i < j. We

define two RSA correlation functions as follows:

gU(X) =-t,,-o gij(X) (3.1)

g:}(X) =-t,,-o g~j(x) (3.2)

The function 9ij( x) is the probability density associated with finding, in a realization of

RSA, the ith and ph particle separated by a distance x. The Mayer series for this function

is easily constructed using the Hamiltonian (2.5): it consists of all labelled, two-rooted

graphs satisying the uphill constraint, as specified in Section 2. A labelled Mayer graph

is interpreted as an ordering on the particle labels; the field points in a labelled graph

must be summed over all sets of particle labels that preserve this ordering. The function

gtj(X) is a related function defined as the sum of the subset of Mayer graphs contributing

to gij( x) such that there exists no uphill path joining the two root points. Similarly, we

have gfj(x) defined as the sum of the subset of Mayer graphs contributing to gij(X) such

that there exists at least one uphill path joining the two root points. Thus, we have by

definition

gij(X) = g~j(x) + gfj(x) (3.3)

(The subscripts 'b' and 'c' denote 'blocked' and 'connected', respectively, and refer to the

path joining the root points.) Combining eqns. (3.1) and (3.3) gives

[gU(X)- g:}(x)] =-t,,-o gfj(x) (3.4)

This function occurs in the topological reduction of the Mayer expansion, and is

also important in the relations between thermodynamic quantities and RSA correlation
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functions, for example the RSA compressibility theorem. We explore this relation after we

develop the Ornstein-Zernike equations for the functions {gij(X)} and {gfj(x)}.

By virtue of the isomorphism we establish onto the many body system defined by the

Hamiltonian (2.5), the RSA system has the structure of a polydisperse system. In such

systems, each particle has, in addition to its position, an extra parameter characterizing it.

In the standard examples of polydisperse systems,27,28 this parameter is the particle radius

or orientation. Here, the extra parameter characterizing the ith particle in the system is

Pi, the density of the system at the time that particle was added. This density is given by

Pi = ijV (3.5)

In the thermodynamic limit, each intermediate summations over the particles in the system

occurring e.g. in the Mayer expansions can be replaced by an integration over the extra

parameter Pi. The integration measure for such an integration is trivial because each

particle added to the system corresponds to a distinct value of Pi. We henceforth assume

this limit to be taken, and use as limits the densities Pi instead of particle labels i, density

integrations instead of summations over particles, etc. Each specific correlation function

gij( x) is acually a function of three densities: Pi and pj, the extra parameters characterizing

the two root points, and P, the final particle density of the RSA system in which the

correlation functions are computed. However, because each particle in a realization of

RSA is independent of the particles placed after it, we have

gij(X) = gij(X,p) = gij(X,Pj) (3.6)

for any P > Pj. In this equation and what follows, we will adopt the convention, unless

stated otherwise, that j > i.

The Ornstein-Zernike equations satisfied by the functions hi] = gij -1 and hij = gij-1

can be obtained by writing down the Ornstein-Zernike equations for the effective RSA

Hamiltonian, as described in Section 2, and taking the RSA limit s -+ 0:

l
Pj

[ ]

11 11 11 11 1i il

hij = Cij + 0 Cik 0 hkj - Cik 0 hkj dPk (3.7)
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l
Pj

[ ]
'1 '1 '1 11 . , '1

hij = Cij + 0 Cik (8) hkj - Cik (8)hkj dPk
(3.8)

where (8) denotes a spatial convolution integral. Here the quantities Cij(X), cfj(x) can be

defined to be the sum of the subset of node-free diagrams contributing to hij( x), hfj( x),

respectively. For simplicity we define a standard form for a correlation function: we re-

write it, if necessary, so that the subscript on the left, e.g., 'i' in the case of hik, is smaller

than the subscript on the right. Also, we express (3.7) and (3.8) in terms of the connected

and blocking correlation functions gfj(x) and gtj(x), defined by eqns. (3.2) and (3.4),

respectively. The resulting Ornstein-Zernike equations for RSA are:

l
Pj

[hij = cij + Pi cik (8)hlej
(3.9)

(Pi

[ ] l
Pj

]htj = ctj + Jo cki (8)hlej+ cki (8)ht; + ct (8)hlej dPk+ Pi ctk (8)hie; dPk
(3.10)

The functions {gtj(x)} and {gfj(x)} are specific RSA correlation functions, i.e., they

give the probability density associated with finding a specific pair of particles at a separa-

tion x. These functions, like the correlation functions of any polydisperse system, depend

upon an additional parameter, i.e., an extra density. One must solve (4.8-9) and then

form the generic correlation function, or probability density associated with finding any

two particles with separation x. It would be of great value to be able to rewrite the ROZ

equations (4.8-9) directly in terms of generic correlation functions. This we have not been

able to do. However, we have obtained a formally exact equation for the generic correlation

functions by using the Kirkwood-Salsburg equations for RSA. We will define the generic

correlation functions for RSA, give the Kirkwood-Salsburg equations for them, and then
c~

relate these functions to the specific functions that satisfy (4.8-9).

The functions {gij( x)} and {gfj( x)} are natural 'atoms' or building blocks for generic

RSA correlation functions, which are more directly useful. Thus the latter will be defined

as sums of the former over the external particle indices i and j.
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It is the direct correlation function C~j' and the generic functions that result from

summing it over particle labels that directly enter the analysis of thermodynamic quan-

tities. The functional derivative expansion of the free energy function for RSA contains

the hierarchy of generic correlation functions g(Xl, . . . ,xn). In contrast,the functional

derivative expansion of the thermodynamic potential, or equivalently, of the pressure, con-

tains the hierarchy of functions CC(X I , .. ., X n). The function CC(XI, . . . , Xn) is defined to

be the subset of Mayer graphs that contribute to the function c(XI, . . . ,X n) and that also

have an uphill path connecting the root point at Xn to each other root point. The n = 2

member of this hierarchy is just the function hC(x). To understand why functions with

such constraints arise, we consider the n = 2 case in more detail. The Hamiltonian system

defined by eqn. (2.5) obeys the standard functional relation

~J.l(X2) = h(XI,X2)/p(XJ) - Cij(Xt,X2) (3.11)

In the limit in which the number of spin states s is set equal to zero, this eqn. becomes

!!..dfJ.>=l-
pj dxICC:'(XI X2 )

fJ.>dp I] ,

which is the compressibility relation for RSA. The occurrence in this equation of the

(3.12)

function cij (x) can be understood as follows: the Mayer series for the derivative of a

quantity is obtained from the Mayer series for the quantity itself by producing, for each

Mayer graph having k field points, a set of k Mayer graphs, each of which has one of those

field points replaced by a root point. In the Mayer expansion for fJ.>(Xl)' each field point

is connected by an uphill path to the single root point at Xl. When such a field point

becomes a root point, as a result of the differentiation in equation (3.14), there will still

be such an uphill path between the two resulting root points. Thus, the graphs that result

will all belong to CC(XI,X2).

4. Kirkwood-Salsburg Equations and Their Structure

In this section, we develop a Kirkwood-Salsburg hierarchy for random sequential

adsorption. A discussion of this hierarchy has already appeared in which the general
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Kirkwood-Salsburg structure discussed in reference (16) is considered in the context of

RSA. Our treatment here will focus upon some aspects of this structure that are peculiar

to its appearence in the treatment of RSA, in particular the basic distinction between

generic and specific correlation functions. Also, we give several approximate integral equa-

tions for the two-point correlation function, which we derive from approximate closures of

this hierarchy.

Consider the function <1>n(Xl;X2... xn) that represents the probability density asso-

dated with being able to insert at position Xl an extra particle into a system consisting

of N + n particles, with n - 1 of them found at X2,... ,Xn, respectively. [We shall write

<1>1(x) for <1>nin the absence of the n - 1 particles at prescribed locations; in a spatially

homogenous system in which <1>l(Xl) is independent of Xl we shall simply write <1>for

<1>l(Xl)']

There is a way of representing such functions as a series that goes back to Boltzmann,12

who considered the first few terms in such a representation of <1>1and <1>2for a hard-sphere

system in equilibrium. Subsequently Kirkwood and Salsburg18 considered the full series

of the <1>nfor arbitrary pair potentials in an equilibrated system. We can derive the

corresponding Kirkwood-Salsburg equations for RSA b'y directly applying Boltzmann's

method, as developed in ref. [16], to the RSA problem. (Alternatively we can apply the

argument to the replica system and take the s --.0 limit.) The result is

<1>n(Xl;X2'" xn) =

001 !
n

en(Xl; X2.', xn) L I' dXn+l." dXn+s II !(XiXn+s)Pn+s-l(X2.'. xn+s)s.s=o s=l

(4.1)

Here
n

en(Xl;X2".Xn)= II[l+!(xlxi)]-
i=2

(4.2)

and the pn(Xl ... xn) are generic n-particle probability density functions associated with

finding n unspecified particles at positions Xl... Xn. On the other hand the <1>nhave an

intrinsically specific quality in the sense that they specifically refer to the extra particle,
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which must be the last of the particles being inserted into the system. We could replace

~n by a fully specific probability density by referring to specified (i.e., labelled) particles

at X2... Xn. This would define a function that differs from ~n only through a trivial

change in normalization; ~n already has the symmetry properties of its specific version.

Strictly speaking, however, it is neither fully specific or fully generic. We shall refer to

such functions as "mixed." In RSA the most important mixed functions are those, like the

~n, that refer to one last particle, with the rest of the particles unspecified.

In a system of particles at equilibrium that are identical except for labelling, the entire

difference between specific and generic functions is just a trivial one of normalization,

because particle labelling can be done in any order - order is of no consequence. This

implies that ~n is very simply related to pn. One has

pn(XI ... xn) - ~n(XI; X2... xn)
PI (Xl) - ~1(XI)

(4.3)

as the closure of (4.1). In the spatially uniform case this reduces to

pn(XI'" xn)/ P = ~n(XI; X2... Xn)/~n (4.4)

In the case of RSA, on the other hand, the ordering of the particles constitutes the whole

problem! As a result the generic Pn are related to the ~n via a combination transformation

that takes this ordering into account. This can be carried out term by term in the density

expansion of Pn and summarized in terms of a single differentiation with respect to P,

which yields the coefficients that are found in the expansion of ~n' which the latter are

appropriately symmetrized. Considering only the spatially uniform case for simplicity, we

have

{)Pn(XI . .. xn) ~ ( )/ d'..= ~~n XI;XI...Xk-I,Xk+I",Xn ~
P k=l

We shall find it convenient to introduce the probability densities Wn(XdX2'" xn)

(4.5)

associated with being able to insert a particle into the system at position Xl in the presence
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of n - 1 particles at positions X2,..., Xn, respectively. One has

~n(XI; X2'" xn) = Wn(XI/X2'" Xn)Pn-I(X2'" xn) (4.6)

In particular

ilh(Xdx2) = ~2(XI; X2)/ PI (X2) (4.7)

and in a uniform system

w2(xdx2)/~ = G(XdX2) = G(XI2) (4.8)

where G(XI2) is a radial distribution function that depends on the positions Xl and X2 only

through their absolute difference IXI - x21 which we shall write as Xl2 or X as appropriate.

In a uniform equilibrium system we would have simply

G(XI2) = p(XIX2)/ p2 (4.9)

but from (4.5) and (4.8) we have instead

2G(X12) = 10p(XIX2)
P op

(4.10)

or

POg(XI2)
G(XI2) = g(XI2) + '2

where p(XIX2) = p2g(XI2)' so g(X12) is the generic two-particle distribution function.

(4.11)

In equilibrium systems, the cavity function gives the probability density associated

with finding a cavity of diameter a at position X2, with some particle at position Xl' In

such systems, this function is derived from the equilibrium two-point correlation function

g( xl, X2) by dividing out the Boltzmann factor for the direct interaction between root

points. In REA, these two functions are related in a nontrivial manner, as we now explain.

In an equilibrium hard-sphere system, a cavity is equivalent to a hard sphere of twice its

radius, except that a pair of cavities may freely overlap, while a pair of hard spheres may
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not. Similarly, in RSA, we may establish an equivalence between ~ hard sphere particle

and a cavity, providing that that particle is the last one placed; while a cavity may not

overlap particles placed before it is (by definition), it may readily be overlapped by particles

placed after it is. (Just as in equilibrium, a pair of cavities may freely overlap, but this fact

will not be relevant to our treatment of RSA, because we will discuss the cavity-particle

distribution function, but not the cavity-cavity distribution function.) In other words,

the natural extension to RSA of the equilibrium concept of a cavity is that of a cavity

interacting only with those particles having smaller labels than it. A cavity of diameter a

in RSA is thus associated with a hard-sphere particle of species (N + 1), i.e., it is a cavity

associated with the next particle to be added to the system.

Thus we have both a mixed cavity function Y(x) = G(x)/[1 + J(x)] and a generic

cavity function y( x) = g( x )/[1 + J( x)]. It is the former that appears in a more fundamental

way in our theory. In particular we have the zero-separation condition for hard-particle

RSA

q>y(O) = 1 (4.12)

from (4.10) with n = 2 as well as its obvious generalization to n > 2.

We now relate the generic and specific correlation functions. Thus, from its definition,

we can express G(XdX2)as

j

pG(XdX2) = LPi9ij(X)
i=1

(4.13)

In the limit of large N, this can be rewritten in terms of an integral over density:

{Pj

pjG(XdX2,pj) =10 gmj(Xt,X2,Pm,Pj)dpm
(4.14)

The generic distribution function g(x) is the probability density associated with finding
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any two particles at positions Xl and X2; it can be expressed in tenns of the {gij(X)} as

N-I

p2g(XI, X2) = L pj[G(XI/X2' Pj) + G(X2/XI, pj)]
j=l
N-I

= L PiPjgij( XI, X2, Pi, pj)
i,j=l

(4.15)

This can also be rewritten in tenns of an integral over density:

p2g(XI, X2) = lP [G(XI/X2'Pi) + G(xI/X2' p;)]dpi
(4.16)

This is equivalent to the statement that the rate of creation of pairs of particles at

positions Xl and X2 is proportional to the probability density associated with finding a

particle and a cavity, one at Xl and one at X2. We can rewrite the last equation in a way

that stresses this interpretation by using the definition of the adsorption rate

~
dd (p;g(x,Pj)) = k[Y}(XI,X2,Pj) + y}(X2,XI,Pj)]pj

(4.17)

From (4.1) one can also obtain a number of interesting rigorous results for non-negative

pair potentials, for which the remainder tenns in the series alternate in sign, yielding

rigorous upper and lower bounds on ~n. The authors have previously discussed the use

of the Kirkwood-Salsburg hierarchy to treat continuum sphere percolation, which can also

be transfonned into a limiting case of a Potts model. Upper and lower bounds on the

correlation functions, as well as a lower bound on the radius of convergence of the Mayer

series were also obtained for that model.

For hard particles, the function Wn(XI/X2... xn) has the significance of being the

volume available to the center of the particle to be inserted at Xl, given particles fixed

at X2,... Xn, divided by V, the volume of the box in which the~system is contained. It is

also useful to consider the volume available to the center of a cavity of the same size as a

particle. This is just V An, where

An(xI/x2... xn) = Wn(XI/X2... xn)
€n(XI; X2... xn)

(4.18)
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with AI(XI) =~1(XI). We have, in a uniform system,

AI(XI/X2) = ~Y(XI2) (4.19)

To generate an exact functional expansion that yields a Percus-Yevick equation upon

truncation, we can consider Al (xI/X2) expanded around its value ~1(XI) when the particle

at X2 is turned off. We have

J
6~I(XI)

AI(xI/X2) = ~1(XI) + c: _1- \ [p(X3X2)- p(x3)]dx3

1

J
68~I(XI) 8+2

[ ]+ , 8+2 n (p(XiX2) - p(xi))dxi +...
s. IIi=3 6p(Xi) i=3

(4.20)

The mixed direct correlation functions Cn(Xi;X2... xn) are generated by In ~(Xi) = CI(Xi)

68C(XI)

p~X2)". 6p(X8+1 \ = C8+1(XI; X2." X8+I)
(4.21)

Using (4.28) and (4.29), yields, in the uniform case,

Y(XI2) = 1 + p J C2(XI;X3)h(X3X2)dx3

+ ~ J [C3(XI; X3X4) - C2(XI; X2)C2(XI; X3)] h(X3X2)h(X4X2)dx3dx4 ...

(4.22)

Truncation after the first non-trivial terms yields a Percus-Yevick approximation suitable

for RSA

Y(XI2) = 1+ p J C2(XI; x3)h(X3X2)dx3
(4.23)

In equilibrium, where Y(x) = y(x), this relation defines a unique approximation when

combined with the OZ equation which identifies the correlation terms as h - C2, yielding

y = 1 + h - C2. For hard particles in equilibrium, this yields a good approximation C2= 0

outside the hard core, where y = 1 + h. Inside the core it yields the result y = C2. This

represents a very poor approximation for y; however inside the core, the PY approximation

is very useful in situations in which knowledge of y inside the core is not needed. In the

case of RSA, the OZ equations do not have as simple a form. In particular, the convolution
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on the LHS of (4.22) is not equal to h-C2. Instead of obtaining a unique approximation via

the OZ equations, it is more convenient to obtain one directly by introducing the closure

C2(Xl; X2) = J(X12)[G(Xl/X2) - C2(Xl; X2)] (4.24)

For hard particles, this simply says that G = 0 inside the core, which is identically true,

and that

C2(Xl; X2) = 0 (4.25)

outside the core, which is likely to be a good approximation for the same reasons that the

PY approximation is good for hard particles in equilibrium. Equations (4.23), (4.24), and

(4.10) yield a unique approximation for soft- as well as hard- core particles.

5. Scaled-Particle Theory for RSA

In this section we derive the virial theorem for RSA, along with a number of other

identities that constrain the behavior of the two-point cavity function Y(XdX2) at small

distances. This information is then used to construct a scaled-particle theory for RSA. In

this section we will specialize to the case of adsorption of three-dimensional spheres in a

volume.

The virial theorem for RSA is readily developed by using the Hamiltonian representa-

tion of Section 2. Writing down the virial theorem for the many-body spin system discussed

in that section, taking an s-derivative and setting s ~ 0 gives

(3PRSA = p + ~ (~7ra3) p2g(a)
(5.1)

where g(x) is the correlation function for RSA defined in eqn. (3.8). The g(x) is a

discontinuous function with a discontinuity at a; by g(a) we mean lim g( x) as x ~ a from

above. The PRSA is the "excess pressure". The latter quantity has a physical interpretation

that is developed in Section 2. That development also implies that the Gibbs-Duhem

relation is valid for RSA. H one takes a p-derivative of both sides of eqn. (5.1), and uses
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the Gibbs-Duhem relation for RSA

d({3p) p dip-=1---
dp ip dp

(5.2)

on the LHS and eqn. (3.8) on the RHS, the result is

d 4

p dp ip = -('31ra3)Y(a)
(5.3)

Here we have used translation invariance to write for simplicity Y(XdX2) = Y(x) where

x = IX2 - xII.. Equation (5.3) is the virial theorem for RSA. It can be given a more direct

interpretation in terms of geometric probability theory by noting that ip is a function only

of the dimensionless quantity pa3, and using this fact to rewrite the derivative on the LHS

of eqn. (5.2)
d

da ip = -(41ra2)Y(a) (5.4)

This equation has the following interpretation: ip is the probability that a point chosen

at random is the center of a cavity of radius a that is free of particle centers. Increasing

the diameter of each particle slightly will cause a point to stop satisfying this condition

precisely when the cavity drawn around that point first makes contact contact with a

particle. The probability that a circle of radius a drawn about a point chosen at random

in a realization of RSA will just satisfy this last condition is precisely given by the RHS

of eqn. (5.3).

According to equation (5.3), knowledge of the function Y( a) is equivalent to knowledge

of the adsorption rate ip(p). We parallel the equilibrium scaled-particle theory for the hard

sphere system in order to find further constraints on the behavi~r of the function Y( a).

An identityl7 true for any system containing only hard-p~ticle interactions relates

the excess pressure of such a system to the density of particles near a wall. This identity

can be written

{3PRSA = pY(oo) (5.5)
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We also generalize the adsorption rate ~: define po(..\)to be the probability density associ-

ated with finding, around a randomly chosen point, a cavity of radius at least ..\, that is

empty of particle centers. An identity for the excess activity of hard-sphere particles then

gIves

po(a) =~ (5.6)

We borrow a basic probabilistic argument from equilibrium scaled-particle theory17 to give

a relation between Po and Y( ..\):

-lnpo(..\) = p 1>' 471"..\,2Y(..\')d..\'
(5.7)

The quantity po(..\) can be expanded in a Kirkwood-Salsburg series exactly parallel to

eqn. (4.2). When this is combined with eqn. (5.7), it gives conditions on Y(..\) and its

derivatives at ..\ = a/2:

Y= 1
1 - (7I"a3p/6)

dY

I

7I"a2 p

dx >.=a/2= [1- (7I"a3p/6)]2

~Y

I

471"ap 271"2a4p2 871"ap

dx2 >.=a/2= [1- (7I"a3p/6)]2+ [1- (7I"a3p/6)]3- r1 I__~ ~ 1L'\,g(a+) (5.10)

Note that eqn. (5.10) relates the cavity function to the generic correlation function g(x).

The relation (3.8) allows one to eliminate g(a) from these equations and thereby obtain a

..\<~
-2 (5.8)

(5.9)

closed set involving only the function Y(..\). Note, however, that the nonlinear nature of

equations (3.8) and (5.2) in the unknowns implies that, unlike the scaled-particle theories

of equilibrium hard spheres and sphere percolation, the scaled-particle theory of sequential

adsorption processes (and of partly quenched systems in general) will be nonlinear.
I

Using the above relations, one develops a scaled-particle theory as follows: the function

Y(..\) on the interval [a/2,a] is approximated by a low-order polynomial in the variable

(a/..\):

Y(..\) =~An (~) n
(5.11)
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The coefficients {An} are then determined as functions of the density using some subset

of the relations (5.2-3), (5.5), (5.8) and (5.9-10). We illustrate this by developing a low-

order scaled-particle theory of this kind. We take n = 3 in equation (5.11), and use the

constraint equations (5.2-3), (5.5), and (5.8). Substituting the expansion (5.11) into the

virial theorem for RSA, equation (5.3), gives

d

TJdTJ~ = -TJ[Ao + At + A3]
(5.12)

where TJ,the dimensionless density, is given by TJ= fpa3. ~ can be expressed in terms of

the {An} using the Gibbs-Duhem relation for RSA, equation (5.2). This gives

-8[Ao + At + A3]~=
1 - Ao - TJ(djdTJ)Ao

(5.13)

The boundary conditions (5.8) and (5.9) can be used to eliminate At and A3

1

At = '8 [6Ct + C2 - 6Ao]

1
A3 = 32 [2Ao - 2Ct - C2]

(5.14)

(5.15)

Here we have used Ct and C2 as abbreviations for the constants on the RHS of equations

(5.8) and (5.9), respectively. Equation (5.12) then becomes a second-order, nonlinear

differential equation in TJfor the quantity Ao. Numerical solution of this equation gives

the behavior shown in Figure 1. The adsorption rate ~, as given by this theory, is a

rapidly but smoothly increasing function of the density TJ.Unfortunately, at this level of

approximation, the theory does not yet show a singularity corresponding to the jamming

density. It remains to be seen whether higher-order approximatio~ of this kind can capture

this singularity.

6. Conclusions

RSA is a limiting case of a many-body Hamiltonian system. Using this fact, one

can construct a complete liquid-state theory for it. We have defined the basic types
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of correlation fWlction needed for an analysis of the structure of RSA. These satisfy a

Kirkwood-Salsburg hierarchy of integral equations. We give several closures of this hierar-

chy which result in integral equations for the two-point correlation fWlction. We also give a

zero-separation theorem, a virial theorem, and other exact constraints on any approximate

theory of RSA. These are used to provide the basis for a scaled-particle theory.

The purely geometric aspects of sequential adsorption, i.e., those imposed by the

excluded-volume effect, have been explored previously. Here we provide a basic extension

of the class of models that can be treated to include continuous potentials between ad-

sorbing particles. We can thus treat at arbitrary temperature models that were previously

accessible only at zero temperature. For example, the sequential adsorption of charged col-

loidal particles requires the inclusion of both short-range attractive forces and long-range

Coulomb forces.

Recently, a new description of the continuum spin glass has been developed by com-

bining methods for treating partly quenched systems with methods for treating chemical

association. As we have described in a previous publication, a similar combination of tech-

niques will allow one to treat the most commonly studied sequential aggregation models,

including the Eden model.
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