
- - - - --

STATE UNIVERSITY OF NEW YORK AT

STONY BROOK

CEAS TECHNICAL RE~

Optimal Load Sharing for a Divisible Job

on Bus Networks

Jo Sohn & ToGo Robertazzi

December 16, 1992

Optimal Load Sharing for a Divisible Job

on Bus Networks

.Jeeho Solm and Thomas G. Robertazzi, Senior Member} IEEE

Dept. of Electrical Engineering,

SUNY at Stony Brook,

Stony Brook, N.Y. 11794

Abstract

Optimal load allocation for load sharing a divisible job over N processors inter-

connected in bus-oriented networks is considered. The network has either a control

processor or no control processor where processors are not equipped with front-end

processors. It is analytically proved, for the first time, that a minimal solution time is

achieved when the computation by each processor finishes at the same time. Closed

form solutions for the minimum finish time and the optimal data allocation for each

processor are also obtained.

1

1 Introduction

In recent years, there has been of great interest in distributed sensor networks [1]. In dis-

tributed sensor networks, measurements are made by spatially distinct sensors. The data is;

then, broadcast to a site where the spatially disparate readings are fused so that meaningful

decisions can be made regarding these measurements. One major issue for distributed sensor

networks is the trade-off between communication and computation [2]. That is, the decision

of how much time should be spent to communicate and how much time should be spent to

process (compute) the measurements becomes an important problem.

Related to the distributed sensor network problem are a number of papers which deal

with scheduling and load sharing in multiprocessors [3, 4]. However most work assumes

that a job can be assigned to a single processor: Only recently has there been interest in

multiprocessor scheduling with jobs that need to be assigned to more than one processor

[5,6, 7].

Recently there has been work on a load sharing problem involving a divisible job. A

divisible job is a job that can be arbitrarily portioned in a linear fashion among a number of

processors. Applications include the processing of very long data files as in signal and image

processing and Kalman filtering.

In [8], recursive expressions for calculating the optimal load allocation for linear daisy

chains of processors were presented. This is based on the simplifying premise that for an

optimal allocation of load, all processors must stop processing at the same time. Intuitively,

this is because otherwise some processors would be idle while others were still busy. Anal-

ogous solutions have been developed for tree networ:ks [9] and bus networks [10, 11]. The

2

equivalence of first distributing load either to the left or to the right from a point in the in-

terior of a linear daisy chain is demonstrated in [17]. Optimal sequences of load distribution

in tree networks are described in [16, 18, 19, 20]. Closed form solutions for homogeneous bus

and tree networks appear in [12]. Asymptotic solutions for systems with infinite number of

processors appear in [13, 21].

In [14], the concept of processor equivalence was used to prove that the optimal allo-

cation of load for a linear daisy chain of processors involves having all the processors finish

computation at the same time. However, until now there has been no analytic proof available

that the same type of solution is optimal for N processors interconnected through a bus type

channel. What has been available, aside from intuition, is a proof for the two processors case

(N=2), and computational results consistent with the all processors stop at the same time

premise [10, 11]. In this paper an analytic proof is presented for the case of bus type net-

works where the network has either a control processor or no control processor and where the

processors are not equipped with front-end processors. The proof shows that for the general

N processors case the minimum time solution occurs when all processors finish computation

.
at the same time. A by product of the proof are closed form solutions for the optimal load

allocation when processor speeds are heterogeneous (see [12] for the case of homogeneous

processor speeds).

This paper is organized as follows. In section 2, the proof for a bus network with a

control processor is presented in a recursive fashion. In section 3, the proof for the case

that there are no control processor and no front-end processors is examined. In section 4,

generalization of the proof to an alternative architecture is discussed. The conclusion appears

3

in section 5.

2 Architecture 1:

Bus Network with a Control Processor

Consider a bus network that consists of N processors and a control processor that receives

a burst of measurement data and distributes the processing load among the N processors

to obtain the benefits of parallel processing as shown in Fig. 1. The control processor does

no processing itself. It does not matter whether the processors are equipped with front-end

processors or not because the load distribution is performed by the control processor. Each

processor may have a different computing speed.

The following notation will be used throughout this paper:

ai : The fraction of the entire processing load that is assigned to ith pro-

cessor.

z: A constant that is inversely proportional to channel speed of bus.

Wi: A constant that is inversely proportional to the computing speed of ith

processor.

Tcm. The time that it takes to transmit the entire set of measurement data

over the channel when Z = 1.

Tcp: The time that it takes for the ith processor to process (compute) the

entire load when Wi = 1.

4

Ti: The finish time of the ith processor's computation, assuming the load

is delivered to the originating processor (or the control processor if

available) at time zero.

Fig. 2 shows the timing diagram for a bus network where there is one control processor.

At time t = 0, the control processor transmits the first fraction of processing load to the pro-

cessor 1 which takes time 0'.1ZTem. When the transmission of the first fraction of processing

load is finished, the control processor then transmits the second fraction of processing load

to processor 2 which takes time a2ZTcm. In the mean time, processor 1 starts computing

the received processing load which requires 0'.1WITep of time. The process then continues on

in the natural way. The equations that represent the finish time of each processor are:

Ti = (0'.1 + 0'.2 + ... + ai)ZTem+ aiWiTep (4)

TN-l = (0'.1+ 0'.2+... + aN-l)ZTem + aN-IWN-ITep (5)

TN = (0'.1+ 0'.2+... + aN)ZTem + aNWNTep (6)

.
The fractions of total measurement load should sum to one.

0'.1+ 0'.2+ . . . + ai + . . . + aN = 1 (7)

5

T1 - 0'.1ZTem + 0'.1 WI Tep (1)

T2 - (0'.1 + (2)ZTem + a2W2Tep (2)

T3 - (0'.1+ 0'.2+ (3)ZTcm + a3W3Tep (:3)

The necessary conditions to achieve the minimum solution time will be examined through

the following subsections in a recursive manner. It will first be shown that Tl = T2 for an

optimal solution, then Tl = T2 = T3 and continuing recursively until Tl = T2 = ... = TN.

2.1 Consideration of Tl and T2

First consider Tl and T2, the finish times of computation of processor 1 and processor 2,

respectively. On the other hand, the rest of processing finish times, T3, T4, . . . ,TN, will not

be considered yet and will be assumed to have arbitrary values. That is, the fractions,

a3, a4, . . . , aN, are assumed to have arbitrary constant values. They will be considered in

the following subsections along with some results obtained here.

Let C2 be the sum of a3, a4, . . . , aN

C2 = a3 + a4 + . . . + aN (8)

where C2 is a constant. Then

al + a2 = 1 - (a3 + a4 + . . . + aN)

- 1 - C2 (9)

and

a2 = (1 - C2) - al (10)

where al has its maximum value when a2 = 0:

0 :s; al :s; 1 - C2 (11)

6

Then, TI and T2 can be represented as follows:

TI = (ZTcm + WI Tcp)al (12)

T2 = (al + (2)ZTcm + a2W2Tcp (1:3)

- (1 - C2)ZTcm + [(1 - C2) - al]W2Tcp (14)

- (1 - C2)(ZTcm + w2Tcp)- w2Tcp. al (15)

Now TI has its maximum value and T2 has its minimum value when al reaches its

maximum value, that is,

max(TI) = Td al = 1 - C2 }

- (1 - C2)(ZTcm + wITcp) (16)

min(T2) = T2{ al = 1 - C2 }

= (1 - C2)ZTcm (17)

The optimal processing time is the time that minimizes max(Tl, T2). As shown in Fig. :3,

the optimal processing time is achieved at the crossover point of the two lines where TI = T2.

Note that there always exits a crossover point across the two lines since max(Td > min(T2),

that is, (1 - C2)(ZTcm + wITcp) > (1 - C2)ZTcm'

From Eq.(12) and Eq.(13), a2 can be expressed as a function of al since TI = T2:

wITcp al
a2 = ZTcm + w2Tcp

- k1al (18)

. - £.2. - w1Tcp .
where k1 - <:>1 - ZTcm+W2Tcp

7

2.2 Consideration of T1, T2 and T.'3

This subsection will examine the optimal processing time when T1, T2 and T3 are considered.

This consideration will include some information which was obtained from the previous

subsection, namely T1 = T2. We will assume 0'4, as, . . ., aN to have arbitrary coilstant

values.

Let C3 be the sum of 0'4, as, . . . ,aN.

C3 = 0'4 + as + . . . + aN (19)

where C3 is a constant. Then

0'1 + 0'2 + 0'3 = 1 - (0'4 + as + . . . + aN)

- 1 - C3 (20)

and

0'3 = (1 -" C3) - (0'1 + 0'2)

= (1 - C3) - (1 + k1)0'1 (21)

since 0'2 = k10'1. Now 0'1 has its maximum value when 0'3 = O.

1- C3

0 :::; 0'1 :::; 1 + k1
(22)

Then T1, T2 and T3 can be represented as follows:

T1 =T2 = (ZTcm+ w1Tcp)0'1 (2:3)

T3 = (0'1 + 0'2 + 0'3)ZTcm + 0'3W3Tcp (24)

= (1 - C3)ZTcm + [(1 - C3) - (1 + k1)0'1]W3Tcp (25)

- (1- C3)(ZTcm+ w3Tcp)- (1 + k1)W3Tcp. 0'1 (26)

8

Now Tt = T2 has its maximum value and T3 has its minimum value when O:'treaches its

maximum value, that is,

min(T3)

- 1 - C3 }
- Td O:'t- 1 + kt

1 - C3 (ZTcm + WtTcp)
1 + kt

- 1 - C3 }= r-d crt - 1 + kt

= (1 - C3)ZTcm

(27)

max(Tt = T2)

(28)

For a crossover point across the two lines to exist, max(Tt = T2) must be greater than

min(T3), that is,

1- C3
1 k (ZTcm + WtTcp) > (1 - C3)ZTcm+ 't

(29)

Proof: The above condition can be reduced as follows:

ZTcm + wtTcp > (1 + kdZTcm (;30)

WtTcp > kt ZTcm (:31)

w1Tcp > ,0:'2ZTcm
0:'1

(;32)

O:'tW1Tcp > 0:'2ZTcm (:3:3)

From Eq.(12) and Eq.(13), the following equation must be satisfied since T1 = T2:

0:'1W1Tcp = 0:'2ZTcm + 0:'2W2Tcp (:34)

Since 0:'2W2Tcp> 0, the above inequality, Eq.(29), is true. 0

Then there exists a crossover point across the two lines and the optimal processing time

is achieved at that point where Tt = T2 = T3 as in F.ig. 4.

9

From Eq.(1:3), Eq.(18) and Eq.(24), 00'3can be expressed as a function of 00'2and 00'1since

T1 = T2 = T3:

w2Tcp 00'2
00'3 = ZTcrn + w3Tcp

- k2Oo'2

- k2k1. 00'1 (:3,5)

. - ~ = w2Tcp .
where k2 - 0<2 ZTcm+W3Tcp

2.3 Consideration of T1, T2, . . ., an~ Ti

Based on the results of the previous subsections, one can extend the proof to show that

T1 = T2 =. . .= Ti achieves the minimal solution time. The assumption that Oo'i+1,Oo'i+2,. . . ,Oo'N

have some arbitrary constant values will be also hold in this subsection.

Let Ci be the sum of Oo'i+bOo'i+2,.. ., Oo'N.

Ci = Oo'i+1+ Oo'i+2 + . . . + Oo'N (:36)

where Ci is a constant. Then

00'1+ 00'2+ . . . + Oo'i= 1 - (Oo'i+1 + Oo'i+2 + . . . + Oo'N)

- 1 - Ci (37)

and

Oo'i = (1-Ci)-(Oo'I+Oo'2+"'+Oo'i-d

- (1 - Ci) - (1 + k1 + k1k2+. . . . + k1k2 ... ki-2)Oo'I (38)

10

where CYIhas its maximum value when C¥i= 0:

1 - Ci

0 ~ C¥l ~ 1 + k1 + k1kz + . . . + k1kz . . . ki-z
(:39)

Then, Tl, Tz, . . . , Ti can be represented as follows:

Tl =T2 =. . .= Ti-l = (ZTcrn+ wITcp)C¥l (40)

Ti = (C¥l+ C¥2+... + c¥i)ZTcm+ C¥iWiTcp (41)

Using the representation of Eq.(37) and Eq.t38) and simplifying results in:

Ti = (1 - Ci)ZTcrn+ [(1- Gi) - (1 + k1+ k1kz+ . . . + k1kz... ki-2)C¥l]WiTcp

- (1 - Gi)(ZTcrn + wiTcp) - (1 + k1 + k1k2+ ... + k1k2... ki-2)WiTcp. C¥l (42)

Now Tl = T2=. . . = Ti-l has its maximum value and Ti has its minimum value when (XI

reaches its maximum value, that is,

min(Ti)

= Tl { C¥l= 1 - Gi
1 + k1 + k1kz + . . . + k1k2 . . . ki-z }

- 1 - Ci
- 1 + k1 + k1k2+ ... + k1kz... ki-2 (ZTcrn+ wITcp) (4:3)

- Ti{ C¥l= 1 - Gi
1 + k1 + k1kz + . . . + k1kz . . . ki-z }

max(Tl =Tz=.. .=Ti-d

.
- (1 - Gi)ZTcm (4.1)

The following condition, based on the above, must be satisfied in order for a crossoVt-'r

point to exist between the two lines:

1- Ci

+ k1 + k1k2 +... + k1k2... ki-z (ZTcrn + wITcp) > (1 - Ci)ZTcrn
(4;j)

11

Proof: The above condition can be reduced as follows:

ZTcm + wtTcp > (1 + kt + ktk2 + . . . + ktk2" . ki-2)ZTcm (46)

WtTcp > kt(1 + k2 + k2k3 + ... + k2k3'" ki-2)ZTcm (47)

a2 a3 a3 a4 a3 a4 ai-t
.wtTcp > -(1+-+--+...+)ZTcm

at a2 a2 a3 a2 a3 ai-2
(48)

atwtTcp > (a2 + a3 +... + ai_J)ZTcm (49)

Since Tt and Ti-t can be rewritten as

Tt = at ZTcm + at Wt Tcp (50)

Ti-t = (at + a2 +... + ai_J)ZTcm + ai-tWi-tTcp (51)

and Tt = Ti-I, the following equation is satisfied.

atwtTcp = (a2 + a3 +... + ai-t)ZTcm + ai-tWi-tTcp (52)

Since ai-tWi-tTcp > 0, the above inequality, Eq.(45), is true. 0

There thus exists a crossover point across the two lines and the optimal processing time

is achieved at that point where Tt = T2 = .. .= Ti as in Fig. 5.

One can see that this procedure can be continued up to the case including all the finish

times, Tt, T2,. . ., TN. Then Tt = T2 = . . . = TN will be obtained to minimize the solution

time. Hence the minimal solution time involves all processors stopping their computing at

the same time.

From Eq.(41) and Eq.(51), ai can be expressed as a function of ai-I, ai-2, . .. ,and at

since Tt = T2= . . . = Ti:

ai
Wi-tTcp

ai-l
ZTcm + wiTcp

12

- ki-l CYi-l

- ki-l ki-zCYi-Z

- ki-lki-z'" k1 . CYI 25:.i5:.N (53)

where

CYj+l wjTcp
kj=-=

CYj ZTcm + Wj+lTcp
15:.j5:.N-1

Since the sum of CYi'smust be one, CYIcan be obtained by the normalization equation.

1 = CYI + CYz + CY3 + . . . + CYN

- (1 + k1 + k1kz +... + k1k2... kN-l)CYl (54)

From the above the optimal values of CYi'sthat the originating processor (the control

processor) should calculate in order to achieve the minimal solution time can be computed

by the following algorithm.

1)
WjTcp

kj = ZTcm + wj+lTcp
15:.j5:.N-1 (55)

2) CYI= [1 + k1+ k1k2+ . . . + k1k2. . . kN-l r1
N-l i

- [1 + L (II kj)r1
i=l j=l

(56)

3) CYi = k1k2...ki-l'CYl

i-I

- (II kj) . CYI

j=l

25:.i5:.N (57)

Interestingly, the solution for the optimal load allocations is of a product form. That is,

the solution of ai (Eq.(57)) can be expressed as a product of system constants (ki's) and a

13

normalization constant, aI- The existence of a product form solution for this deterministic

problem is all the more interesting as product form solutions are after associated with the

stochastic environment of certain classes queueing networks [22]-

3 Architecture 2: No Control Processor,

Processors without Front-End Processors

The bus network to be examined in this section is one without a control processor. The

processors are not equipped with front-end processors for communications off-loading. That

is, the processors cannot communicate and compute at the same time. Any single processor

can receive a burst of measurement data and distributes the processing load to the other

processors through the bus for parallel processing. The network is shown in Fig. 6.

Fig. 7 shows the timing diagram for a bus network where there is no control processor

and where processors are without front-end processors. For convenience, the originating

processor which receives a burst of measurement data and distributes the processing load

to the other processors is assigned processor N. At time t = 0, the originating processor

(processor N) transmits the first fraction of processing load to the processor 1 (al ZTcm).

When the transmission of the first fraction of processing load is finished, processor N then

transmits the second fraction of processing load to processor 2 (a2ZTcm). In the mean

time, processor 1 starts computing the received processing load (alwITcp). The process

then continues on in the natural way up to N-1st fraction (aN-I). After completion of

14

N-lst fraction's transmission, processor N starts computing its own fraction of processing

load (<XNWNTcp). Naturally, the transmission of Nth fraction (QNZTcm) is not needed. The

equations that represent the finish time of each processor are given by

Ti = (<Xl + <X2 + . . . + <Xi)ZTcm+ <XiWiTcp (61)

TN-I = (<Xl+ <X2+... + <XN-I)ZTcm+ <XN-IWN-ITcp (62)

TN = (QI + <X2+... + <XN-I)ZTcm+ <XNWNTcp (6:3)

The fractions of total measurement load should sum to one.

<Xl+ <X2+... + <Xi+... + QN = 1 (64)

Here one can notice that Eq.(58) through Eq.(63) are the same as Eq.(I) through Eq.(6)
.

in the previous section except the last equations, that is,

TN = (<Xl+ <X2+... + QN)ZTcm + <XNWNTcp with control processor

TN = (<Xl+ Q2 +... + QN-I)ZTcm + QNWNTcp without control processor,

without front-end processors

Therefore, the proof to show that TI = T2 = ... = TN-I achieves the minimal solution

15

TI - <XIZTcm+ <XIWITcp (58)

T2 - (<Xl+ (2)ZTcm + <X2W2Tcp (59)

T3 - (<Xl+ Q2 + <X3)ZTcm+ Q3W3Tcp (60)

time is exactly the same as in the previous section. Thus we will look at the case involving

T1, T2, . . . , TN.

3.1 Consideration of T1, T2"'" and TN

We will now examine the optimal processing time when all the finish times, T1,T2, . . . , TN, are

included. This consideration will include the previous results, namely T1= T2=... = TN-l.

Since the sum of the fractions of total measurement load is one, O'.Ncan be rewritten by

O'.N = 1-(O'.1+O'.2+"'+O'.N-1)

- 1 - (1 + k1 + k1k2+ ... + k1k2... kN-2)O'.1 (65)

where k's are defined as earlier.

Here 0'.1has its maximum value when O'.N= 0:

1

0::; 0'.1::; 1+k1+k1k2+...+k1k2...kN-2
(66)

Then, Tl, T2, . . . , TN can be represented as follows:

T1=T2=.. .=TN-1 = (ZTcm + w1Tcp)O'.1 (67)

TN = (0'.1+ 0'.2+... + O'.N-1)ZTcm+ O'.NWNTcp

- (1 - O'.N)ZTcm + O'.NWNTcp

- ZTcm + (wNTcp - ZTcm)O'.N (6x)

Here the condition for load sharing, which is wNTcp - ZTcm > 0, for a bus network

where processors are without front-end processors must be satisfied [10]. This is becau~t'

16

if the total communication time of the entire processing load (ZTcm) is longer than the

total processing time for the originating processor (wNTcp), then the originating processor

(processor N) should not distribute the load and should compute the entire load by itself.

Using the representation of Eq.(65), Eq.(68) can be expressed as a function of al'

TN = ZTcm + (wNTcp- ZTcm)[1 - (1 + k1 + k1k2+... + k1k2... kN-2)ad

= wNTcp - (1 + kl + klk2 +... + k1k2... kN-2)(WNTcp- ZTcm)al (69)

Note that TN has a negative slope. Now T1'= T2 = ... = TN-l has its maximum value

and TN has its minimum value when al reaches its maximum value, that is,

min(TN)

= Td al = 1
1 + k1 + k1k2 + . . . + k1k2 . . . kN-2 }

- 1
- 1 + k1 + k1k2+ ... + k1k2... kN-2 (ZTcm + wITcp) (70)

- TN{ al = 1
1 + kl + k1k2+ ... + k1k2. . 'kN-2 }

max(Tl =T2=.. .=TN-l)

- ZTcm (71)

In order for a crossover point to exist between the two lines, Eq.(70) must be greater

than Eq.(71), that is,

1

1 + kl + klk2 + ... + klk2 . . . kN~2(ZTcm + wITcp) > ZTcm
(72)

Proof: The above condition can be reduced as follows:

ZTcm + wlTcp > (1 + kl + klk2 + ... + klk2 . .. kN-2)ZTcm (n)

wlTcp > k1(1 + k2 + k2k3 +... + k2k3'" kN-2)ZTcm (74)

a2 a3 a3 a4 a3 a4 aN-l
wITcp > -(l+-+--+...+)ZTcm

al a2 a2 a3 a2 a3 aN-2
(7.5)

17

alWITcp > (a2 + a3 +... + aN-dZTcrn (76)

T1 and TN-l can be rewritten as

T1 = al ZTcm + al WITcp (77)

TN-l = (al + a2 +... + aN-l)ZTcm + aN-IWN-ITcp (78)

Since T1 = TN-I, we can write the following equation:

alWITcp = (a2 + a3 +... + aN-l)ZTcm + aN-lwN-ITcp (79)

Since aN-l WN-ITcp > 0, the above inequality, Eq.(72), is satisfied. 0

There thus exists a crossover point across the two lines and the optimal processing time

is achieved at that point where T1 =T2 =. . .=TN as in Fig. 8. Hence the minimal solution

time involves all processors stopping their computing at the same time.

Since TN-l = TN and

TN-I' = (al + a2 + ... + aN-dZTcrn + aN-lwN-ITcp (80)

TN = (al + a2 +... + aN-l)ZTcm + aNWNTcp (81)

we can express aN as a function of aN-I, aN-2,. .. ,and al.

WN-l
aN = -aN-l

WN

- kN-l aN-l

- kN-lkN-2aN-2

- kN-lkN-2..: k1 . al (82)

18

where kN-l = ...E.fL = WN-lC<N-l WN

Since the sum of a's must be one, al can be obtained by the normalization equation.

1 = al + a2 + a3 + . . . + aN

- (1+ k1 + k1k2+ ... + k1k2... kN-dal (83)

Therefore, the optimal values of ai's that the originating processor N should calculate

in order to achieve the minimal solution time can be computed by the following algorithm

which is similar to the results of the previous section except kN-l = WN-l (which appears in. WN

a slightly different form in [18]).

1) k. -J

{

WjTcp

ZTcm+Wj+l Tcp

WN-l

WN

15.j5.N-2
(84)

j=N-l

2) al = [1 + k1 + k1k2+ ... + k1k2... kN-l r1
N-l i

- [1 + 2: (II kj)r1
i=l j=1

(85)

3) ai = k1k2... ki-l . al

i-I

- (II kj) . al
j=l

25.i5.N (86)

19

4 Alternative Architecture: No Control Processor,

Processors with Front-End Processors

It is possible that there may be other types of bu~-oriented architectures [10]. An alternative

architecture would be the case of a network without control processor and where the pro-

cessors are equipped with front-end processors for communications off-loading so that the

processors can communicate and compute simultaneously. Any single processor can receive

a burst of measurement data and distribute the processing load amongst N processors to

obtain the benefits of parallel processing.

The proof for this case that to achieve a minimum solution time all processors must finish

their processing load at the same time is similar to that in this paper and is the subject of

[15]. The algorithm for computing the optimal values of ai's is the same as in the case for

the network where there is a control processor (section 2).

5 Conclusion

Proofs now exist that the minimal finish time for load sharing a divisible job on a bus network

and linear daisy chain network [14] involves having all the processors stop at the same time.

An open problem is the demonstration of a similar result for tree networks [9].

20

Acknowledgement

The research in this paper was supported in part of the SDIO lIST and managed by the

U.S. Office of Naval Research under grant no. NOOO14-91-J4063.

References

[1] R.R. Tenney and N.R. Sandell,Jr., "Detection with distributed sensors," IEEE Trans-

action on Aerospace and Electronic Systems, vol. AES-17, pp. 501-510, July 1981.

[2] C.Y. Chong, E. Tse, and S. Mori, "Distributed estimation in networks," presented at

the American Control Conference, San Franciso, 1983.

[3] S.H. Bokhari, Assignment Problems in Parallel and Distributed Computing, Boston:

Kluwer Academic Publishers, 1987.

[4] H.S. Stone, "Multiprocessor scheduling with the aid of network flow algorithms," IEEE

Transaction on Software Engineering, vol. SE-3, no. 1, pp. 85-93, Jan. 1977.

[5] J. Du and J.Y.T. Leung, "Complexity of scheduling parallel task systems," SIAM Jour-

nal on Discrete Mathematics, pp. 473-487, Nov. 1989.

[6] J. Blazewicz, M. Drabowski, and J. Weglarz, "Scheduling multiprocessor tasks to mini.

mize schedule length," IEEE Transactions on Computers, vol. C-35, pp. 389-398, May

1986.

21

[7] W. Zhao, K. Ramamritham, and .LA. Stankovic, "Preemptive scheduling under time

and resource constraints," IEEE Transactions on Computers, vol. C-:36, pp. 949-960,

Aug. 1987.

[8] Y.C. Cheng and T.G. Robertazzi, "Distributed computation with communication de-

lays," IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 6, pp.

700-712, Nov. 1988.

[9] Y.C. Cheng and T.G. Robertazzi, "Distributed computation for tree network with com-

munication delays," IEEE Transactions on Aerospace and Systems, vol. 26, no. 3, pp.

511-516, May 1990.

[10] S. Bataineh and T.G. Robertazzi, "Distributed computation for a bus networks with

communication delays," Proceedings of the 1991 Conference on Information Sciences

and Systems, The Johns Hopkins University, Baltimore, pp. 709-714, March 1991.

[11] S. Bataineh and T.G. Robertazzi, "Bus oriented load sharing for a network of sensor

driven processors," IEEE Transactions on Systems, Man and Cybernetics, vol. 21, no.

5, Sept. 1991.

[12] S. Bataineh and T.G. Robertazzi, "Closed form solutions for bus and tree networks of

processors load sharing a divisible job," SUNY at Stony Brook College of Engineering

and Applied Science Technical Report, no. 627, May 1992. (Available from T. Rober-

tazzi).

22

[1:3] S. Bataineh and T.G. Robertazzi, "Ultimate performance limits for networks of load

sharing processors," Proceedings of the 1992 Conference on Information Scienas and

Systems, Princeton, NJ, pp. 794-799, March 1992.

[14] T.G. Robertazzi, "Processor equivalence for load sharing processor daisy chains," ac-

cepted by the IEEE Transactions on Aerospace and Electronic Systems for Oct. 1993

zssue.

[15] .J. Sohn and T.G. Robertazzi, "Optimal load sharing for a divisible job on bus network,"

SUNY at Stony Brook College of Engineering and Applied Science Technical Report, no.

644, Oct. 1992. submitted for publication. (Available from T. Robertazzi).

[16] H..J. Kim, G.!. Jee, and J.G. Lee, "Optimat load distribution for tree network proces-

sors," submitted for publication.

[17] D. Ghose and V. Mani, "Distributed computation in a linear network: closed form

solution and computational techniques," submitted for publication.

[18] V. Bharadwaj, D. Ghose, and V. Mani, "Closed form solutions for optimal processing

time in distributed single-level tree networks with communication delays," submitted

for publication.

[19] V. Bharadwaj, D. Ghose, and V. Mani, "A new strategy of load distribution in a

distributed single-level tree network with copllllunication delays," submitted for publi-

cation.

23

[20] V. Bharadwaj, D. Ghose, and V. Mani, "An efficient load distribution strategy for

a distributed linear network of processors with communication delays," submitted for

publication.

[21] D. Ghose, and V. Mani, "Distributed computation with communication delays: Asymp-

totic performance analysis," submitted for publication.

[22] F. Baskett, K.M. Chandy, R.R. Muntz, and F. Palacios, "Open, closed and mixed

networks of queues with different classes of customers," Journal of the ACM, vol. 22,

no. 2, pp. 248-260, April 1975.

24

Figure Captions

Figure 1. Bus network with a control processor.

Figure 2. Timing diagram for bus network with control processor.

Figure :3. T1 and T2 as a function of al.

Figure 4. T1 = T2 and T3 as a function of al.

Figure 5. T1 =T2 = . . .= Ti-l and Ti as a function of al.

Figure 6. Bus network without control processor.

Figure 7. Timing diagram for bus network without control processor,

processors without front-end processors.

Figure 8. T1 =T2 =. . .= TN -1 and TN as a function of al'

25

Measurement data

Control processor

Bus

Processor 1 Processor 2 Processor N

Figure 1. Bus network with a control processor.

26

Control
processor

C¥1ZTc:m] c¥2ZTcm I c¥3ZTcm I I c¥NZTc:m I
Communication

C¥lWITcp

T1

I Computation
Processor 1

Processor 2
C¥2W2Tcp

T2

I Computation

Processor :3
C¥3W3Tcp

T3

I Computation

Processor N TN

]C¥NWNTcp I Computation

Figure 2. Timing diagram for bus network with control processor.

27

(1 - C2)(ZTcm + w2Tcp)

T

I

1
T 1 (1 - C2)(ZTcm

(1 - C2)ZTcm

0
1- C2

Figure 3. Tl and T2 as a function of CYI.

28

ZTcm + wITcp

1Tcp)

1
CYI

ZTcm + wlTcp

1
al

Figure 4. Tl = T2 and T3 as a function of al'

29

T

r

I
(1 - C3)(ZTcm+ w3Tcp)

11
/ (1 - C3)ZTcm

0 1-03
l+kJ

T
(1 - Ci)ZTcm

l-C;
l+k! +k!k2+..+k!k2...ki-2

t

ZTcm + WI Tcp

1
0;1

Figure 5. T1 = T2 = . . . = Ti-l and Ti as a function of 0;1-

30

T

i

I
(1 - Ci)(ZTcm+ wiTcp)

1
0

Bus

Figure 6. Bus network without control processor.

31

Processor N
al ZTcm azZTcm a3ZTcm aN-IZTcm TN Communication

ComputationaNWNTcp

Processor 1
al WI Tcp

TI

I Computation

Processor 2
a2W2Tcp

T2

I Computation

Processor 3
a3W3Tcp

T3

I Computation

Processor N-l
TN-I

laN-I WN-IT cpl Computation

Figure 7. Timing diagram for bus network without control processor,
processors without front-end processors.

32

ZTcm

I

I+k! +k! k2+.~+k!k2...kN-2

ZTcm + wITcp

1
al

Figure 8. TI = T2 = ... = TN-I and TN as a function of al'

33

T

r

I
W N Tcp

1
0

