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Abstract

A spin glass is described as a system of spin-bearing particles that are quenched

with respect to translational degrees of freedom in continuum space. We use the contin-

umn replica method to develop density expansions for the thermodynamic quantities, and

Ornstein-Zernike equations for the two-particle correlation functions.
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In this work we provide for the first time an exact, systematic basis for the treatment of

a continuum spin glass [1]. This is a non-lattice, configurationally disordered spin system in

which the translational degrees of freedom are quenched and the spin degrees of freedom

are in thermal equilibrium. Specifically, we consider a system of hard-sphere particles

whose positions are quenched in place in a liquid-like state of order. The particles have

spins at their centers, and these are free to equilibrate under the influence of a separation-

dependent exchange interaction.

In earlier work [11], the spin-fluid version of the model (in which both the positions

and spins of particles are in equilibrium) was introduced and solved in the mean-spherical

approximation (MSA) and the closely related lowest-order gamma-ordered approximation

(LOGA). The spin glass version was subsequently discussed in the same approximation

[1]. Various approximate theoretical calculations have been performed on continuum spin

liquid models [12]; also, some simulation data is available [13]. However, no systematic

theory has been previously published [14].

The replica method we use allows one to extend liquid-state theory to partly quenched

systems in which some of the particles are quenched or frozen in place and the rest are

annealed or allowed to equilibrate. The method provides an isomorphism between the cor-

relations of such a system and the limiting correlations of a corresponding fully equilibrated

system, which we shall call replicated system. This system consists of one replica, or copy,

of the annealed species, together with n replicas of the annealed species, with the potential

interactions between particles being exactly those of the partly quenched system, except

that annealed particles in different replicas don't interact. The properties (e.g., correlation

functions) of this system in the replica limit n ~ 0 immediately yield corresponding prop-

erties of the partly quenched system as we discuss below [A]. This isomorphism provides

Mayer expansions and integral equations for the correlation functions; the latter are the

replica Ornstein-Zernike equations. Results for such systems, which overlap our results,

have been obtained by Madden and Glandt [17,18]. A very closely related use of the replica
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method has been made by Stratt [15,16] to study somewhat different problems.

In this paper, we extend the replica method to treat systems in which the quenched and

annealed degrees of freedom refer to the same particles. To do this, we temporarily consider

spin-atoms to be a mixture of two species ("atoms" and "spins"), the first quenched and

the second annealed (i.e., equilibrated). Spins and atoms are bound together in pairs by

a short-range attractive force which can be made arbitrarily strong by tuning a strength

parameter that characterizes the spin-atom binding energy. [6] The replica method is used

to replace the quenched system of spins with an equilibrated mixture of n copies of the

spins. We then impose the constraint of complete association of spin-atom pairs. This

gives an equilibrium system of "spin-molecules", each of which consists of an atom with n

spins (one from each replica) bound to its center.

We use two equivalent descriptions of the replicated spin glass. Each furnishes a

valuable method of dealing with the nontrivial n -+ 0 replica limit. In the first, the

"atomic" picture, we use the interaction-site formalism, developed to deal with molecules

that contain an unspecified number of particles (a spin-molecule contains (n + 1) particles

with n variable). We write down the site-site Ornstein-Zernike (SSOZ) equations and show

that the symmetries of the Heisenberg interaction enable us to collapse these equations to

give one single integral equation for the spin-spin correlation function. We give closures of

Percus-Yevick (PY) and hypernetted-chain (HNC) type for this equation. The SSOZ is not

"proper" , in the sense that its direct correlation function cannot be expressed as a sum of

Mayer-graphs [B], and for this reason PY-type and HNC-type closures cannot be readily

improved in a systematic way. One can hope to remedy this situation by introducing

"proper" SSOZ equations [B,C], which we do here for our system. Simple closures (of PY

and HNC-type) or our proper equations yield no difference between spin-fluid and spin-

glass spin-spin correlation functions; we expect that rather sophisticated closures will be

necessary to capture these rather subtle differences using the proper SSOZ formalism.

In our second description of the spin glass, the "molecular" description, the replica
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method is applied somewhat more directly to the spin degrees of freedom. In this descrip-

tion, we combine the n replicas of a Heisenberg spin into a single 3n-component spin, then

use what we call the "self-avoiding walk (SAW) approximation" to take the n -t 0 replica

limit.

We consider then a system of spin-atoms having their positions quenched but their

spins free to equilibrate. We assume the atomic positions to be quenched according to a

Gibbs distribution defined by the hard sphere potential vHs( x). The interaction Vll (ij)

between a pair of spins i and j, both constrained to be of unit length, is taken to be a

classical Heisenberg interaction

vll(ij) = J(Xij)(Si. Sj) (1)

where the dot product between the vector spins located at atoms i and j is multiplied by

the separation-dependent exchange coupling J(Xij). In many materials a reasonable form

for J(x) is provided by the sinusoidally modulated coupling

exp[-KX] .J(x) = sm[ax + 8]xP
(2)

where K =0 and p = 3 is the case of the usual RKKY interaction.

The fact that the sign of this exchange coupling varies rapidly as the separation

between spin-atoms changes gives rise to the competition between spin-spin interactions

which is characteristic of the spin-glass state.

The free energy of this system, averaged over quenched degrees of freedom, is

-(3F =< InZl >= ~, J e-/3Hoo lnZ1dO
(3)

with

Z' = J e-/3HoodO
(4)

and

Zl = J e-/3Hlldl
(5)
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Here we write Hoo, resp. Hn, for the sum of all atom-atom (hard-sphere) interactions,

resp., all spin-spin interactions. Also, we write dO, di, to represent integration over the

translational, resp., spin degrees of freedom. The average in (3) is difficult to treat ana-

lytically because of the presence, under the integral sign, of the logarithm. We thus make

use of the replica trick, which consists of replacing the logarithm with an exponential by

using the identity

lnZ1 = lim .!.[Zf -1]n-On
(6)

Substituting (6) into (3) gives, for the quenched free energy

-{iF =~~~,J {exp[ -{itH1?J -+xp[ -{iHooHdf}dD
(7)

The spins have been replicated and now appear in n copies, in accordance with (4). We

number these copies, or replicas, 1, 2,..., n. The notation {di} indicates an integration

over the n sets of configuration variables corresponding to these particles. Eqn. (7) shows

that a spin glass is equivalent to a limiting case of a fully quenched system of spin-molecules,

each consisting of a hard-sphere atom with n spins, one from each replica, located at its

center. This system of spin-molecules has the Hamiltonian

n

H = L vHs(i,j) + L L J(ij)[s~a). sJP)]6ap
<i,j> a,p=l <i,j>

(8)

Here Q and /3 are dummy indices that label the replicas or copies of the spin variables

Si, Sj. We note that, according to the Kronecker delta on the RHS of (8), pairs of spins

interact only when they belong to the same replica.

For a general spin-spin interaction, the site-site functions of the replicated system sat-

isfy a set of site-site Ornstein-Zernike (SSOZ) equations for the site-site (or intermolecular)

correlation functions of a system of spin-molecules

hij = L f.l)ikCklf.l)lj + L f.l)ikCklhlj
k,l k,l

(9)
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with the subscripts taking the values 0 (for atoms) and 1,..., n for spins in the different

replicas. Here Wij is the intramolecular correlation function

Wij = lim
[
liij + 4

1
L2 (1 -liij)li(x - L)

]L-+O 1[-
(10)

and L is the separation between a spin and an atom. We group together identical terms

in eqn. (9) and take the n -+ 0 limit to give the SSOZ equations for a spin glass. It is

valuable to separate out from each correlation function its average over spin orientation,

denoted by a bar, and the oreitnation-dependent remainder, denoted by a tilde. Thus, for

example hij = hij + hij.

For interactions having the symmetry of the Heisenberg interaction, great simplifica-

tions are possible in the L -+ 0 limit, which we take after averaging over orientation. In

such cases, we have

h10 = h12 = 0 (11)

In the complete-association limit, the positions of atoms and spins must coincide.

Thus we have for a general spin-spin interaction

hll = h10 = hoo (12)

where hoo is a hard-sphere correlation function.

(9) gives an Ornstein-Zernike (OZ) equation for hll

Using eqns. (10-11) to simplify eqn.

hll = Cll + pCll 0 hll (13)

An appropriate HNC closure is

Cll = hll - In 911 (14)

where 111 and Yll are defined by 1 + 1 = exp = {3vll and 911 = (1 + !IdYll' This

constitutes a "reference" HNC closure for the full hll, since the hll is taken from (12) to
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be the exact hard-sphere hoo. The resulting hll will be different from the HNC result for a

spin liquid, despite the similarities of form of the HNC spin-liquid and spin-glass equations

for hll, since hll enters as input in computing In Yll. For the spin-liquid hll is not hoo in

either the HNC approximation or an exact assessment. Similar remarks apply to the PY

closure

Cll = !llYll (15)

Because of its linearity in Vll, however, the MSA yields an hll that is identical in the spin

glass and spin liquid, as does the LOGA. This was first surmised (but not demonstrated)

in [1].

One approach to going beyond these approximations in a systematic way is to develop

a "proper" integral-equation treatment of this system [B,C). This involves classifying the

Mayer graphs that contribute to hll into four types, according to whether they have

neither, one, or both of the root points (representing spins) in such a graph connected

directly to type 0 vertices (representing atoms.) The corresponding decomposition of hll

IS

h hoo hOI hIO h ll
11= 11+ 11+ 11+ 11' (16)

The quantities {h~{} obey a coupled set of OZ equations which generalizes (13) to the

form

h-ij -ij + ""' -ik to. kl h-lj
11 = Cll L...t Cll I()I P 11 .

k,l
(17)

Here we have pOo = pOl = pIO = P and pll = O. Systematic closures for the {cl1} can

be developed on the basis of formally exact cluster expansions for these functions that

we have derived. In order to explore the differences between the Heisenberg spin glass

and spin fluid using (20) one must invoke closures relating h~{ and cg that include the

"elementary" Mayer graphs that contribute to correlation functions; the usual closures of

HNC and PY form, which do not include such graphs, yield spin-glass and spin-fluid results

for hll that are identical. This is in contrast to the use of such closures in the context
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of the simple SSOZ equation. The necessity of going beyond such closures for "proper"

equations in the case of simple molecular models was already clear from the results of [C).

More recently [D] one of us has identified an intrinsic source of difficulty with such closures

to be associated with substantial core interpenetrability or core nonadditivity, which are

features of our modelling here.

An alternative approximation scheme we have developed is based on mapping spin

glass models into interacting self-avoiding walk (SAW) models. This scheme offers a direct

method for handling the replica limit n -+ 0, yielding liquid-state theory for spin-atoms in

which the spin-spin correlation function obeys an Ornstein-Zernike equation. To do this,

we consider the n replica spins on a single spin-molecule to form a single 3n-component

spin vector Si = (s~l) ... s~n)). The SAW approximation consists of setting all moments

of this spin vector higher than the second equal to zero. We call this scheme the SAW

approximation because it consists of mapping spin-glass models onto interacting models of

self-avoiding chains. The relation between the n -+ 0 limit of the n-vector model and the

SAW was originally shown by de Gennes[19]; it is readily seen by examining the Mayer

diagram content of this approximation. The Mayer bond for the interaction of two spin-

atoms in the corresponding spin liquid can be written

00

f(12) = fRs + eRS .L ~k(12)
k=l

(18)

where ~(12) = -/3</>(12),with </>(12)= -/3J(X)(Sl . S2). Using this decomposition, the

Mayer series for the correlation function of a spin liquid is given by the sum of all doubly

connected graphs with p-vertices, some or no fRs-bonds, and some or no q>-bonds, with

at most one fRs-bond, but any number of ~-bonds joining any pair of vertices. The

Mayer series for the pair correlation function of the corresponding spin glass, in the SAW

approximation, is given by that subset of these graphs obeying the further constraint that

the ~-bonds form one or more non-intersecting chains, each of which begins and ends at a

root vertex.
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By extending the argument of de Gennes [19] we can show that the SAW approxima-

tion is exact for some spin-glass models; we suggest it is a good approximation for many

others. For example, this ansatz can be shown to be exact for the Gaussian spin glass with

Hamiltonian

L vHs(ij) + L J(ij)(Si' Sj) - a L(Si' sd
<i,j> <i,j>

(19)

Here the third term generates a Gaussian distribution of spin lengths to replace the

Heisenberg-model constraint of constant spin length.

The SAW approximate is also exact when applied to a quantum-mechancal tight-

binding model calculation of the density of states of an electron in a liquid. Xu and

Stratt[15] showed that the SAW approximation for this problem is a consequence of using

the mean-spherical approximation (MSA). However, in certain studies, e.g., of the conduc-

tivity of liquids, it is valuable to have the SAW approximation without being forced to use

linear approximations like the MSA. We also note that the SAW approximation permits a

precise liquid-state formulation of an isomorphism hinted at by Edwards[20] between the

localization transition of a randomly hopping electron and the collapse transition of the

corresponding SAW.

A more detailed publication that includes derivations and proofs of the results given

here is in preparation. We note in passing that our treatment, which has been explicitly

carried out for the Heisenberg model, generalizes to a model in which the spins are D-

dimensional vectors. This includes the important case, D = 1, of Ising spins, for which

f and J for any correlation function f can be usefully re-expressed as the "sum" and

"difference" functions fS and fD, resp., with fS = (f++ + f+_)/2, fD = (f++ - f+-)/2,

where + denotes an up spin and - denotes a down spin. This notation is especially natural

when one breaks spin-up, spin-down symmetry with an infinitesimal magnetic field, so

that p+ ::J p-. It is also natural when the J(Xij) of Eq. (1) is a Coulomb interaction.

The equations developed here then give a description of a system with quenched ionic
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impurities.
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