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Abstract

We derive the replica Ornstein-Zernike equations (ROZ) satisfied by the two-point

correlation functions for a partly quenched system, Le., a system in which some of the

particles are quenched, or frozen in place, and some are annealed, or allowed to equilibrate.

A formally exact closure for these equations is given. A set of integral equations given

by Madden and Glandt are recovered as an approximation to the exact ROZ equations.

We discuss the fundamental status of this approximation. We also present new exact

relations that express the thermodynamic quantities of partly quenched media in terms of

the correlation functions in such media.
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1. Introduction

This paper is part of an ongoing project1.2 of extending the methods of liquid-state

physics (integral equations, renormalized perturbation theory, etc.) to apply to continuum

systems with quenched disorder. Such systems include engineering composites, porous

materials, gels, amorphous materials, spin glasses, etc. Many such materials can be re-

garded as being constructed in layers,3,4 each layer being added to those already in place

and allowed to equilibrate, then frozen in place before the next layer is added. We have

in mind here not stratified media, in which the layers are spatially separated, but homo-

geneous media in which the different layers interpenetrate; such media are distinguished

from equilibrium mixtures in that they are formed by a step-by-step annealing or equilibra-

tion process. The simplest such system consists of just two layers, one quenched and one

annealed. The basic idea is that the particles in the quenched layer constitute a random

matrix through which the particles in the annealed layer move. A simple mixture of this

kind, in which quenched and annealed particles possess only excluded-volume interactions,

has already been studied5-7 as a possible model for the behavior of fluid in a micro-porous

material. 8,9 It is natural to ask whether the correlation functions of such partly quenched

systems obey integral equations of the Ornstein-Zernike type.

The subject of partly quenched systems is discussed in a pair of papers by Madden

and Glandt5 and Madden6. The quenched matrix of immobile particles in the mixtures

considered in reference 5 is assumed to have been formed by a quench from an equilibrium

distribution; that is, the quenched particles are distributed according to an equilibrium

ensemble corresponding to a fixed potential distribution. Madden subsequently6 general-

ized this formalism to the case in which the distribution of quenched particles is essentially

arbitrary and is specified only through its correlation functions.

In both of these papers various exact cluster expansions are derived for the corre-

lation functions associated with the mixture and a set of Ornstein-Zernike equations are

considered. Here we point out that the Ornstein-Zernike equations given in reference 5 are
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not the exact Ornstein-Zernike equations associated with the cluster expaIisions therein.

Instead they correspond to an approximation in which a certain class of terms is neglected

in the cluster expansion of the direct correlation function Cn(12) for annealed particles.

This approximation seems to have a fundamental status; it has since been derived by sev-
/

era! other rather different methods. H~e we follow a line of thought developed in various

earlier works3,4,10of ours by using the replica method for liquid-state systems to give the

exact Ornstein-Zernike equations for a partly quenched system. We refer to the latter as

the replica Ornstein-Zernike (ROZ) equations.

The replica method 13exploits a mathematical isomorphism between a partly quenched

system and a corresponding fully equilibrated system. Precisely stated, the thermodynamic

quantities and correlation functions for a partly quenched system are given by the s -+ 0

limit of a corresponding equilibrium system, called the replicated system. This system

is a mixture of a one-component fluid (the quenched species) with an s-component fluid,

given by s identical copies or replicas of the annealed species. Each pair of particles

has the same pairwise interaction in this replicated system as in the partly quenched

model from which it was derived except that a pair of annealed particles from different

replicas has no interaction. In particular, if we write down the standard Ornstein-Zernike

equations for the correlation functions of the replicated system, group together identical

terms, and take the s -+ 0 limit, we get a system of integral equations exactly satisfied

by the correlation functions of the partly quenched system. These are satisfied by the set

of functions [{hij }, {hoi}, hoo]. (Here we use the subscript '0' for the quenched particles

and the subscripts '1' through's' for the s copies, or replicas, of the annealed particles.

Thus hij(x) density associated with finding a particle from replica i and a particle from

replica j separated by a distance x. Similarly, the function hoi(X) gives the probability

density associated with finding a particle from the quenched species and a particle from

replica i separated by a distance x. We refer both to the Ornstein-Zernike equations for

the replicated system and to the s -+ 0 limit of these equations, which describes partly

3
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quenched systems, as the replica Ornstein-Zernike (ROZ) equations.

In the limit 8 -+ 0, the replicated system becomes simply an equilibrium system

containing only the quenched particles. Similarly, the correlation function hoo(x) for the

replicated system becomes, in this limit, the correlation function for the quenched particles.

However, the correlation functions hll(X) and hI2(X), giving respectively, the correlation

between 3 pair of annealed particles in the same replica and a pair of particles in different

replicas, have a highly nontrivial 8 -+ 0 limit. To see this, note that the function hI2(X)

describes the correlation between a pair of annealed particles that belong to different

replicas. (In this paper, we consider only replica-symmetric solutions, in which hij = h12

for i and j any two replica indices.) A pair of particles in two different replicas interact

only indirectly, through the mediation of the quenched particles and the particles in the

(8 - 2) additional replicas. The solution for the function hI2(X) in this mixtUre can be

obtained by standard methods of liquid-state theory, i.e. Mayer expansions and integral

equations. This solution will be nontrivial even in the 8 -+ 0 limit, although this limit

(involving a background containing s - 2 = -2 replicas) clearly does not correspond to

any physically realizable equilibrium mixture.

In this paper we explore some basic interactions between liquid-state theory and the

theory of replicas. Readers interested in such interactions should also explore the recent

work of Stratt et. 31.,12.13in which methods complementary to those described here are

developed.

This paper is organized as follows: in Section 2, we first review the continuum replica

method and show how it can be used to obtain the properties of partly quenched sys-

tems. We show that each partly quenched system of the type studied here (in which the

quenched and annealed degrees of freedom belong to different particles) is isomorphic to

a limiting case of a corresponding fully equilibrated system, to be called the replicated

system. We use the standard Ornstein-Zernikeequations for the replicated system to give

the replica Ornstein-Zernike (ROZ) equations for the original partly quenched system. We
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then rewrite the ROZ equations using the language of percolation theory. This terminol-

ogy suggests useful closures for a large class of disordered systems; we give an important

illustration of this. In Section 3, we discuss various natural types of closure approximations

for equations of this kind. We discuss the Madden-Glandt approximation, which is a basic

approximation to the ROZ equations. Section 4 discusses the relationships between cor-

relation functions and thermodynamic quantities that hold for partly quenched systems.

Section 5 gives our conclusions and directions for further research.

2. Derivation of the Replica Ornstein-Zernike Equations

In this section, we review the continuum replica method3 and use it to extend liquid-

state theory to partly quenched systems. We show that a partly quenched system is

isomorphic to a limiting case of a corresponding equilibrium system, to be called the

replicated system. Using this mapping, we provide a set of replica Ornstein-Zernike (ROZ)

equations exactly satisfied by the correlation functions of a partly quenched system. We

rewrite the ROZ equations in terms of a generalized percolation formalism that should be

valuable for finding approximate closures in certain disordered media.

We consider a system containing two species of particles, one quenched or frozen in

place and the other annealed or allowed to equilibrate. This system has the pairwise inter-

action potentials VII(x), VI2(X), V22(X), respectively, between a pair of quenched particles,

a pair of annealed particles, and a quenched and an annealed particle, respectively. The

Helmholtz free energy of this two-species system is given by

1

f fJH -0
-{jF = lnZTOTAL = Z' e- lllnZldl (2.1)

with

Z' = f e-fJHlldi
(2.2)

and

Zl = f e-fJ[H12+H22]d2
(2.3)
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Here we write Hij for the sum of all pairwise interactions between particles of species i and

species j. Also, we write di, d2, to represent integration over all the positions of particles of

species 1 and 2, respectively. The average in (2.1) is difficult to treat analytically because

of the presence, under the integral sign, of the logarithm. We thus make use of the replica

trick 13, which consists of replacing the logarithm with an exponential by using the identity

InZ = lim ![Z8 -1]8-+0S
(2.4)

Substituting (2.4) into (2.1) gives, for the total partition function

InZTOTAL = ~ ~ ~, J { exp [- ,Bt(H1~ + H~~J]-1} ~ e-~Hn{d2}df
(2.5)

The variables describing species 2 have been replicated and now appear in s copies, in

accordance with (2.4). The notation {d2} indicates an integration over the s sets of

position variables corresponding to these particles.

We first note that the expression on the RHS of (2.5) is, in fact, a limiting case of the

equilibrium partition function for a particular system, namely the system with Hamiltonian

H = L VU(Xij) + L V12(Xij) + L V22(Xij) @ bUiU;
<i,j> <i,j> <i,j>

(2.6)

This system is a mixture of a simple, Le, a one-component fluid with an s- component fluid.

Particles of the one-component fluid (resp. the s-component fluid) bear the subscript 1

(resp. 2). We have denoted by (Tithe number of the component to which the ith particle of

type 2 belongs. The Kronecker delta on the RHS of eqn. (2.6) then indicates that pairs of

type 2 particles only interact when they belong to the same component. Thus the system

of type 1 particles, Le., the original quenched phase, can be thought of as a "solvent" which

mediates interactions between the different type 2 components. This analogy is apt in the

sense that a quenched phase, like a solvent, can induce effective interactions that are both

long-range and many-body.
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We now find it conceptually useful to again recast the problem, describing the s-

component fluid of type 2 as being instead a one-component fluid whose particles have a

discrete internal degree of freedom which we call 'spin'. The spin of a type 2 particle i,

which we write Ui, is just another name for what we previously called its component. The

conceptual change here is the reverse of that originally used by Onsager14 in his treatment

of anisotropic colloidal systems: Onsager treated colloidal particles with different orienta-

tions as members of different species; we are treating particles from different components

as members of a single species differing only by values of a fictitious internal coordinate.

These two descriptions are equivalent; however, one must be careful to appropriately take

into account the entropy of mixing between different components when going from one

to the other description. Thus in considering Mayer expansions for the properties of this

system, each internal vertex, or root point, associated with a type 2 particle will be ac-

companied by both a spatial integration over its position and a summation over its spin

state. Also, because of the spin-dependence of the last term in the Hamiltonian (2.6), each

pair of root points of type 2 that are connected by a Mayer bond must be in the same spin

state.

The Hamiltonian (2.6) is a continuum version of the lattice Potts model, much stud-

ied as a model of magnetic ordering. When the number of replicas s is set equal to 2,

this model is equivalent to the Widom-Rowlinson model, a basic model for liquid-liquid

phase separation. The connection between this class of models and various basic problems

in the theory of disordered media was first pointed out by Fortuin and Kastelyn;32 the

demonstration3 that a large class of partly quenched systems are also related to these

models suggests many new prospects for understanding their properties. We note here two

limitations to the work that has been done so far. First, the pairwise interaction in (2.6)

is highly non-additive. The development of liquid-state theory for such interactions, in

particular, the establishment of good thermodynamic perturbation theories and good in-

tegral equation closures, is not nearly as advanced as for the case of additive potentials.
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The fundamental methods available23 for the study of additive excluded-volume interac-

tions are only with great difficulty being extended to non-additive systems. Preliminary

indications33,34 are that the analytic structure of non-additive models is far more com-

plex than that of additive models. Second, the isomorphisms established here imply that

symmetry- breaking transitions in the generalized Widom-Rowlinson model are related to

sudden changes of behavior in partly-quenched systems. One example of the latter may

be the loss of ergodicity encountered in simulating highly constrained systems. Thus, the

phase structure of these generalized Widom-Rowlinson models is of direct relevance to the

study of disordered systems. Unfortunately, simulation studies of these models have not

yet been performed in detail.

The continuum replica method also provides virial expansions of the basic physi-

cal quantities for partly quenched systems. Namely, one takes the s -+ 0 limit of the

corresponding virial expansions for the replicated system. The result is that the Mayer

expansions for a partially quenched system containing an annealed and a quenched species

are identical to those for a fully equilibrated system containing the same two species

except that all the Mayer graphs in the latter not obeying a specific constraint are missing

in the former. We now derive this constraint.

The Kronecker delta occurring in the interaction (2.6) ensures that any pair of species

2 (or Widom-Rowlinson) vertices connected by a Mayer bond must be in the same spin

state. Each group of such vertices in a Mayer graph that are connected by bonds into

a cluster will be weighted by a factor of s by the summation over spin states. Graphs

possessing only a single such cluster will survive the limiting operation in eqn. (2.5); only

these will contribute to the pressure of a partly quenched system. By a similar argument,

the graphs contributing to the correlation functions are precisely those in which each

species 2 particle is connected, directly or indirectly, to a root point by a chain of Mayer

bonds passing only through species 2 particles. We refer to such a chain of Mayer bonds

as an annealed path and say that the Mayer grap.hs must satisfy the annealed-path

8



conditIon.

A set of replica Ornstein-Zernike (ROZ) equations can be developed9,lo by using

the description just given for the structure of the Mayer graphs that contribute to the

correlation functions. One can use topological reduction directly to write the correlation

functions as products of appropriately' defined direct correlation functions. But the same

results are obtained more easily by exploiting the isomorphism just obtained between a

partly quenched system and its replicated system. In particular, the ROZ equations for

the two-species system studied here are precisely the 8 -+ 0 limit of the Ornstein-Zernike

system obeyed by a mixture of a hard-sphere fluid and an 8-state Widom-Rowlinson fluid.

We write down the Ornstein-Zernike equations for the replicated (8+ 1)-species system with

Hamiltonian (2.6), and isolate the 8-dependence of these equations by grouping together

identical terms. The result is

hOD = coo+ pcoo ~ hOO + 8peOl ~ hOl (2.7)

hOl = eOl + peOO~ hOl + peOl ~ hll
(2.8)

+ (8 - 1)peOl Q9hl2

hlO = elO + pelO Q9hOD+ pell ~ hlO

+ (8 - 1)pel2 Q9hlO

hll = ell + peOl ~ hOl+ pell ~ hll

(2.9)

+ (8 - 1)pel2~ hl2

hl2 = el2 + peOl ~ hOl + pell ~ hl2

(2.10)

(2.11)
+ pel2 Q9hll + (8 - 2)pel2 ~ hl2

The 8 -+ 0 limit of these equationsare the replicaOrnstein-Zernike(ROZ)equations:

hOD = coo + peOO~ hOD (2.12)

hOl = eOl + peoo~ hOl+ peOl ~ hll

- peOl Q9hl2

(2.13)
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hlO = C10 + pClO~ hOO+ pcll ~ hlO

- pc12 ~ hlO

hll = cll + pCOl~ hOl + pCll ~ hll

(2.14)

- pC12 ~ h12

h12 = c12 + pcOl~ hOl + pCll ~ h12

(2.15)

+ pC12~ hll - 2p22 ~ h12

It is natural to rewrite the ROZ equations using the language of percolation theory.

This is especially valuable for deriving approximate closures in certain disordered-media

(2.16)

problems. To do this, we define the functions Ceand Cbto be, respectively, the subset of

graphs contributing to the function Cll that have, or do not have, respectively, an annealed

path connecting their root points. Here the subscripts 'c' and 'b' denote 'connected' and

'blocking', respectively. We have borrowed the notations from percolation theory as we

explain below. because h12(X) consists of precisely those graphs contributing to hll(X)

that do not have an annealed path joining the two root points. We also define he and hb

as swns of the corresponding subsets of hll graphs. By definition we have then

Cll (12) = ce(12) + cb(12) (2.17)

hll (12) = he(12)+ hb(12) (2.18)

It also follows from these definitions that

h12(12) = hb(12) (2.19)

By using the percolation terminology just defined, we can write the exact ROZ equa-

tions as

hoo = Coo + Po Coo~ hoo (2.20)

hlO = ClO + POClO~ hoo+ Pl Ce~ hlO (2.21)

hll = Cll + Po ClO~ hOl + Pl Ce~ hll + Pl Cb~ he (2.22)
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he = Ce + Pl Ce ~ he (2.23)

where, by symmetry, Col= ClO and h01 = hlO. Here the symbol ~ denotes a convolution.

An alternative equation for hOl that can be derived from (2.20-2.23) is

hol = CO! + PoCoo~ h01+ PICol~ he. (2.24)

When coo, Co!,Cu, Ceand the {ps} are prescribed, (2.20-24) constitute the ROZ equations;

they are a closed set of equations for hoo, hOl, hu, and he.

We note that the separation of correlation functions into connected and blocking

parts is natural in the description of many disordered and partly quenched systems. This

separation was used by Hill16 in the description of continuum percolation phenomena; in

that context, the connected and blocking functions have a direct geometric interpretation as

probability densities. The present authors have extended the description of clustering given

by continuum percolation theory2 and also have applied that description to phenomena

as diverse as sequential adsorption and spin-glass ordering. 1 It is useful in many such

disordered systems to identify he(x) and hb(X) as the "short-range" and "long-range"

parts of the correlation function hu(x), and to use different approximation schemes or

integral equation closures for each. We give here an intuitive explanation of the correlations

included in each of the two new functions, the connected and blocking correlation functions.

To do this we use as an example of a partly quenched system a fluid adsorbed in a porous

medium,17-21 with the porous medium being constituted by the quenched particles, and

the fluid being constituted by the annealed particles.5-7 The connected function he(x)

accounts for correlations between a pair of fluid particles that are transmitted through

successive layers of fluid particles; the blocking function hb(X) accounts for correlations

between fluid particles "blocked" or separated from each other by matrix particles. (We

note that even though the matrix particles are immobile, they tend to order the fluid

particles on either side of them and thus are capable of mediating correlations "through"

a layer of matrix particles. At very low matrix porosities Le., very high densities of matrix
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particles, the volume accessibleto fluid particles is divided into small cavities, each totally

surrounded by matrix. In this limit, the function hc(x) describescorrelations between fluid

particles in the same cavity; the function hb(X) describes correlations between particles

in different cavities. This sort of intuition leads naturally to closures that prove accurate

for describing this system.22

3. Approximate Closures of the ROZ Equations

In this section, we give a formally exact closure for the ROZ equations. We also discuss

a fundamental approximation to the ROZ equations which was developed some time ago by

Madden and Glandt.5.6 We discuss different approaches to forming approximate closures

of the ROZ equations that also lead to the Madden-Glandt approximation.

Because the ROZ equations (2.20-23) are a particular limiting case of the equilibrium

OZ equations, we may use the latter to write down formally exact closure relations23 for

the {Cij}:

Cij = limo[fijYij + dij]
8-+

(3.1)

The quantities {fij}, {Yij}, and {dij} on the RHS of eqn. (3.1) are, resp., the Mayer f-

functions, cavity functions, and tail functions, resp., of the (s+ 1)-species replicated system

discussed in Section 2. The Mayer expansions for these functions are given by the s -+ 0

limit of the corresponding expansions. This immediately yields both Mayer expansions for

these functions and approximate closures for the ROZ equations. For example, setting

~j =0 (3.2)

in eqn. (3.1) yields an analog for the ROZ equations of the equilibrium Percus- Yevick (PY)

approximation. However, there are two features of the partly quenched systems studied

here that caution us against naively applying the standard integral-equation closures to

the ROZ equations. First, the potential interactions of the replicated system are in general

highly non-additive. This is a general fact about disordered systems; as we discussed in

Section 2, many of them are limiting cases of the highly non-additive Widom-Rowlinson
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model. Second, the s -+ 0 replica limit is, as already noted, unphY5icaiin certain regards.

It is thus unclear which if any of the standard closureswillgivegood results for the systems

studied here. This matter will be settled only through the detailed numerical studies now

in progress.

If we make the approximation

Cb(X) = 0 (3.3)

then Cn = Cein equations (2.12-2.16), and the last term in (2.15) vanishes. The resulting

equations are the approximation to the replica Ornstein-Zernike equations that is studied

in references 5. Specifically, (2.12-2.16) become the (30a), (30c), (30d), (30e) and (30b) of

that work. (Madden and Glandt denote the function we call he by CJJ. Also, they use

the subscripts 'f' and 'm', for 'fluid' and 'matrix', where we have used subscripts '1' and

'0', respectively.)

We shall refer to the approximation (33), implicitly used in references 5 and 6, as the

Madden-Glandt (MG) approximation. This approximation is also discussed by Chandler24

who treats a mixture of a quenched and an annealed species by considering all the quenched

particles to form a single "molecule," which is in equilibrium with the fluid. He then uses

the equilibrium site-site Ornstein-Zernike (S80Z)25-27 equations to calculate the correla-

tion functions hOl(X) and hn(x). This treatment is equivalent to the MG approximation

because it assumes that the function hoo(x) contains all of the non-equilibrium features of

the calculation. In the case that the ratio of annealed to quenched particles is vanishingly

small, e.g., if the quenched particles form a single polymer chain, this approximation is

exact. This gives still another perspective on the MG approximation. (For a discussion of

the use of the SSOZ theory in a partly quenched system, see reference 29.)

There is a class of approximate closuresof the ROZ equations that imply the Madden-

Glandt (MG) approximation Cb(X)= 0; within the context of such a closure the Madden-

Glandt approximation is exact. This class of closures includes the Percus Yevick (PY)

closure, Cij = lijYij, where lij is the Mayer function, and the cavity function Yij is defined

13



by the equation

hij + 1 = (fij + I)Yij (3.4)

It also includes the mean-spherical approximation (MSA):

hij = -1, Xij < Uij (3.5)

Cij = - (3Vij, Xij > Uij (3.6)

Here Vij is the pair potential, Xij is the distance between particle centers and Uij is the

average of hard core diameters of species i and species j particles.

A fundamental fact about the MG approximation is this: in a sense to be made pre-

cise, the only difference between the MG Ornstein-Zernike equations and the equilibrium

Ornstein-Zernike equations is in the quenched system input. In a quenched system, the

functions hoo and Coo,and in general the degrees of freedom associated with the quenched

particles, are determined by the dynamics of the quench, Le., they are not influenced by

the behavior of the annealed degrees of freedom as they would be if the quenched and

annealed particles formed a totally equilibrated mixture. If we take these functions as

input and proceed to solve both the MG Ornstein-Zernike equations and the equilibrium

Ornstein-Zernike equations for the functions hOb hll (using the same closure) the results

will be identical. This confirms a conjecture made previously by one of us,27 during the

study of approximate equations for the amorphous spin glass, that the MSA (which implies

the MG approximation) is "blind" to the difference between a partly quenched system and

the corresponding fully annealed system. We have obtained similar results in applying the

MSA to other partly quenched systems, including a model for an electron hopping in a

system of fixed impurities,28 and an amorphous spin glass.29

This raises the question: which systems require a nontrivial approximation for the

function Cb(X), or equivalently, which systems require for their description an assessment

of explicit non-equilibrium effects? We have recently studied22 in detail a system for which
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these effects are as large as possible, in a sense to be made precise. Consider in particular

the followingmodeI9,30,31for fluid adsorbed in a microporous materia1.35We model the

fluid as an annealed species of particles that have no interactions with each other and

hard-sphere interactions of range 0"01with the quenched particles constituting the matrix.

The latter are taken to have no interaction among themselves, and thus to be frozen in

place with the statistics of an ideal gas, i.e., with totally uncorrelated positions. Because

of the excluded-volume interaction between fluid particles and matrix particles, the latter

appear to the former to constitute a highly nontrivial porous structure. This model has

the property that cc(x) = 0, and thus

Cn (x) = Cb(X) (3.7)

so that the correlations between the particles constituting the porous medium are given

entirely by the function Cb(X) which we have associated with explicitly non-equilibrium

effects. This is intuitively reasonable, because the equilibrium mixture corresponding to

this partly quenched system is completely trivial.

The model just discussed for fluid adsorbed in a porous medium has recently been

the subject of a detailed study, in which the results of many approximate closures for the

ROZ equations were compared with simulation data.22

4. Thermodynamic Quantities of a Partly Quenched Mixture

In this section, we give formulas for the thermodynamic quantities of a partly quenched

mixture in terms of weighted integrals over the correlation functions discussed in Section

2. In particular, we give formulas for the pressure and internal energy of a partly quenched

mixture. We also provide the analog, for partly quenched systems, of the compressibility

theorem.

The pressure PPQ of a partly quenched system is closely related to the zero-replica

limit of the corresponding replicated system. The exact relation is given by (2.1), from
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which we find

fJPPQ = d

d

I

[fJPREP - fJpO]
8 8=0

(4.1)

Here PPQ, PREP, and Po are, respectively, the pressures of the partly quenched system,

the replicated system, and the quenched species, considered in isolation. (Although the

species-O particles are quenched, or frozen in place, they are distributed according to

an equilibrium Gibbs ensemble to which there corresponds a pressure; this is simply the

pressure they would have if they were" unfrozen.") As in Section 2, the replicated system is

an (8+ I)-species mixture, consisting of one copy of the quenched species (termed "species

0") together with 8 copies of the annealed species (termed "species 1 through s"). Here

quenched and annealed particles have the same pairwise interactions that they have in

the partly quenched system being studied, except that annealed particles from different

replicas do not interact.

According to the replica method, as applied to a fluid mixture, we can relate the

pressure of a partly quenched system to its correlation functions by applying the standard

virial theorem to the corresponding replicated system, then taking the 8 -+ 0 limit. The

virial theorem for an equilibrium fluid mixture is given by

~
J

d</>.. 3

fJp = ~Pi - (fJI6) ~< .PiPj X ;;' 9ij(x)d x, ,~
(4.2)

For a hard sphere mixture, this becomes

fJp = LPi + (21r/3) LPiPj9ij(Uij+)U;j
i ig

(4.3)

For simplicity, we evaluate the pressure only in this case. When eqn. (4.3) is applied

to the replicated system corresponding to a partly-quenched hard sphere mixture, and

substituted in eqn. (4.1), the result is an expression for the fluid pressure.

fJPPQ = PI + (21r/3) [901(UOl+ )poPIU51 + 911 (U11+ )P~U~I] (4.4)
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This formula deserves comment. The first term on the RHS gives the contribution from

interactions of matrix particles and fluid particles; it can also be derived by considering

the matrix as a highly convoluted "boundary" for the fluid particles. The second term

on the RHS contains the contact value of the function 911(x) giving the density of fluid

particle pairs in contact.

The same reasoning that leads to eqn. (4.1) also gives, for the internal energy per

unit volume u the formula

{3uPQ= :
I

{3uREP
S 8=0

The internal energy of a mixture is given in general by

(4.5)

{3u= ({3/2)~< 0 PiPj J <Pij(X)9ij(x)d3x,~
(4.6)

For general soft potentials, the combination of (4.5) and (4.6) gives, for a partly quenched

mixture, the formula

{3uPQ = ({3/2)POPl J <POl(X)901(x)d3x+ ({3/2)p~ J <P11(X)911 (x)d3x
(4.7)

In deriving eqn. (4.7), we again make use of the fact that different replicas do not interact,

that is, <Pij= 0, i, j # O. The result (4.7) is completely intuitive and serves mainly to

check the formalism developed here. The results (4.4) and (4.7) have also been derived on

a purely probabilistic basis.5

Finally, we derive the compressibility theorem for a partly quenched system. The

compressibility theorem for the corresponding replicated system can be written

8{3PREP 2:
8

J
3- = 1 - pod XCi 0 (x),

p o 3 3
, j=O

We first consider the variation with matrix density of the fluid pressure. To derive the

(4.8)

compressibility corresponding to such a change, we set i = 0 in eqn. (4.8) and use eqn.

(4.1), noting that the s-derivative commutes with the po-derivative. The result is

8{3PPQ= -Pl J d3xCOl(X)
(4.9)
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Next, we consider the variation with fluid density of the fluid pressure. To do this, we use

the identity
O~PREP

I

= O~PPQ
OPi 8=0 OPi

Applying this to eqn. (4.8) gives the result

o~PPQ = 1- Pi J d3xcOi(X) + Pi J d3xcc(x)

(4.10)

(4.11)

where cc(x) is the connected part of Cl1(x), as defined below (2.1). To our knowledge,

the formulae (4.9) and (4.11) have not been derived by methods other than the replica

method used here. In considering fully equilibrated systems, certain important results (e.g.,

the equivalence of different definitions of key thermodynamic quantities and of different

ensembles) hold only in the thermodynamic limit, in which the container becomes "infinite

in all directions", Le., it contains a sphere, the radius of which can be made infinite.

Because the quenched species of our model acts for the fluid species as a container that

never becomes infinite in this sense, it is not clear whether such equivalences hold for

our quenched-annealed mixture. The formal results of this section are subject to this

cautionary observation and deserve further investigation in this connection. A closely

related question involves the commutativity of the limits s ~ 0 and V ~ 00, where V is

the volume of the container used in defining the ZTOTAL of eqn. (2.1). It also deserves

further study.

5. Conclusions

We have shown that the replica method, when combined with standard liquid-state

theory, allows the development of integral equations for the correlation functions of partly

quenched systems. These equations, the replica Ornstein-Zernike(ROZ) equations, are

developed here in detail. We discuss the advantages and disadvantages of a fundamental

approximation for the ROZ equations which is due to Madden and Glandt. Finally, we

give the formulas for thermodynamic quantities of a partly-quenched system in terms of

the correlation functions for such a system.
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The method of differential quenching,3,4which is b~ically a repeated application of

the replica method, extends the methods developedin this paper and yields ROZ equations

for many other partly quenched systems. The simple partly quenched system discussed in

this paper should be a valuable testing ground for closures to the ROZ equations. We

intend soon to apply similar closures to more complex non-equilibrium systems.
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