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ABSTRACT

Recent advances in liquid-state theory permit the calculation of thermodynamic
quantities and correlation functions for systems in which some of the degrees of freedom
are quenched, or frozen in place, while the rest are annealed. Basic examples include
models for fluids in porous media, crystals containing quenched impurities, and spin
glasses. We further extend these methods to treat materials constructed in layers, each
layer being added to the system and allowed to equilibrated, then frozen in place before
the next layer is added. We discuss sequentially adsorbed systems as an important class
of examples.

INTRODUCTION

Amorphous matter is ubiquitous in nature.l Indeed, if an amorphous system is
defined as a system lacking long-range positional order of its particles, but possibly with
ordering among the other degrees of freedom that characterize a particle, then matter
generically is amorphous, and the ordered solid-state is seen to be rather specialized!
Under such a definition, amorphous systems include complex biological fluids, such as
blood and milk, complex construction materials, such as cement and plastics, and even
solid-state materials such as glasses and amorphous alloys. Research in recent years2-S
has shown that one can extend to the general category of amorphous materials the
techniques developed during the past several decades to study the properties of simple,
equilibrated fluids. These techniques include virial expansions for the bulk properties,
integral equations for the correlation functions, and sequences of upper and lower
bounds for all of these objects.

Extension of equilibrium liquid-state methods to a general class of disordered ma-
terials presents one immediate problem: one can no longer assume the positions of
particles are determined by the same equilibrium distribution as the other degrees of
freedom characterizing those particles. Attempts to extend liquid-state methods to dis-
ordered or partly quenched systems"-lo must confront the fact that expressions for the
free energy and correlation functions of such systems are not in the form familiar from
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~uilibrium statist~cal mech~nics, that is, a single average over states of the system,
wI~h each s~ate weIghted by Its Boltzmann weight. Rather the free energy and corre-
latIon fun~tlOns take the form of double averages: one first calculates these quantities
by averagmg over all values of the annealed degrees of freedom, keeping the quenched
degrees of freedom constant.6 The quantities thus obtained are then averaged over all
values of the quenched degrees of freedom. In this paper we will discuss a recently
developed aI;>proachto this problem, namely the "liquid-state" version of the replica
method. ThIs method allows us to rewrite the double averages just described, as sin-
gle averages of a type familiar from equilibrium statistical mechanics. We shall also
discuss a complementary approach that is an extension of a very old method first used
by Boltzmannll in treating equilibrium problems. This second method yields a set of
Kirkwood-Salsburg equations that facilitate the exploration of rigorous results. This
approach also yields a class of approximate integral equations for the pair distribution
function.

The replica method was originally developed to treat model systems on a lattice12
in which the exchange interaction strengths between lattice sites were chosen from a
fixed random distribution. It involved integrating out the random exchange interactions
to yield a non-random effective interaction between sites. The liquid-state replica
method,4.5.9 on the other hand, is applied to systems in which some of the particles
have been quenched or frozen in position with a distribution corresponding to a different
temperature, and a different pairwise interaction, from that characterizing the other
particles in the system. Application of the replica method to liquid-state systems,
rather than averaging out the quenched degrees of freedom, places all degrees of freedom
on an equal footing by mapping a partly quenched system onto a limiting case of a
fully equilibrated system, to be called the replicated system. The replica method, when
applied to a partly quenched system, thus "erases" the distinction between quenched
and annealed particles, allowing us to deal with a fully equilibrated system containing
both kinds of particles. The standard machinery of equilibrium liquid-state theory can
then be applied to this replicated system.

Of course, not all spatially disordered system can be simply idealized in the way
just described, as a mixture of two fractions of particles, one of them "quenched"
and one "annealed." However, many systems, both of practical and theoretical inter-
est, can be described as being constructed in layers,4 which are added successively to
the system volume, each being brought into an equilibrium with the layers already
present, then quenched in place, before the next layer is added. We emphasize that
each layer of particles may have its own effective pairwise interaction, and its own
effective temperature.13 The liquid-state replica method can be applied repeatedly to
such a layered system, each time "erasing" one of the boundaries between layers, un-
til a fully equilibrated system results. Disordered systems that accord with the pic-
ture just described include Eden clusters, diffusion-limited aggregates,14 chemical reac-
tion models,15 porous materials,16 sequential adsorption processes,4,17.18and sequential
polymerization.s The description along these lines, of certain irregular porous mate-
rials such as Berea sandstones,14.16also relies on a picture of successive aggregation.
As can be seen from the description of the "layering" common to the formation of all
the systems we can conveniently describe by replication, an absence of development
in time of the structure of the system, once it is formed, is also a common feature,
despite the nonequilibrium character of such systems. In this sense, such systems are
all "preparation procedure" and no "dynamics". 19

In this paper, we will describe the continuum replica method and develop the
effective equilibrium picture that results from applying it to a two-layer system. We
extend this scheme in two directions. First, we use chemical-association techniques to
apply our method to a model spin glass, in which the quenched and annealed degrees
of freedom belong to the same set of particles. Second, we sketch the features of
a model in which each particle is a separate layer, namely the class of sequentially
adsorbed systems. For the case of sequential adsorption, we shall also intr~duce the
Kirkwood-Salsburg equations to illustrate some of the features those equatIons that

2



- _n_- _n-

are common to both equilibrated and non-equilibrated systems, as well as the way

the featuresthat differentiatesuch systems from one another appear in the Kirkwood-

Salsburg equations.

3

LIQUID-STATE THEORY FOR PARTLY QUENCHED SYSTEMS

, In this section we develop the liquid state replicamethod4 in itsmost natural

setting,namely a system inwhich some of the particlesare quenched or frozen in place

and the others are annealed, or allowed to equilibrate. The result of applying this

method is to map a partly quenched system onto a limiting case of a fully equilibrated
system with additional "replicated" degrees of freedom. This mapping in turn yields
Mayer expansions for the free energy and correlation functions of partly quenched
systems. It also yields a set of integral equations, the replica Ornstein-Zernike (ROZ)
equations, satisfied by the correlation functions.

We consider then a mixture of two species, one quenched and one annealed, which
we denote species '0' and species '1', respectively. Species 0 particles are quenched in
place with the spatial correlations corresponding to a temperature T and pairwise
interaction VOO(ij). Species-1 particles have pairwise interactions VlO(ij), Vn(ij) with
the quenched particles and with each other, respectively. Here the arguments i and j
represent the configurations of the particles labelled i and j. The average free energy
of our two- species system is

-{3F = lnZTOTAL = ~, J e-flHo°lnZ1dO
(2.1)

with

Z' = J e-flHoodO
(2.2)

and

Zl = J e-fl[Hol+Hll]di (2.3)

Here we write Hij forthe sum of allpairwiseinteractionsbetween particles of species
i and species j. Also, wewrite dO, dr, to represent integration over all the positions
of particles of species 0 and 1, respectively. The average in (2.1) is difficult to treat
analytically because of the presence, under the integral sign, of the logarithm. We
thus make use of the replica trick, which consists of replacing the logarithm with an
exponential by using the identity

lnZ = lim .!:.[zn -1]
n-O n (2.4)

Substituting (2.4) into (2.1) gives, for the total partition function,
n

lnZTOTAL = ~i~ ~ J {exp[ - (32)H~~) + H~~)]]-1 }exp[-{3Hoo]{di}dOi=l
(2.5)

The variables describingspecies 1 have been replicated and now appear inn copies,in
accordance with (2.4). The notation {dr} indicates an integration over the n sets of
position variables corresponding to these particles.

We first note that the expression on the RHS of (2.5) is, in fact, a limiting case
of the equilibrium partition function for a particular system, namely the system with
Hamiltonian

n n

H = L VOO(Xij) + L L VOa(Xij) + L L vafl(XiJ)t5afl
<iJ> 0'=1 <iJ> O',fJ=l<iJ>

(2.6)
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This system is a mixture of a one-component fluid (the quenched species) with an n-
component fluid, given by n identical copies or replicas of the annealed species. Each
pair of particles has the same pairwise interaction in this replicated system as in the
partly quenched model from which it Wa.5derived except that a pair of annealed
particles from different replicas has no interaction (because of the Kronecker delta DOI{3
In the last term on the RHS). Thus the system of type 0 particles, i.e., the original
quenched phase, can be thought of as a "solvent" which mediates interactions between
the different type 1 components. This analogy is apt in the sense that a quenched
phase, like a solvent, can induce effective interactions that are both long-range and
many- body.

We now find it conceptually useful to again recast the problem, describing the n-
replica fluid of type 1 particles as being instead a one-component fluid whose particles
have a discrete internal degree of freedom which we call 'spin'. The spin of a type 1
particle i, which we write (ji, is just another name for what we previously called its
replica index. The conceptual change here is the reverse of that originally used by
Onsager20 in his treatment of liquid crystals: Onsager treated molecules with different
orientations as members of different species; we are treating particles from different
replicas as members of a single species differing only by values of a fictitious internal
coordinate. This description is equivalent to the original on~, in which the number of
particles in each replica was held constant, because we work in the grand canonical
ensemble.

Thus in considering Mayer expansions for the properties of this system, each
internal vertex, or root point, associated with a type 1 particle will be accompanied by
both a spatial integration over its position and a summation over its spin state. Also,
because of the spin-dependence of the last term in the Hamiltonian (2.6), each pair of
root points of type 1 that are connected by a Mayer bond must be in the same spin
state.

We pause to comment upon the peculiar spin-dependent potential, given by
the last term in eqn. (2.6), which acts between pairs of type 1 particles; we have
previously2-4.21-23described this as a generalized Widom-Rowlinson interaction. The
original Widom-Rowlinson model was introduCed as a model of phase separation;21 it
involved a mixture of particles of two different species (or 'spin states') with a repulsive
interaction between particles in different species. However, n-species generalizations
such as that used here occur frequently in the theory of random media.24,25They
are actually continuum generalizations of the ferromagnetic Potts modep2 A basic
insight of the work described here is that the continuum version of the well-studied
replica method, used for treating many quenched random systems, falls within the
same framework. It is a limiting case of an ant i-Widom Rowlinson model, so-
called because repulsive interactions are present between particles in the same species,
rather than those in different species. This model is a continuum generalization of
the anti-ferromagnetic Potts model. The intriguing notion suggested by these map-
pings, namely that there are two basically different kinds of models for randomly dis-
ordered materials, is still under study. It is also important to note that both of these
well-studied classes of non-equilibrium systems are isomorphic to Hamiltonian models
with pair interactions that define non-additive particle diameters; this is seen to be
a general trait of such systems.

Here we note that the quenched two-phase system discussed in this section is
the n -+ 0 limit of the mixture just described, in the sense implied by eqn. (2.5).
This relation provides explicit formulae for the coefficients in the virial expansions of
the basic physical quantities. The Kronecker delta occurring in the interaction (2.6)
ensures that any pair of species-l particles connected by a Mayer bond must be in the
same spin state. Since each group of such particles in a Mayer graph that are connected
by bonds into a cluster will be weighted by a factor of n by the summation over spin
states, the only graphs making a non-zero contribution in the n -+ 0 limit will be those
having all the species-l particles connected directly or indirectly by Mayer bonds: By
a similar argument, the graphs contributing to the correlation functions are precisely
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those in which each species-1 particle is connected, directly or indirectly, to a root
point by a chain of Mayer bonds passing only through species-1 particles.

. The lowest-orderexample of such functions is the density, for which the corre-
sponding Mayer graphs are those with a single root point. A set of Ornstein-Zernike
equations has been developed9 by exploiting the description just given for the structure
of the Mayer graphs that contribute to the correlation functions.

We can derive these equations, called the replica Ornstein-Zernike (ROZ)
equations9 satisfied by the correlation functions of a partly quenched system. To do
this, we write down the OZ equations for the replicated (n + 1)-species system with
Hamiltonian (2.6), isolate the n-dependence of these equations (by grouping together
identical terms), and take the n -+ 0 limit. The resulting ROZ equations are:

5

hOO = coo + pcoo 0 hOD

hOl = cOl + pCOD 0 hOl+ pCOl0 hll

- pCOl 0 h12

hlo =clo + pC10 0 hOD+ pCll 0 hlo
- pC12 0 hlo

hll = Cll + pCOl 0 hOl + pCll 0 hll

- pC12 0 hl2

hl2 = C12 + pCOl0 hOl+ pCll 0 hl2

+ pC120 hll - 2pC12 0 h12

Here both the superscripts 1 and 2 refer to identical species-1 particles. The
notation naturally arises as a result of dealing with replicas of species-1 particles, but
is artificial in the limit n -+ O. We shall switch to more natural notation immediately.
The symbol 0 denotes both a spatial convolution and an integral over the spin of the
intermediate particle. That is, we have

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

! 0g = J d3x2 d~2 !(Xl,51,X2,52)g(X2,52,X3,53)

The integral df22 is over the orientation of the vector spin 52' The quantity f2 is a
normalizing factor f2 = Jdf22 which we have extracted from the fugacity of a 'spin'; it
turns the integral over spin orientation into an average over this quantity.

We prefer to rewrite the ROZ equations in a way that is more felicitous and
moreover emphasizes their graphical structure. To do this, it is useful to identify the
function we shall denote here as Cb,which is represented by the subset of Cll graphs
such that all paths between the two white species-1 vertices pass through at least one
po-vertex. We further identify the function represented by the corresponding subset of
hll graphs as h" and write

(2.12)

cll(12) = cc(12)+ c,,(12)

hll(12) = cc(12) + h,,(12)

(2.13)

(2.14)

so that between the two white vertices of every Ccand he graph there is at least one
unbroken path free of po-vertices (the subscripts 'c' and 'b' denote 'connected' and
'blocking', respectively.) We can then rewrite the ROZ equations as

hoo = Coo+ Coopo 0 hoo (2.15)

(2.16)

(2.17)

(2.18)

hlo = ClO+ poC100 hoo + Pi ce 0 hlO

hll = Cll + poC100 hOl + Pi ce 0 hll + Pi C"0 he

he = ce+ Pi ce 0 he



where, by symmetry, Col = CI0and h01 = h1O'

An alternative equation for h01 that can be derived from using (2.12-13) in (2.19)IS
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h01 ==Co1+ PoCoo@ hOl + P1Col@ he. (2.19)

When Coo,Co!,Cll, Ceand the {ps} are prescribed, (2.15-18) are a closed set of equations
for hoo, h01, hll, and he. For some Va{ja reasonable approximation in the ROZ equations
is given by the assumption

c6(12) = O. (2.20)

This approximation is implied by the Percus-Yevick (PY) closure, as well as the mean-
spherical approximation (MSA) closure. We shall refer to the approximation (2.20)
as the Madden-Glandt (MG) approximation. There is a class of approximate closures
of the ROZ equations that imply Cb(X)= 0; within the context of such a closure the
Madden-Glandt approximation is exact. This class of closures includes the Percus
Yevick (PY) closure, Cij = lijYij, where lij is the Mayer function, and the cavity
function Yij is defined by the equation

hij + 1 = (Jij + l)Yij (2.21)

It also includes the mean-spherical approximation,

h.. = -1 x.. < R .. (2 22)IJ' IJ IJ .

C;j = j3Vij, Xij> Rij (2.23)

Here Vijis the pair potential, Xij is the distance between particle centers and R;j is the
average of hard core diameters. However, the hypernetted chain (RNC) approximation
is not among this class of closures.

A fundamental fact about the MG approximation is this: in a sense to be made
precise, the only difference between the MG OZ equations and the equilibrium OZ
equations is in the quenched system input. In a quenched system, the functions hoo
and Cooare supplied "externally", i.e., they are not influenced by the behavior of the
annealed degrees of freedom. If we take these functions as input and proceed to solve
both the MG OZ equations and the equilibrium OZ equations for the functions hOb hll
(using the same closure) the results will be identical. This shows that the MSA (which
implies the MG approximation) is "blind" to the difference between partly quenched
and annealed systems.

This raises the question: what systems will exhibit appreciable "C6effects," that
is, effects that go beyond the effect of the quenched system input? The discussion above
implies that such effects should be most pronounced for partly quenched systems in
which the most natural closure lies outside the class discussed above, for which the
MG approximation is exact. Specifically, we consider the class of systems in which the
quenched species consists of randomly centered particles (Joo =0, po spatially uniform)
that freely overlap each other but are impenetrable to the annealed particles. Such a
partly quenched system gives a natural model for a fluid adsorbed in a porous medium,
the annealed and quenched particles representing, respectively, the fluid atoms, and
the partly overlapping inclusions that make up the porous matrix. For this system,
one can calculate Cbexactly in the limit PI -+ 0 by summing the Mayer graphs that
contribute to this quantity. Such Mayer graphs consist of two or more PI-vertices, each
connected to both of the root points. The sum of such graphs is easily obtained. It is

Cb(12) = exp[poOO]- 1 - PoO° (2.24)

where 0°(12) is the "overlap volume" integral

0°(12) = J d3 110(13)101 (32)
(2.25)



Physically, this contribution to Cbrepresents an effective attraction among the annealed
particles due to the presence of the inclusions that make up the porous matrix; this
effect is substantial for large matrix particles, especially at low density of adsorbed
fluid, for the intermediate to high densities of matrix inclusions that characterize many
microporous materials. (We note that the HNC closure for Cll is exact whenever (2.24)
is.)
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We are now studying simulations of such a porous medium. For low fluid density
but moderate matrix density, the approximation given by (2.24) is superior to the MG
approximation. However, both approximations underestimate the contact values of
correlation functions. At higher fluid particle densities, the two approximations become
very similar. For a more general class of matrix particles we are further investigating
a reference-system closure, in which the reference system is the pure species-O system
into which a single pair of species-l particles are inserted. We represent the direct
correlation function Cijas follows:

Cij = lij Yij + dij (2.26)

The function dll is zero in the PY approximation. We note that this function contains
all the terms in Cbbecause, by definition, it contains all the terms in Cll that lack
a Mayer bond between the roots and all contributions to Cb,by definition, have this
property. Approximating Cbby the reference-system dll appears especially promising
for hard-sphere interactions among matrix particles.

Another limit in which (2.24) gives an exact result for Cll(X) is that of an ideal
fluid of noninteracting atoms, again adsorbed in a rigid matrix of freely overlapping
inclusions. In this case we also have Cll = C12,C01= 101' (with 101the Mayer bond)
and Coo= o. This is the quenched-annealedversionof the Widom-Rowlinsonmodel.

SPIN GLASS

We consider1° each atom in a spin glass25to be a tightly associated pair of "pseu-
doatoms", one of which we call a 'spin', the other of which we call an 'atom'. We will
relax the association between these pseudoatoms, use the replica method described in
Section 2 to write the free energy and correlation functions of the spin glass in terms of
the corresponding quantities for an equilibrium mixture of particles, then impose the
constraint of complete association.

The interaction vll(ij) between a pair of spins i and j is taken to be the sum of
a classical Heisenberg interaction and a spin-independent excluded-volume interaction
(taken here to be of hard-sphere type):

vll(ij) =VHS(Xij) + J(Xij)(Si .Sj) (3.1)

where the dot product between the vector spins located at atoms i and j is multiplied
by the separation-dependent exchange coupling J(Xij). In many materials a reasonable
form for J(x) is provided by the sinusoidally modulated Yukawa coupling

exp[-Kx] .
J(x) = sm(ax + 0)xP (3.2)

The interatomic interaction voo(x) is taken to be hard-core at short range; the long-
range tail VLR(x) can be left arbitrary

VOO(Xij) = VLR(Xij) + VHS(Xij) (3.3)

Finally, the interaction VOlis taken to be an extremely strong, short-range at-
tractive force binding a spin to the center of an atom. The presence of a hard-core
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component in both the spin-spin and atom-atom potentials ensures that no complexes
containing more than one atom and one spin may form.

The continuum replica method provides an explicit mapping of the spin glass
onto a limiting case of an equilibrium Hamiltonian system, to be called the replica.ted
system. Specifically, this is an (n + 1)-species mixture, consisting of one copy of the
quenched species, i.e., of the atoms, together with n copies of the annealed species, i.e.,
the spins. Here quenched a.nd annealed particles have the same pairwise interactions
that they have in the partly quenched system being studied, except that annealed
particles from different replicas do not interact. In the complete association limit, the
replicated system is entirely composed of tightly bound complexes, each consisting of
an atom, together with one spin from each of the replicas. .

We discuss two complementary approaches to developing integral equations for
the correlation functions of the spin glass. The first is a version, for partly quenched
systems, of the RISM approximation.26,27It has the advantage of simplicity, and aids
both intuition (in the formation of closures) and the process of numerical solution. It
has the disadvantage of not providing a direct correlation function that can be expressed
as a resummation of Mayer perturbation theory, i.e., of not being "proper," in the
language of interaction site theory.2s,29The second approach remedies that difficulty;
it uses the chemical association3° formalism of Wertheim31.32to develop a set of four
coupled integral equations for the different terms contributing to hll. The theory
involves four direct correlation functions that correspond to these terms.

We first develop a RISM-like equation for the spin glass. It is natural to use site-
site notation, with subscripts '0' and '1' for sites that are atoms and spins, respectively.
The site-site formalism allows us to treat atoms and spins as separate particles, eg.,
for the purpose of applying the replica method, and yet be able to separate out the
delta-function contributions to correlation functions from spins and atoms that are
bound together. It is thus natural to use the SSOZ equations for spin glass correlation
functions. However, because of the high degree of symmetry posessed by the Heisenberg
spin glass, the distinction between the OZ and SSOZ equations will not be important
here. This is discussed below.

It is useful to write for any pair correlation function a(12)

a(12) = a(12) + a(12) (3.4)

where a(12) is an average over the orientation ni of both particles

a(12) = J a(12)dn1dn2/n2,n = J dni
(3.5)

In the complete association limit, the positions of atoms and spins must coincide. Thus,
we have for a general interaction

lill = lilO= hoo (3.6)

Also, for interactions having the symmetry of the Heisenberg interaction, we have

hlO = h. =0 (3.7)

hll =Cll + PCll I$) hll

Adding eqns. (3.6) and (2.7) gives an OZ equation for h(12) itself,

h = c + pc I$)h, (3.9)

where h = hoo+ hll and c = Coo+ Cll. It follows that in the mean-spherical approxima-
tion, the spin-spin correlation function for a spin fluid and a spin glass are identical,

0.
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assuming the two have identical atom-atom correlation functions. This was surmised
in [33].

Appropriate closures of PY and HNC (hypernetted chain) type for the spin glass33
have been developed. We do not derive these here, but simply present two simple
examples. For the PY-type closure one has

9

(3.10)c = I(g - c) - 1(g - c)

where 9 = h + 1. For long-range J(xii)' one might expect the analogous HNC-type
closure to prove more accurate. This is given by

(3.11)c = h - lny - (h - lny)

where 9 = (I + l)y.
In order to extend this treatment in a systematic manner, it is important to

develop a proper integral-equation treatment of the spin glass. This involves classifying
the Mayer graphs that contribute to hu into four types, according to whether they have
neither, one, or both of the root points (representing spins) in such a graph connected
directly to type 0 vertices (representing atoms.) The corresponding decomposition of
hu is

hu = h~~ + h~~ + h~~ + h~~. (3.12)

The quantities {h11} obey a coupled set of OZ equations which generalize (3.8)

ftii - cii + cUe t::>.Pil ;,,ti11 - u 11 101 11' (3.13)

Here we have pOo= pOl = plO = P and pll = O.

SEQUENTIAL ADSORPTION PROCESSES

The adsorption of large molecules and molecular aggregates, such as polymers,
colloids, and proteins, to membranes and surfaces is frequently associated with a large
binding energy so that the time needed for the surface involved to become saturated
with particles is small compared to a typical desorption time. In such cases, the
correlation functions are substantially different from those associated with equilibrium.
It has been shown to be a good approximation, at least in some cases, to use for such
processes an idealized model known as random sequential adsorption (RSA).ls In
this model, hard, i.e., non-overlapping particles are placed on a surface, one at a time,
each in such a way that it does not overlap those already in place. Once placed, a
particle is quenched, i.e., frozen in that location. This is the simplest RSA model. We
generalize this model in two ways: first, by allowing a longer-range potential interaction
between particles; second, by allowing for a finite probability of rearrangement. The
former generalization is a natural way to allow the adsorption of charged particles; the
latter gives a model that smoothly interpolates between an equilibrium hard-sphere
system and a sequential adsorption system. As described in the Introduction, we can
develop liquid-state theory for this process by viewing it as an extreme case of a system
constructed in layers: here, each particle constitutes a separate component or layer, and
the graphical rules developed in Section 2 for the two-layer system must be generalized.4
Some reflection shows that we get prescriptions for the graphs contributing to both the
free energy and the correlation functions if we replace the term "annealed path" in the
prescriptions for the two-layer system by the term "uphill path", where an uphill path
is defined to be a sequence of vertices, each successive pair connected by a Mayer bond,
such that in traversing the path from field point to root point, the species la.bels of the
vertices encountered increase monotonically. (Here, every particle in RSA is considered
to belong to a different species, and successive particles are given species labels in the
order in which they are introduced.)
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We map the general RSA model just described onto a Hamiltonian system. Con-
sider a system of particles bearing spins Ui which can take any of n discrete values,
such that particles i and j, i < j, have interaction

10

~j(x) = V(X)6C7il+ lj>(x) (4.1)

We consider this system to be a multi-species mixture, with each particle belonging
to a distinct "species" labelled by its particle number. In the n -+ 0 limit, the
thermodynamic quantities of this model become the basic physical quantities that
describe RSA. For example, we have the formulas for the adsorption rate ~:

~ = lim !!.
n-O Z

(4.2)

with z the fugacity and p the density of the mixture (4.1).
The two potential functions in this model, vex) and lj>(x),can be chosen indepen-

dently to give a variety of interesting models. If the potential vex) in (4.1) is zero, the
interaction will give an equilibrium system with potential lj>(x). If the potential lj>(x)
is zero, it gives various models of sequential adsorption. Choosing v(x) to be a hard-
sphere interaction gives the model usually called RSA. Choosing v(x) to be the sum
of a hard-sphere interaction and a Coulomb potential gives a model for the correlated
but irreversible adsorption of charged, hard particles. This system could be realized
experimentally by placing a static charge on small latex spheres, then allowing them
to adsorb strongly onto a surface. We note that unless the potential v(x) has a hard
core, the resulting RSA model will have no jamming density. Nevertheless, one can
ask whether the asymptotic behavior of the adsorption rate will still be a power law in
the elapsed time, as it is in naive RSA.

We have two paths that lead to integral equations for the correlation functions
in RSA. The first is to derive the ROZ equations by using the Hamiltonian mapping
defined byeqn. (4.1). The second is to write the Kirkwood-Salsburg hierarchy for this
process, again using the Hamiltonian (4.1), and then to expand in a functional Taylor
series the left-hand side of the second of the hierarchy around the lhs of the first. We
will sketch both approaches.

We define the two-point correlation function of the Hamiltonian system of Section
2 as follows: l:t; (x) is the probability density associated with finding a particle of
species i in spin state Ui and a particle of species j in spin state Uj, the two of them
separated by a distance x. The n -+ 0 limit of this function gives, depending on the
spin indices Ui and Uj, two correlation functions useful in describing RSA. In this limit,
the "species" of our original model become particle labels, describing the sequential
order in which particles are placed. We will use the particle labels i and j, with the
convention that i < j. We define two RSA correlation functions as follows:

- (4.3)
°l

(
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g;j x) -+n-O gij(X) (4.4)

The function gij (x) is the probability density associated with finding, in a realization
of RSA, the ifI. and ph particle separated by a distance x. The Mayer series for this
function is easily constructed using the Hamiltonian (4.1): it consists of all labelled,
two-rooted graphs satisying the uphill constraint. A labelled Mayer graph is interpreted
as an ordering on the particle labels; the field points in a labelled graph must be
summed over all sets of particle labels that preserve this ordering. The function g:j(x)
is a related function defined as the sum of the subset of Mayer graphs contributing
to gij (x) such that there exists no uphill path joining the two root points. Similarly,
we have gfj(x) defined as the sum of the subset of Mayer graphs contributing to gij(x)
such that there exists at least one uphill path joining the two root points. Combining
eqns. (4.3) and (4.4) gives

g:f(x) -+n-O gij(X) = g:j(x) + g;;(x)

[g:f(x) - g;J<x)] -+n-O g;j(x) (4.5)



-- u-- --

This function occurs in the topological reduction of the Mayer expansion.
By virtue of the isomorphism we establish onto the many body system defined

by the Hamiltonian (4.1), the RSA system has the structure of a polydisperse system.
In such systems, each particle has, in addition to its position, an extra parameter
characterizing it. In the standard examples of polydisperse systems,23 this parameter
is the particle radius or orientation. Here, the extra parameter characterizing the ith
particle in the system is Pi, the density of the system at the time that particle was
added. This density is given by

11

Pi = i/V (4.6)

In the thermodynamic limit, each intermediate summation over the particles in the
system occurring e.g. in the Mayer expansions can be replaced by an integration over
the extra parameter Pi. The integration measure for such an integration is trivial
because each particle added to the system corresponds to a distinct value of Pi.

We henceforth assume this limit to be taken, and use as limits ,the densities Pi
instead of particle labels i, density integrations instead of summations over particles,
etc. Each specific correlation function gij(x) is actually a function of three densities:
Pi and pj, the extra parameters characterizing the two root points, and P, the final
particle density of the RSA system in which the correlation functions are computed.
However, because each particle in a realization of RSA is independent of the particles
placed after it, we have

gij(X,P) = gij(X,pj) (4.7)

for any P > Pj. In this equation and what follows, we will adopt the convention, unless
stated otherwise, that j > i.

The ROZ equations satisfied by the functions h:j = g:j - 1 and h~j = g;j - 1
can be obtained by writing down the Ornstein-Zernike equations for the correlation
functions of a polydisperse system with pairwise interaction (4.1), and taking the RSA
limit n --+ o. We rewrite these immediately in terms of the definitions (4.3 - 4.5):

h~j= C;j + 1:' [<k@h~j] (4.8)

h~j = C~j + ti [C~i@ h~j + C~i@ h~j + C~i@ h~j] dPk + lP' [C~k@h~j] dPk (4.9)Jo Pi

The functions {g:J(x)} and {g;j(x)} are specific RSA correlation functions, i.e.,
they give the probabilIty density associated with finding a specific pair of particles
at a separation x. These functions, like the correlation functions of any polydisperse
system, depend upon an additional parameter, i.e., an extra density. One must solve
(4.8-9) and then form the generic correlation function, or probability density associated
with finding any two particles with separation x. It would be of great value to be able
to rewrite the ROZ equations (4.8-9) directly in terms of generic correlation functions.
This we have not been able to do. However, we have obtained a formally exact equation
for the generic correlation functions by using the Kirkwood-Salsburg equations for RSA.
We will define the generic correlation functions for RSA, give the Kirkwood-Salsburg
equations for them, and then relate these functions to the specific functions that satisfy
(4.8-9).

Consider the function ~n(XI; X2... xn) that represents the probability density as-
sociated with being able to insert at position Xl an extra particle into a system con-
sisting of N + n particles, with n - 1 of them found at X2,.. . ,Xn,respectively. [We
shall write ~1(X) for ~n in the absence of the n - 1 particles at prescribed locations;
in a spatially homogenous system in which ~l(xd is independent of Xl we shall simply
write ~ for ~l(xd.]

There is a way of representing such functions as a series that goes back to
Boltzmann,l1 who considered the first few terms in such a representation of ~l and ~2
for a hard-sphere system in equilibrium. Subsequently Kirkwood and Salsburg consid-
ered the full series of the ~n for arbitrary pair potentials in an equilibrated system.



We can derive the Kirkwood-Salsburg equations for RSA by considering RSA as the
n -+ 0 limit of the process with Hamiltonian (4.1). The result is

~n(XljX2,,,Xn) =
00 1

J
n

en(xl; X2'" xn) L , dXn+1 ... dXn+. II!(XiXn+.)Pn+.-l(X2'" xn+.)s..=0 .=1
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(4.10)

Here
n

en(Xl;X2'" Xn) = II[l + !(XIXi)]
i=2

(4.11)

and the Pn(Xl'" xn) are generic n-particle probability density functions associated
with finding n unspecified particles at positions Xl'" Xn' On the other hand the ~n
have an intrinsically specific quality in the sense that they specifically refer to the
extra particle, which must be the last of the particles being inserted into the system.
We could replace ~n by a fully specific probability density by referring to specified (i.e.,
labelled) particles at X2'" Xn' This would define a function that differs from ~n only
through a trivial change in normalization; ~n already has the symmetry properties
of its specific version. Strictly speaking, however, it is neither fully specific or fully
generic. We shall refer to such functions as "mixed." In RSA the most important
mixed functions are those, like the ~n, that refer to one last particle, with the rest of
the particles unspecified.

In a system of particles at equilibrium that are identical except for labelling,
the entire difference between specific and generic functions is just a trivial one of
normalization, because particle labelling can be done in any order - order is of no
consequence. This implies that ~n is very simply related to pn. One has

Pn(Xl ... xn) - ~n(Xl; X2." xn)
Pl(xd - ~l(xd

(4.12)

as the closure of (4.10). In the spatially uniform case this reduces to

Pn(Xl ... xn)/ P = ~n(Xl; X2'" xn)/~n (4.13)

In the case of RSA, on the other hand, the ordering of the particles constitutes the
whole problem! As a result the generic Pn are related to the ~n via a combination
transformation that takes this ordering into account. This can be carried out term by
term in the density expansion of pn and summarized in terms of a single differentiation
with respect to P, which yields the coefficients that are found in the expansion of ~n'
which the latter are appropriately symmetrized. Considering only the spatially uniform
case for simplicity, we have

8Pn(Xl ... xn) ~ ( /a = L...,,~nXl;Xl",Xk-l,XHl",Xn) ~P k=l

We shall find it convenient to introduce the probability densities Wn(XtfX2 ... xn)
associated with being able to insert a particle into the system at position Xl in the
presence of n - 1 particles at positions X2,' . . , Xn, respectively. One has

(4.14)

~n(Xl;X2,,,Xn) =Wn(Xl/X2",Xn)Pn-l(X2,,,Xn) (4.15)

In particular
W2(XtfX2) =~2(Xl; X2)/ Pl(X2) (4.16)

and in a uniform system

W2(XJX2)/~ =G(XJX2) =G(X12) (4.17)



--p- - --

where G(X12) is a radial distribution function. In a uniform equilibrium system we
would have simply

G(X12) = P(X1X2)/ p2

but from (4.14) and (4.17) we have instead

2G(x12) = ~8p(X1X2)
P 8p
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(4.18)

(4.19)

or
P8g(X12)

G(X12) =g(X12) + 2 8p (4.20)

where P(X1X2) = p2g(X12)'so g(X12) is the generic two-particle distribution function.
Thus we have both a mixed cavity function Y(x) = G(x)/[l + lex)] and a generic

cavity function y(x) = g(x)J[l + lex)]. It is the former that appears in a more fun-
damental way in our theory. In particular we have the zero-separation condition for
hard-particle RSA

4>Y(O) = 1 (4.21)

from (4.10) with n = 2 as well as its obvious generalization to n > 2.
We now relate the generic and specific correlation functions. Thus, from its defi-

nition, we can express G(XdX2) as

j

pG(Xl/X2) = ~p;g;j(x)
i=l

(4.22)

In the limit of large N, this can be rewritten in terms of an integral over density:

pjG(XdX2,pj) = lPj gmj(X17X2, pm, pj)dpm
(4.23)

The generic distribution function g(x) is the probability density associated with finding
any two particles at positions Xl and X2; it can be expressed in terms of the {g;j(x)}
as

N-l

p2g(X17 X2) = L pj[G(XdX2' pj) + G(X2/X17 pj)]
j=l
N-l

= L PiPjgij(Xl,X2,Pi~Pj)
iJ=l

(4.24)

This can also be rewritten in terms of an integral over density:

p2g(X17X2)= lP[G(xdX2,p;) + G(Xl/X2,Pi)]dpi
(4.25)

From (4.10) one can also obtain a number of interesting rigorous results for non-
negative pair potentials, for which the remainder terms in the series alternate in sign,
yielding rigorous upper and lower bounds on 4>n.

For hard particles, the function 'l!n(XdX2'" xn) has the significance of being the
volume available to the center of the particle to be inserted at Xl' given particles fixed
at X2,'" Xn, divided by V, the volume of the box in which the system is contained. It
is also useful to consider the volume available to the center of a cavity of the same size
as a particle. This is just V An, where

An(xdx2...Xn) = 'l!n(XdX2...Xn)
en(xl; X2.', xn)

(4.26)



with Al (xd = ~l (xd. We have, in a uniform system, 14

AI(xt!X2) = ~Y(XI2) (4.27)

To generate an exact functional expansion that yields a Percus- Yevick equation upon
truncation, we can consider AI(XI/X2) expanded around its value ~l(xd when the
particle at X2 is turned off. We have

J
8~I(xd

AI(xt!X2) = ~l(xd + 8p(xs) [P(XSX2)- p(xs)]dxs
1

J
8'~I(XI) '+2

+.. ,+2 II [(p(XiX2) - p(xi))dXi]+...s. TI,-.. 8o(x;) i=S

(4.28)

The mixed direct correlation functions Cn(Xi;X2'" xn) are generated by ln~(Xi) =
CI(Xi)

8'CI (Xl)

() 8 ( ) = C'H(XI;X2'" X,H)P X2 ... P X'H

Using (4.27) and (4.28), yields, in the uniform case,

Y(XI2) = 1+ pJ C2(XI; xs)h(XSX2)dxs

+ ~ J [CS(XI; XSX4) - C2(XI; X2)C2(XI; XS)] h(XSX2)h(X4X2)dxsdx4 ...

(4.29)

(4.30)

Truncation after the first non-trivial terms yields a Percus-Yevick approximation suit-
able for RSA

Y(XI2) =1 + pJ C2(XI;Xs)h(xSX2)dxs (4.31)

In equilibrium, where Y(x) = y(x), this relation defines a unique approximation when
combined with the OZ equation which identifies the correlation terms as h -C2, yielding
y = 1 + h - C2' For hard particles in equilibrium, this yields a good approximation
C2 = 0 outside the hard core, where y = 1 + h. Inside the core it yields the result
V =C2' This represents a very poor approximation for V; however inside the core, the
PY approximation is very useful in situations in which knowledge of y inside the core
is not needed. In the case of RSA, the OZ equations do not have as simple a form.
In particular, the convolution on the LHS of (4.30) is not equal to h - C2' Instead

of obtaining a unique approximation via the OZ equations, it is more convenient to
obtain one directly by introducing the closure

C2(XI; X2) = f(XI2)[G(Xt! X2) - C2(XI; X2)] (4.32)

For hard particles, this simply says that G = 0 inside the core, which is identically
true, and that

C2(XI; X2) =0 (4.33)

outside the core, which is likely to be a good approximation for the same reasons that
the PY approximation is good for hard particles in equilibrium. Equations (4.31),
(4.32), and {4.19) yield a unique approximation for soft- as well as hard- core parti-
cles.

CONCLUSIONS

We have developed very general techniques for mapping a class of nonequilibrium



problems into equilibrium statistical mechanics. We are now studying various approx-
imations and closures of the equations presented here. Still before us is the task of
incorporating phase-transition behavior34 into our account of systems with quenched
disorder.
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