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It is well known that the numerical solution of the hypemetted chain equation

(HNC) yields satisfactory results for the pair correlation function of the primitive
model of electrolytes and similar models of ionic particles over a considerable range
of thermodynamic states. Despite this, it has become apparent that for low densi-

ties (or low ionic concentration in electrolytes) the numerical solution breaks down
for temperatures well above the expected coexistence region between gas and liquid
phases. Here we study situation by analytic means, comparing it to a similar problem
for sticky hard spheres in the Percus- Yevick (PY) approximation. On the basis of
our analysis we conclude that the failure of the HNC is of the same nature and is
connected to the existence of two possible solutions for low densities. When the tem-
perature is lowered these solutions will merge into one at a particular temperature,
below which a real solution is no longer possible. By extending our analysis to sys-
tems like the monoatomic Lennard-Jones fluid and comparing with previous results
of Gallerani, La Vecchio and Reatto for two-Yukawa and Lennard-Jones systems in
the PY approximation, we conclude that these are general common features of the
HNC and PY approximations in the low-density regime. Numericall the ap ear to
persist in the HNC approximation at high densities (in contrast to the behavior
of the PY approximation) although our analysis is silent in this regard. Our analysis
is consistent with the results of a recent comprehensive numerical study by Belloni.
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I.INTRODUCTION

Strong evidence has accumulated that at low densities the numerica.l solution of

the Ornstein-Zernike (OZ) equation with hypernetted-chain (HNC) closure breaks
down badly when applied to ionic fluid models such as the restricted primitive model
(RPM). In an earlier study, 1 referred to as I hereafter, we probed these numerica.l dif-
ficulties for an ionic fluid to gain insight into the nature of the singularity responsible
for the resulting low-density boundary of the HNC "no solution" region. Although
numerica.l inaccuracy makes it hard to delineate this region with high accuracy, the
region is certainly not a numerica.l artifact. Here we give an analytic description of
the region that we have formulated.

Although for liquid densities isothermal compressibilities appear to diverge in
the vicinity of the no-solution region, as was seen in I, very recent work by Belloni2
has shown that in fact their value remains finite for a.lldensities, in accordance with
partial results previously obtained by Kinoshita and Harada.3 Indeed, are-analysis
of our previous results for high density carried out in Section IV herein also shows
that the lack of spinodal behavior on the low-density side appears to extend to the
high-density branch too. One does not appear to have spinodal behavior on either the
high-density or low-density sides of the no-solution line, but rather some of the typical
features of a coexistence curve, and it is tempting to identify the no-solution line as
the approximation's way of generating such a curve. Unfortunately its location is very
far from the best estimates of where the RPM coexistence curve can be expected to
lie.

In the above discussion (and throughout the rest of this paper) when we refer to
compressibility we mean the isothermal compressibility computed via the fluctuation
integral that relates the inverse compressibility to an integral over a direct correlation
function. By spinodal line we mean the locus of points on which the compressibility
is infinite. In the HNC approximation, the thermodynamics computed via the virial
theorem or via the internal-energy integral over a radial distribution function times
a pair potential will not be consistent with this compressibility (but will be consis-
tent with each other). In the HNC approximation, it is only the thermodynamics
computed via the fluctuation integral that is directly connected to the range of the
density-density pair correlation function.

In Ref. 1 we noted that the present problem might have some features similar to
the sticky-sphere problem solved by Baxter with Percus-Yevick boundary conditions.4
Cummings and Stell analyzed this solution in comparison with the mean spherica.l ap-
proximation (MSA) for a Yukawa interaction, which also can be solved analytica.lly.5
According to their analysis and numerica.l evaluations, the MSA Yukawa problem has
a unique physica.lly acceptable solution as the temperature is lowered for fixed density
until the spinodal line is reached. Beyond this line the continuation of the physica.lly
acceptable solution and a second rea.! solution merge when a second line is reached.
Beyond this second line the two solutions become complex.

In the PY solution for a system of sticky hard spheres there is similar behavior at
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liquid densities. However, for low densities it turns out that there will be a crossover at
a critical point such that below the critical density, the physically acceptable solution
and a second real solution will merge to become complex before the spinodal line
is reached, as one lowers the temperature. The result is a no-solution locus in the
p - T plane that is not a spinodal line below the critical density pc but is instead
a line associated with finite compressibility, that shares many of the features of the
low-density branch of a coexistence curve.

Our conclusion is that the behavior of the HNC approximation for ionic systems
such as the RPM is of a similar nature and can then be related to the same mechanism
that one finds at low density for sticky hard spheres in the PY approximation. This
conclusion is motivated by the observation that oppositely changed ions in the HNC
approximation behave much like sticky hard spheres in the PY approximation im-
mediately outside the hard cores of the pair potentials, giving rise to narrow sharply
peaked contributions to the distribution functions that have a similar thermodynamic
effect in the two cases. The argument can be made precise in a mathematical devel-
opment given in Section III.

II. STRUCTURE OF THE ORNSTEIN-ZERNIKE EQUATION

A. Remarks in the context of the MSA

To better understand qualitatively the properties of the HNC approximation one
can profit from first analyzing the simpler MSA and PY sticky-sphere cases. All these
theories are based on solutions of the OZ equation for hard-core potentials. Their
difference lies in the way the direct correlation function c(r) is approximated outside
the core. For the MSA the direct correlation function outside the core is given by
-f34>(r) where 4>(r)is the interaction potential, and f3 = l/kT, k = Boltzmann's
constant and T = temperature. Now the HNC and PY sticky-sphere equations can
be regarded as effective MSA problems too, but with effective 4>(r)that are density
and temperature dependent functions, defined by c(r) = -f34>eJJ(r).

We first consider the MSA one-component case with Yukawa interaction. This
has already been solved analytically and analyzed.~ The algebraic equations for
this latter problem have several solutions of which only one is physically acceptable
for a given temperature and density. In the present instance physical acceptability is
associated with a correlation function that decays with distance and is real. (In a dif-
ferent context we also have dealt with complex MSA correlation functions to represent
propagation of electromagnetic waves in dielectric media at non-zero frequency.9,10)

Now the physically acceptable solution is accompanied by a neighboring unphysi-
cal solution, and if one plots the inverse compressibility associated with each solution
as a function of inverse temperature one gets two curves, with the acceptable one go-
ing to its minimum at zero (spinodal curve), and then continuing as a non-acceptable
solution which will merge with the other neighboring solution, at which point the pair
of solutions become complex as one further lowers the temperature.
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The property of having a pair of solutions that merge in a parameter space can be
expected to be a.general property tha.t follows from the structure of the OZ equation
and is not limited to a potential of Yukawa form. This property will also persist
for approximations other than the MSA. For these other approximations the two
solutions in question will, when interpreted in the context of the MSA, represent two
somewhat different interactions. As a rough approximation these two interactions can
be regarded as having the same form, e.g. a Yukawa form. What is important is that
the two solutions will then represent two different MSA temperatures, and again they
will merge when the true temperature of the system at hand is lowered. However,
the point of merging will be shifted along the curve of solutions and can in principle
be anywhere depending upon the relation between the pair of MSA temperatures. In
particular it is possible for this point to lie in a region of thermodynamic stability.
Thus by lowering the temperature when performing a numerical solution in such a
region of thermodynamic stability this point will be reached without passing through
a spinodal curve. When they meet, a change of input parameters will no longer
give a real solution. Thus the numerical procedure will fail. (As an illustration one
could solve the MSA for fixed inverse compressibility. The two solutions will meet
precisely at the spinodal curve since the curve of solutions has zero as. minimum
inverse compressibility.)

B. PY solution for sticky hard spheres

The merging of two solutions in the physically acceptable region as described
above can be easily demonstrated in an analytic way by considering sticky hard
spheres with PY boundary condition. This problem has been solved by Baxter4 and
its solution has been investigated by Cummings and Ste1l5and they find that two
solutions merge in the physically acceptable region for low densities. We reinvestigate
this situation in language appropriate to our study and reestablish some results. The
PY condition connecting the pair function her) and direct correlation function c(r) is

(1 + her)) fer) =c(r) (1 + fer)) (1)

where

fer) = e-fJt/>(r)- 1

is the Mayer function. Eq.(I) can be rewritten as

c(r) = f(r)y(r),
vCr) = 1 + her) - c(r)

(2)

where (1 + f(r))y(r) = 1+ her) definesvCr). For sticky spheres fer) is -1 inside the
hard cores and is a 6-function on the hard-core surface. This 6-function can now be
represented by a term of Yukawa form. Following Ref. 4, we can write
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o if r < 1
1 + f(r) = ..L8 (r - 1)+ 1 if r ~ 112'7"

(3)

From the structure of the OZ equation h - c will be a smooth function at r = 1
in which the 8-function will not appear. Eq.(2) implies that c(r) = 0 outside the
8-function and that y(r) is also smooth at r = 1. Accordingly at the hard core we
can write

1

h(r) = 12A18(r -1) at r = 1
(4)

and also

1

c(r) = 12A18(r -1) -+ Ke-z(r-l) /r for r ~ 1

with z -+ 00 (112Al= K/z). From Eqs.(2)-(4) Al is given by

(5)

1
Al = y(1)-

T
(6)

With condition (5) on c(r) we are back to the MSA Yukawa problem with unique
physically acceptable solution for given K and AI. However, with PY sticky spheres
T is the given parameter related to Al via Eq.(6). To obtain explicit results, y(1) is
needed. This quantity is found in the Appendix by means of Baxter's factorization
method. The result is

1+ a2 - {AI + ~{A~
y(1) = /1 />\? 1-{ 12

(7)

Inserted in (6) this yields precisely the equation analyzed in Ref. 5 based upon the
solution found in Ref. 4. The inverse compressibility becomes .

ao = 1- pc(O)= (1-12{Q(O»)2 = a2 =
[

1 + 2{ - {(l- {)Al
]

2

(1 - {)2
(8)

In Eqs.(7) and (8) the { = ~p is the packing fraction for spheres of unit diameter,
and p is the number density. It may be noted that the neighboring solution of (8)
is missing here. This is because the limit z -+ 00 (see Eq.(5» is taken, whereby
ao -+ 00 for this latter solution. In this limit the two solutions will not merge for
finite Al either. However, the spinodal curve ao =0 will be present at which

Al = Aa= 1+ 2{ (9)
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Thus only values of Al smaller than A..will be physically acceptable, and larger values
of Al can be considered as the finite part of the other solution.

Solution of Eq.(7) when inserted in (6) yields two values of Al for given T. For
small liT there will be an acceptable solution Al < A. and an unacceptable one
Al > A.. However, when liT increases these solutions will approach each other and
they will finally merge. For large ~it is then found they they merge for Al = Am> A.,
but for small ~ they merge for Al = Am < A., i.e. in the physically acceptable
region. This has the important consequence that the spinodal curve ao = 0 can not
be reached by increasing liT as solutions will become complex beyond the point at
which Al = Am.

The solutions merge when the square root they contain becomes zero. Then the
common solution will be

Al = Am= ~(-L +T
)

= [6~(2+~)]1/2
~ 1- ~ ~(1- ~) (10)

This coincides with ao =0 when Am= A., i.e. for

~ = ~c= -2 + J.i5 = 0.1213 (11)

as found in Ref. 5.

We note that the curves for A. and Amcross at the compressibility critical point:
i.e. this point is the one that corresponds to the largest value of T along the spinodal
curve, and at the same time yields the largest value for which the two solutions merge.
(See Fig. 1 of Ref. 5.) At the latter maximum the relation (10) between T and ~has
to be fulfilled. In addition the derivative of T with respect to ~is zero at this point,
since T reaches a maximum. Differentiation of Eq.(10) with a factor 61 (~(1 -~)) first
taken out for convenience then yields

1-T= 1+~
[6~(2 + ~)]1/2

(12)

When solved with respect to ~this, together with (10), yields the same point as the
critical point defined by Eq. (11).

III. HNC FOR THE RPM AT LOW DENSITIES

The above analysis made for PY sticky spheres is relevant for the HNC for ionic
fluids. The reason is that ions at temperatures corresponding to their gas-liquid
critical point will act much like sticky spheres when ions of opposite charges meet
due to the strong Coulomb forces immediately outside the hard cores, if one neglects
the extended long range of the Coulomb interactions.

Furthermore for sufficiently low densities we show below that PY and HNC bound-
ary conditions are equivalent for sticky spheres. Thus the RPM in the HNC approx-
imation and sticky spheres in the PY approximation can be closely identified with
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each other, i.e. they can be expected to have common properties. One such property
will be the merging of solutions before the spinodal line is reached for low densities.
For the HNC ionic fluid case, however, the merging of solutions appears to occur
for all densities, as Belloni has found recently on the basis of an extremely accurate
numerical analysis.2 From the results in the preceding section we estimate where the
solutions should meet and compare with previous numerical results for the breakdown
of the HNC solution for the primitive electrolyte.

The HNC closure when restricted to a one component system for simplicity, reads

c(r) =exp (-{3tjJ(r) + ')'(r))- 1 - ')'(r) = (1 + f(r)) e'Y(r)- 1 - ')'(r)

with ')'(r) = h(r) - c(r). The PY condition (1) can be written

(13)

c(r) = f(r) (1 + ')'(r)) (14)

Expansion of Eq.(13) yields

c= (1 + J) (1 + ')'+ ~')'2+...) - 1 - ')'

=f (1 + ')') + (1 + J) (~')'2 + ...)

(15)

Besides being a smooth function the ')'(r) will also vanish along with density. Thus
the last term of Eq.(15) can be neglected, and the HNC condition becomes the PY
condition. Thus as an approximation we can apply Eqs.(6) and (7) to ionic fluids.
The failure of numerical solution, i.e. the merging of solutions, should occur at the
value of T implied by Eq. (10). For small ~ this becomes

r=/f (16)

The T can further be expressed in terms of the stickiness of the attractive Coulomb
interaction

tjJ = - e2
r (17)

Expanding with r = 1+ u we get

1 + f(r) = e-p.p(r)= eP*(l-u+".)
~ {3*-leP*6(r - 1) (18)

with {3*= {3e2. Comparison with Eq. (3) then gives T, which inserted in Eq.(16)
yields the curve where the solutions mergegiven by

~= ~{3*2e-2P*
48 (19)
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This analysis can also be applied if ions interact through shielded potentials of the
form

<p(r) =e2exp{-zr)r (2O)

which appears in the restricted primitive Yukawa model (RPYM).16 In this case, we
find the following relation

~= 1
48(1 + z)2f3*,2e-2P.'

(21)

with f3*' = f3*e-z. In Fig. 1 these curves have been plotted along with numerical
results for the Coulomb fluid (z = 0) and shielded RPM with z = 1 and z = 2.
These analytic but approximate predictions can be seen to yield quite accurate the
limiting slopes of the curve for low ~. With increasing shielding, a careful numerical
analysis shows that the relative separation between the analytical estimates and the
numerical non-solution loci shrinks since the range of the potential diminishes, and the
properties of the model thereby approach those of a sticky sphere system. One would
not expect its properties to approach those of the Baxter one-species sticky sphere
model, however, but rather those of a binary-mixture model with stickiness only
between unlike species which are held at equal density. Similarly because the above
mathematics was done in the context of a one-species model, our conclusions must be
qualified somewhat when applied to the RPM or RPYM, which are binary-mixture
models. For such models, the correlations that directly determine compressibility are
the density-density correlations or "sum" functions hs(r) = [h++(r)+ h+_(r)]/2 and
cs(r) = [c++(r) + c+_(r)]f2, which obey their own Orstein-Zernike equation. But for
the RPM or RPYM, the Coulomb or Yukawa potentials, respectively, do not appear
as the dominant contribution to cs(r) since [<p++(r)+ <p+_(r)]f2 = 0 for such <POIP(r).

Instead one thinks of hs( r) and cs( r) as describing a hypothetical one-component
system, then the effective <p(r) in that system is shielded even in the Coulombic case,
with a functional form and shielding parameter that are density and temperature
dependent. It is this effective <p(r) that has to be used to the analysis rather than the
<p(r)of (17) or (20) if a more quantitatively accurate result is desired. Unfortunately,
such an analysis can no longer be made in a simple closed form. However, to a
good approximation, the result is that using a <p(r)of the form given by (20) for
both the RPM and RPYM, with a renormalized e and z. In both cases the only
substantial difference between the RPM and RPYM cases comes from the fact that
the effective RPM <p(r) loses its shielding as p --+0 (because as p --+0, its shielding
becomes simple Debye shielding) while the effective <p(r)for the RPYM will retain
the shielding of the bare Yukawa potential even at zero density. It is this effect that
appears largely responsible for the much greater asymmetry (in p) of the RPM no-
solution curves compared to the RPYM curves that one finds numerically in the HNC
approximation.
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Our analysis, used with Eq. (20), applies directly as it stands to the single-species
hard-core Yukawa fluid and is also obviously relevant to the two-Yukawa version
of that model as well as the Lennard-Jones fluid. Our analysis therefore reveals
a common feature of the no-solution line whenever that line is reached before the

spinodal condition is satisfied. This feature is shared at low density by both the PY
and HNC approximations and is commonto both ionic and non-ionicmodels. -

In our earlier HNC study, we found numerically that the compressibility was
sufficiently high along the high-density side of the no-solution line to warrant the
assumption that it became a spinodal beyond a certain crossover density, as it does
in the PY case. Belloni's subsequent numerical results of extremely high precision2
and our own further numerical analysis instead strongly support the conclusion that
the spinodal is not reached for any accessible states. The good agreement we found in
our earlier paper1 between spinodal results for the structure factor and our numerical
low-k structure factor results (close to the no-solution locus at p =0.5) indicates that
the spinodal approximation is nevertheless useful near and on the no-solution line at
high densities, where the a/b2 of Eq. 22 is large compared to unity. Thus we include
our spinodal analysis as Section V.

IV. A NUMERICAL ANALYSIS OF SIMILARITIES WITH RELATED
SYSTEMS: TWO-YUKAWA PY AND LENNARD-JONES PY AND HNC

One may ask to what extent one can go beyond the above discussion in relating the
HNC results for the RPM to results for other equations and systems. In this regard
we must first recall a previous work by Gallerani, Vecchio and Reattoll in which a
careful study of the critical behavior of a two-Yukawa fluid in the PY approximation
is presented and its further extension to PY Lennard-Jones.12 In accordance with our
findings and with results for the PY sticky hard-sphere fluid (both for continuum4
and lattice-gas models13) Gallerani et al. show that there is a clear cut difference

. between the behavior of the system in the low- and high-density regions. Again as
in the RPM, a no-solution line is reached at low densities before the spinodal. In
contrast on the high density side they find that the no-solution curve is "hidden" by
the spinodal divergence, i.e. the spinodal is reached as one lowers the temperature
at a given density before the no-solution curve. Besides, Gallerani et al. propose
an expression that describes the behavior of the isothermal compressibility along a
isochore close to the no-solution line, namely

a

XT(T,p)= (b+yT*-T:)
(22)

where a and bare parameters dependent on p and T* = 1/p*j T: is the temperature at
the no-solution line. Hence, the compressibilitywould remain finite at T: exhibiting
a square-root branch point. Since as shown by Eqs.(13) and (14) HNC and PY
equations are closelyrelated at low density,we have carried the analysis of Gallerani
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et al. over to the RPM HNC and to a monoatomic Lennard-Jones fluid in the HNC

a.pproxima.tion. Moreover, Belloni has shown2 that in the HNC one must expect this
type of behavior at liquid densities (or high concentrations in the RPM), i.e., as
mentioned before the no-solution line is reached before the spinodal for all densities
investigated by Belloni. Note that Eq. (22) is in accordance with the divergence in
the quantity dX/dr depicted in Fig. 6 of I.

The adequacy of Eq.(22) to describe the isothermal compressibility behavior close
to the no solution locus can readily be appreciated in Fig. 2, where this quantity is
plotted VB. reduced temperature (T* = kT / € for the LJ system and T* = r =
kTu/e2 for the RPM). The lines represent a three-parameter non linear fitting of
the integral equation results to Eq. (22) using the complex method.17 Additional
calculations which we omit for brevity, show that Eq.(22) is not only valid in the gas
(low concentration) phase, but in contrast to what happens in the PY approximationll
it extends to densities well above the critical, as was suggested by Belloni.2 We
note in passing that if one attempts to replace Eq. (22) by its spinodal counterpart
(Eq.(7) in Ref. 12), which is valid for the PY-LJ system, the fitting is extremely
poor. Finally in Fig. 3 we have plotted the density dependence of the b parameter
in Eq. (22) which measures the deviation from true spinodal behavior. It can be
seen that as density increases the no-solution line very likely tends to squeeze itself
against a hidden spinodal, thus decreasing the value of b. It remains to be seen
to which extent the high-density behavior of the HNC equation is shared by the
RHNC approximation, for which Poll and Ashcroft15 found a spinodal singularity,
but without power law behavior. The RHNC approximation differs appreciably from
the HNC at high densities because of the T* and p-dependence of the reference system
bridge function, which does not appear in the HNC analysis.

V. PROPERTIES OF THE HNC SOLUTION VERY NEAR THE SPINODAL

We shall now derive some results concerning the HNC correlation functions for
ionic systems assuming that we are close enough to the spinodal so that XTI «
1 and we can use the approximation XTI ~ O. (As mentioned in the preceding
analysis, there is strong evidence that the condition XTI =0 is never realized in the
HNC.) Our approach extends earlier work on non-ionic fluids by Green using the
HNC equation18 and by one of us (GS) with Lebowitz, Baer and Theumann using
related approximations.19

Our results are based on the asymptotic (small-k, large-r) analysis of the solution
of the HNC equation. For models of interest to us here, it is most convenient to
do the analysis in terms of the correlation functions hs(r) = [h++(r)+ h+_(r»)/2
and hD = [h++(r)- h+_(r)]/2and the correspondingdirect correlationfunctions
cs(r) = [~+(r) + c+_(r»)/2 and CD= [c++(r) - c+_(r)]/2. The s and D functions
describe the density-density and charge-charge correlations, respectively. In terms of
the Fourier transforms hs(k) and cs(k) and the structure factor S(k) = 1 + ph(k)
(p = p++ p-) the OZ equation for the S functions takes the form
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S-I(k) =1 - pc(k) (23)

where the HNC closure implies that for r -+ 00

cs(r) = ~ [h~+ h~] + negligibleterms (24)

Assuming that S-I(O) « 1 so that we can use the spinodal condition S-I(O) = 0, we
find that on such a spinodal, a solution to the HNCequation willhave the asymptotic
form such that for large r and small k

hs(r)~B/r2, hs(k) ~ 21r2B/k

cs(r) ~ B2/2r4, cs(k) ~ -1r2B2k/2

(25)

(26)

so that on the spinodal

S-I(k) = Dk + O(k2)
D =p1r2B2 /2

(27)

(28)

(Off the spinodal line this sharp linear behavior about k = 0 will be rounded off
somewhat.) Moreover, using the OZ equation we can solve for B and D to find

B 3 - -4 -2 D - (2 2/3)-1 -1/3-1r p, - 1r P (29)

Associated with this solution is a hD(r) that, unlike hs(r), is damped by an expo-
nentially decaying factor as r -+ 00 and hence does not exhibit power law behavior
mr.

It is of interest20 to consider the effect of a cavity term added to the RPM pair
potential <p++(r),<p+_(r).This term has the form Ar-4 where

(t - 1)(z2 (J'3 + z2 (J'3 )e2
A = + ++ - --

16(2t + 1)t
(30)

where t is the dielectric constant of the solvent (relative to vacuum) and we shall
consider the case of monovalent ions of unit diameter, z~ = z: = (J'++= (J'--= 1.

In the presence of the cavity term, (24) becomes

cs(r) = -[3Ar-4 + ~ [h~+ h~] + negligibleterms (31)

This changes the relations among the constants in the solution of the HNC equation.
The introduction of A in (31) now yields a cubic equation for B

B3 - 2fJBA - Bg =0

where Bg = 1r-4p-2, the value of B3 at A = o.

(32)
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APPENDIX

To obtain Eqs. (7) and (8) we will use Baxter's factorization method which also
has been used by Hfljyeand Blum in Ref. 8. The Omstein-Zernike equation can then
be written as

rh(r) = -Q'(r) + 12~100 dt(r - t)h(lr - tDQ(t) (AI)

The function Q(r) is zero for r > R, as is c(r). (When c(r) has terms of Yukawa
form in this region the Q( r) will have terms of exponential form.) Furthermore the
connection to c(k), which we will need here (for k =0), is

1 - pc(k) =Q(k)Q(-k) (A2)

with

Q(k) = 1 - 12~ lR dreikTQ(r)

In our case the Yukawa term in c(r) shrinks to a 8-function at the hard-core
surface, i.e. we have R = 1. Inspection of Eq. (AI) then requires Q(r) to be of the
form

Q(r) =
{

iar2+br-aa+b)+,\ r:::; 1
0 r>1

Thus Q(r) is a step function, whereby Q'(r) becomes a 8-function ar r = 1. So with
(AI) we have

(A3)

h(r) = -1 + '\8(r - 1) r < 1+ (A4)

when the core condition also is included. Thus, comparing with Eqs. (4) and (5), we
have

1
\ - -'\1A - 12 (A5)
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We need the value of h(r) just outside the cS-function.For this, (AI) yields

h(1+) = 12~11 dt(1 - t)h(1 + - t)Q(t)

=-12~ 11 dt(I - t)Q(t) + 12~AQ(O)

(A6)

Before simplifying this we establish the equations that determine a and b by using
Eq. (AI) for r < 1. We get

-r = ar - b - 12~11 dt (r - t)Q(t)
or

b= 12~11 dt tQ(t)

1 - a = 12~11 dt Q(t)

(A7)

With Eq. (A3) inserted this yields

(1 - 4~)a - 6~b= 1 - 12~A

-3~a - 2(1 + 2~)b=-12~A
(A8)

These equations give the solution

a = 1 + 2~ - 12~(1 - ~)A
(1- ~)2

b= -3~ + 12~(1 - ~)A
2(1- ~)2

(A9)

(AIO)

This value for a inserted in Eq. (A2) via (A7) gives Eq. (8) with A related to Al by
Eq. (A5).

Utilizing Eq. (A7) in (A6) we finally get

1 + h(I+) = a + b + 12~AQ(O)
1

= a + b + I~A( --a - b + A)2

= 1 + a2 - 12~A+ 12~A2(I - ~)2 1- ~ (All)

which using Eq.(2) and the continuity of y(r) at the core yield the sought Eq.(7).
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FIGURES

FIG.!. No-solution region for the HNC equation (delineated by solid lines obtained
from numerica.l solution) for the pure RPM and for shielded RPM ( z = 1 and z = 2)
compared with low density theoretical estimate (dotted lines) given by Eq. (19) and Eq. (21).

FIG. 2. Isothermal compressibility vs T* for Lennard-Jones and RPM fluids in the
HNC approximation in the vicinitiy of the no solution locus. Solid lines denote a a non
linear fit to Eq.(22) and points are integral equation results

FIG. 3. Density dependence of the b parameter in Eq. (22) for Lennard-Jones and
RPM fluids in the HNC approximation. Lines connecting points are drawn as a guide
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