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SOLUTION SPACES AND CURRENT REGIMES IN INFINITE
NETWORKS *

A. H. Zemanian

Abstract — The unique current regime in a transfinite network under the finite-power require-
ment can be found by searching a solution space for the current regime that satisfies a generalized
form of Tellegen’s equation. However, there are four different spaces that may be searched, and
the current regime will depend in general on which space is chosen. This is shown by examples.
Furthermore, it is proven herein that node voltages will be unique whenever they exist under two

of the solution spaces; this is not so for the other two spaces.

1 Introduction

In a finite resistive network with branches indexed from 1 to n, any vector i = (¢1,...,1,) of branch
currents satisfying Kirchhoff’s current law can be decomposed into a sum of loop currents. To find
the unique current regime for the network excited by a given set of sources, we search within the
span of all loop currents to find that member of the span whereby Ohm’s law and both Kirchhoff
laws are fulfilled. This is the essence of a mesh analysis. On the other hand, for an infinite resistive
network any current vector has infinitely many branch-current components, and moreover there are
several different spaces in which one may search for the solution current vector i = {¢;};¢, where J
is the branch index set. In fact, i will depend in general upon which solution space is chosen. These
several degrees of freedom arise from the fact that infinite networks are mathematical abstractions,
which can be constructed in several different ways. Moreover, Kirchhoff’s laws fail in general, and
the search has to be based upon a more fundamental principle. A generalized form of Tellegen'’s
equation serves this purpose whenever a finite-power regime is required.

So, why deal with infinite networks at all? One reason is that they have a variety of practical
applications wherein they are advantageous as compared to finite networks [1, Chapters 1 and
8]. More importantly, their theoretical development creates new knowledge, which in time and in

conjunction with other theoretical advances will assuredly feed back practical applications in the
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long run. Basic theoretical research would be crippled if at every step a practical application was
demanded. We submit this brief as a contribution to the fundamental theory of electrical circuits.

Our purpose is to point out four different spaces in which one may search for i. Each will yield
a different 1 for suitably selected networks. Space limitations for a Transactions Brief prevent us
from presenting all the definitions and results used herein from the theory of infinite networks.
These are all available in either [1], [2], or [3]; however, enough examples are given to provide an
understanding of our ideas without recourse to those sources. The “fundamental theorem” we shall
be referring to below is stated by [1, Theorem 3.3-5], [2, Theorem 10.2], and [3, Theorem 5.2-8].
The second space K discussed below has been defined and explained in prior works. The first,
third and fourth spaces £, 7, and S are introduced here for the first time. It has been previously
established that under K and (therefore under £) node voltages need not be unique even when they
exist [3, Section 5.5]. We show herein that under 7 and S node voltages will always be unique
whenever the exist.

Consider a transfinite electrical network N having countably or uncounbtably many branches
with each branch being in the Thevenin form of a positive resistor r; in series with a voltage source
of any real value e;. Regarding notation, all summations will be over the branch index set J, unless
otherwise indicated; thus, - will mean }";c;. (See [3, Appendix B] for an explanation of series
with uncountably many terms.) We assume that Zefrj—l < oo in order to ensure a finite-power
regime as dictated by the fundamental theorem. Z will denote the set of all branch current vectors
isuch that ) i}rj < o00; that is, each i € 7 dissipates only a finite amount of power but is otherwise
unrestricted. For instance, i € 7 need not satisfy Kirchhoff’s current law, nor need the branch
voltages corresponding to i satisfy Kirchhoff’s voltage law. Z becomes a Hilbert space when the

norm of each current vector is taken to be the square root of the dissipated power.

2 Loop Currents

Let L£° be the set of all loop currents in Z; the loops for those currents may be either finite or
transfinite. Let £ be the closure of £° in £. L[ is a Hilbert space. Exactly the same proof as
that for the fundamental theorem shows that there is a unique current vector i € £ satisfying a
generalized form of Tellegen’s equation.

As an example, consider the infinite ladder of Figure 1 having a branch by connected through
1-nodes to its infinite extremities (i.e., to the two 0-tips) corresponding to the two one-way infinite

paths along the upper and lower horizontal branches. Sources may occur in any branches. Assume



for the moment that every branch resistance is 1 . Then, £° consists of loop currents in finite
loops only. L£° is void of any transfinite loop current passing through by because any such current
would dissipate infinite power. Therefore, the unique solution i has 0 A in bg. On the other hand,
if the ladder’s resistance values vary geometrically as indicated in Figure 1, then every transfinite

loop current will be in £°, and i will in general have a nonzero component in by.

3 Basic Currents

Depending upon the choice of the network N, £ can in general be expanded by adding basic
currents; these are precisely defined in the above cited works. They can be intuitively explained
as an infinite superposition of loop currents that together permit a spreading and thinning out of
a current regime as it flows toward infinity from some node of injection. This might allow such a
current regime to dissipate finite power, even when an infinite power dissipation would result were
that injected current to flow out to infinity along a single path.

An example of this is shown by the binary tree of Figure 2, wherein a current of 1 A flows from
the apex node n°, spreads out evenly through the tree, and then is gathered through a short at
infinity and returned through a source branch to the apex node. When every branch of the binary
tree is a 1 ) resistor, the total power dissipated is finite; were that 1 A current to flow along a
single path from n° to infinity, the power dissipation would be infinite. The current regime shown
in Figure 2 is a basic current and is the one dictated by the fundamental theorem.

For any network, the span of all basic currents in Z is denoted by K°, and the closure of K? in
7 is denoted by K. We always have £ C K, and in general K is larger than £, as is the case for
Figure 2. In fact, for that figure, £ is void but K is not void, and the corresponding fundamental

theorems yield i = 0 under £ and i # 0 under K.

4 Tour Currents

Recall that £ and K are constructed out of loop currents and that any loop is a tracing through
the network that starts and ends at the same node but otherwise never repeats a node. On the
other hand, let us define a track as a finite sequence { Py, Ps,..., Pn} of oriented two-ended paths
such that, for each k = 1,...,m — 1, the last node of P, embraces or is embraced by the first node
of Pr41. It is not required that the these paths be disjoint. Thus, a track may pass through a
node or branch several times — but at most finitely many times. Next, let us define a tour to be

a track such that the last node of P,, embraces or is embraced by the first node of P;. Thus, a



tour generalizes a loop. Finally, we take a tour current to be a constant flow f of current passing
along a tour. Thus, if a tour repeats a branch, the corresponding branch current is a multiple
of f obtained by adding and/or subtracting f for each passage of f through the oriented branch,
addition being used when the flow and branch orientation agree, subtraction otherwise. In fact,
the branch current may be 0 by cancellation. Note that a loop current is a special case of a tour
current. Figure 3 illustrates a tour current along a transfinite tour. This is the simplest network
that must sustain a nonloop tour current if a certain branch is to have a nonzero current, and it is
a ubiquitous one because it occurs as a subnetwork in many more complicated networks.

Let 7° be the span of all tour currents in Z, and let 7 be the closure of 7° in Z. Then, exactly
the same proof as that for the fundamental theorem based on K establishes a fundamental theorem
based on 7. Moreover, we now have that £ C 7. A branch may have a nonzero solution current
under 7 but a zero solution current under either £ or K. In fact, this is the case for the example of
Figure 3, (for whose network £ = K — a particular but not a general result). Indeed, the current
in branch by can be nonzero under 7 but must be zero under £ = K whatever be the choices of the
voltage sources. For that network, the voltages at the two 1-nodes are not unique under £ or K (3,
Section 5.5] but are unique under 7. The latter points to a general result, which is worth stating
explicitly.

In the following, that a track or tour is permissive means that the resistances in the track or
tour sum to a finite a;nount. Let ny and np be any two totally disjoint nodes of the transfinite
network N, and let T be a permissive track starting at ng and stopping at ny. We define the node
voltage vy at ng with respect to T to be the sum > (7) £v;, where 37 () denotes a sum along the
branches of T with an additional term for each occurrence of a branch as T is traced from ng to
ng and where the + (resp. —) sign is used with v; if the orientations of the branch b; agrees (resp.
disagrees) with that tracing of T for the considered occurrence of b;.

Theorem. Let N be a transfinite network with all branches in the Thevenin form and with
Zefrj'l < 00. Let the current regime in N be that dictated by the fundamental theorem based on
the solution space T. Let n, be a chosen ground node and let ng be any other node. Let Ty and T,
be two permissive tracks in N starting at ng and stopping at ng. Then, the node voltage assigned
to ng along Ty is the same as that along T;. (That is, under the fundamental theorem based upon
T, node voltages will be unique whenever they ezist.)

Proof. Let —T) denote the track T} with a reversed orientation — that is, —T7 starts at ng and

stops at ng. Let (—~T1)UT; denote the tour consisting of —7} followed by T>. By the fundamental



theorem based upon 7, Y v;s; = 0 for any s € 7. Upon choosing s as a tour current along

(=Ty)UT,, we find that s € 7 because of the permissivities of P; and P;, and from this we obtain
E(Tl) :i:’U] = Z(T2) :fU]‘. QED

5 Splayed Currents

7T can be expanded into a generally larger space § in much the same way as £ is expanded into K.
For certain networks this will permit a thinning out of currents as they flow toward infinity, thereby
enabling a finite-power current distribution that may not be available in 7. A splayed current is
specified as is a basic current {1, page 154], [3, Section 5.2] except that loops are replaced by tours.
We define a splayed current to be a sum i = },,cpsim, where M is a (finite or infinite) index set
and each 1,, is a tour current, such that each maximal 0-node and each branch meets no more than
finitely many tours of the i,,. Thus, a tour current is a special case of a splayed current. For i to
be in Z it is not required that any of the i,, be in Z; in fact, it is possible for i,, ¢ Z for all m,
whereas 1 € Z nonetheless. We now let S° be the span of all splayed currents, and let § be the
closure of 8§° in Z. This time, we have K C §. Once again, the proof of the fundamental theorem
extends to S; just replace K° by S° and K by S.

Figure 4 illustrates a particular splayed current I = Y >°_; I,, on a quarter-plane square grid
along with other branches connected to certain of the grid’s extremities (i.e., 0-tips). All branch
resistances are 1 2. The top three parts of that figure indicate i,, for m = 1,2,3,4,5. The
small circle labeled n, (resp. np) is a 1-node that connects to the 0-tip determined by the lowest
(resp. the next lowest) path of horizontal branches. The small circles labeled w,, denote 1-nodes
that connect to 0-tips determined by paths that wiggle rectangularly, passing along vertical and
horizontal branches. All of these 0-tips and their corresponding 1-nodes w,, are different from each
other. For m even (resp. odd), there is a branch at infinity connecting n, (resp. ny) to wy,, which
allows i,, to close on itself at infinity. The indicated pattern repeats itself for m = 6,7,8,... with
the vertical wiggles expanding upward and with the first (i.e., leftmost) wiggle shifting to the right
as m increases. The bottom part of Figure 4 shows the total splayed current i so far as the currents
within the grid are concerned. All the branches at infinity carry nonzero currents too, but are not
shown in this part. All the tour currents i, in i cancel to zero within the grid except on the squares
shown. Note that no i,, is a member of Z because, by itself, it dissipates infinite power. On the
other hand, i = } i, is in Z. This provides an example of how a splayed current in Z can be a

superposition of tour currents not in Z. Note also that with respect to i each current at infinity



passes through its branch but goes no further. This is yet another example of how Kirchhoff’s
current law can be violated in infinite networks.

The following always holds: £ C K C 8§ and £ C T C §; strict inclusion will occur for certain
networks. As with 7 — but in contrast to £ and K, we have the following:

Corollary. Under the fundamental theorem based on S, node voltages will be unique whenever

they exist.
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Figure Captions

Figure 1. An infinite ladder with a branch by at infinity connected to the two 0-tips of the upper

and lower paths of horizontal branches. The numbers denote branch resistances.

Figure 2. An infinite binary tree fed by a single 1 V source branch that gathers current through
a short (i.e., a 1-node) at infinity and feeds it back to the apex node n®. Every branch has a

1 Q resistor. The numbers near arrows indicated branch currents.

Figure 3. A transfinite network consisting of a series circuit of infinitely many parallel circuits and
a branch bg at infinity connected to the two 0-tips induced by the upper and lower branches.

The arrows indicate a tour current that passes through each branch once and only once.

Figure 4. The splayed current i = Y_, cprim discussed in Section 5. The quarter-plane grid is

shown four times to display i,, for m = 1,2,3,4,5 and also i.
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