)]

UNIVERSITY AT STONY BROOK

CEAS Technical Report 765

Record Search Time Evaluation
using
Divisible Load Analysis

Kwangil Ko and Thomas G. Robertazzi

Sept. 8, 1998

'

Record Search Time Evaluation using Divisible Load

Analysis

Kwangil Ko and Thomas G. Robertazzi, Senior Member IEEE
Dept. of Electrical and Computer Engineering
University at Stony Brook
Stony Brook, NY 11794
Phone: 516-632-8412/8400
Fax: 516-632-8494

E-mail: tom@sbee.sunysb.edu

September 3, 1998

ABSTRACT
Divisible scheduling theory is used to solve for the expected time for searching
for both single and multiple data records in parallel database architecture. The
target architectures examined for illustrative purposes are the linear daisy chain
and single level tree network with single and multiple installment load distribu-
tion. The use of divisible load modeling and analysis yields elegant expressions

for expected search time

Index Terms

Daisy Chain

Database

Divisible Load Analysis
Performance Evaluation
Record Search Time
Tree Network

I. INTRODUCTION

Much of the computer revolution that is invisible to the public involves our increasing abil-
ity to create, manipulate and search very large amounts of information. Computer systems
which do this are known as databases. The amount of data available to individuals or or-
ganizations is growing rapidly each year. Databases can be implemented on any platform
including PC’s, workstations, minicomputers and mainframes. A variety of software spe-
cially designed for database systems is also available. However, it has long been known
that conventional computer systems can not satisfy the computational power requirement
of many recent applications. It has been estimated that there are 20,000 U.S. government
databases. Even twelve years ago, the Patent Office has a database of 25 terabytes of data
[1]. Conventional digital computers using typical software approaches do not satisfy the
requirements for efficient text retrieval. A software implementation of direct search on IBM
370/158 can process approximately 100,000 characters per second. But even if this speed
could be increased tenfold, it would take 7,000 hours to search the 25 terabytes in the U.S.
Patent Office’s data file system. To decrease the searching time, the platform should ideally
be a high performance platform such as a multi-processor or parallel computer having a
collection of processors that cooperate and communicate to solve large problems quickly.
The main advantage of parallel processing is improved speed. This speed depends on
the performance of parallel computation, communication speed, the ways in which a load is
distributed to each processor and so on. The paradigm of divisible loads has been considered
during the past decade as a tool for understanding parallel system performance. Divisible

loads are loads which can be arbitrary partitioned among a number of processors. Scheduling

divisible load in parallel system is studied in [4]. The computation of schedules providing the
minimal amount of solution time for linear daisy chain networks of communicating processors
is examined in [6] [8] [9]. An example of the inclusion of solution time, the time taken for
processors to report the solution back to the originator, is also presented. The determination
of the optimal division of processing load is discussed for both tree networks with front
end processors and tree networks without front end processors in [2] [5] [7]. Optimal load
allocation for load sharing a divisible job over processors interconnected by bus networks is
considered in [2] [3] [10].

The use of divisible load modeling and the associated analysis to evaluate parallel systems
has a number of advantages. Linear and continuous modeling results in a tractable analysis.
The underlying load allocation equations are deterministic so no probabilistic assumptions
are made in this part of the analysis. Furthermore the model is generic enough that it can
accommodate changes in technology and topology.

In this paper elegant expressions for the expected time to find both single and multiple
records are found. The architectures investigated are a linear daisy chain of processor and
a single level tree network. For the single level tree network both single installment and
multi-installment load distribution are considered. These target architectures are chosen to
be illustrative. The techniques described here can be used to model and solve for record
search time on other architectures. This work is significant for demonstrating the power of

divisible load scheduling theory for predicting search times.

II. THE SYSTEM MODEL

A parallel machine consists of a number of processors and an interconnection network to
tie them together. This work examines a specific parallel processing problem on specific
architectures that allows the study of the integration of communication and computation.

The situation to be considered involves a linear daisy chain of processors and a single
level tree network, as are illustrated in Figure 1 and 2 respectively. The model of a linear
daisy chain network or a single level tree network consist of (M+1) processors. Processor 0
is assumed to be the originating processor which distribute the fractions of the entire load to
M processors. Without loss of generality, it will be assumed that the load is instantaneously
delivered to the processor 0 and this processor becomes the load origination processor. Each
processor is interfaced with the network via a front-end communication processor for com-
munication off-loading. That is, the processors can communicate and compute at the same
time [4].

The following notation will be used throughout this paper:

a;: The fraction of the entire processing load that is assigned to the i** processor.

e w;: A constant that is inversely proportional to the computation speed of the it"

Processor.

e z;: A constant that is inversely proportional to the channel speed of the i** link
o T, : The time taken to process a unit load when w; = 1.
o T, : The time taken to communicate a unit load over link [; when z; = 1.

In particular, a bus network can be modeled by setting z; (i = 1,2,..., M) in the single

level tree network to a common value Z.

I1I1. ExPeECTED TIME OF SEARCHING FOR A SINGLE RECORD

In this section, the expected time of searching for a record in a dataset distributed over a
distributed database is considered. In particular we focus on a linear daisy chain network and
a single level tree network. In addition, multi-installment distribution in the single level tree
network is considered. All of the processors in the linear daisy chain network and the single
level tree network have a front-end processor. That is those processors may compute and
communicate simultaneously. The time to send a solution back to processor 0 in the linear
daisy chain network or the root processor in the single level tree network is ignored since it is
assumed that the solution transmission time is small compared to the load distribution time.
It is assumed that all processors will eventually stop at the same time if the desired record is
not found. This is the required condition [9] [10] to minimize the time it takes to process the
entire dataset in the minimal amount of time (finish time) for the load distribution sequence.
Intuitively this must be so as otherwise the finish time could be improved by transferring
load from busy to idle processors. Naturally, the record, if present, will definitely be found

by the finish time.

A. Finish Time

In this section we seek expressions for finish time to be used in later sections.

1. Linear Daisy Chain Network

In a linear daisy chain network pg is connected to p;, which is connected to p, and so on.
Let po be the left most processor and pps be the right most processor. Also number the links
1,2,--+, M from left to right. Figure 3 is a timing diagram for a linear daisy chain network.
Communication appears above the horizontal axis and communication is below it. It can
be seen that the processing time c;w;T,, of the i* processor equals the transmission time
(1—ay—a; —-++— &;)2g1Tem, from the i** processor to the (i + 1)** processor plus the
processing time a;y1w;1Tp, of the (i + 1)* processor where a’s are the actual fraction of

the load assigned to the i processor. Thus a set of recursive equations can be written:
Oli'lUiTcp = (1 — Qg —Qy — ** — O!,;)Zi+1Tcm + Oéi+1’wi+1Tcp 7 = 0, 1, LI M-1 (1)

Here (M + 1) is the number of processors. These equations, along with the normalization
equation, 3 i o; = 1, form a system of (M + 1) linear equations in (M + 1) unknowns.
These can be solved computationally by exploiting the recursive nature of the equations as

follows [4]: For i =0,

owoley = (1 —)21 Tem + aywi Ty (2)
or
o = w_()q-‘cp + 21 Tem o — 21 Tem
! ’lUchp 0 ’U)]Tcp
= Alao + B] (3)
where:
wOTcp + 21 1m
= - Tem 4
A T, (4)
Zchm
- _iem 5
B - -2l ®)

For: = 1:

alwchp = (1 — Qg — al)ZQTm + CYQ’UJQTCp (6)
Substituting the expressions for o; and solving, ay is expressed as follows.

Oy = A2a0 + Bz (7>

where:

A1 (wchp + Z2Tcm) + Z2Tcm

A = e ®)
B, = By (w1 Ty +wz£:m) — 2 Tem (9)

Proceeding in this fashion:
o; = Ao + B; (10)

Each pair (A;, B;) can be computed from (A;_1,B;_1) and the processor and link speed

parameters. In general, for ¢ =3, -+, M:

Ai—] (U),;_chp + ziTcm) + (1 + Z;:Ql Aj) Z,'Tcm

Bi-l ('w,‘_chp + ZiTc-m) + (23;21 Bj - 1) ZiTcm
wiTcp

Substituting these into the normalization equation, ¢ is obtained as follows:

_ 1- Eﬁl Bj
g = ——3r (13)
1+ Zj:l Aj
Thus, the optimal processing time is:
Tfim'sh(M) = aooncp (14>
1- ¥ B;
_ 'LU(]TCP . EZI J (15)
T+ 30014

2. Single Installment Distribution in Single Level Tree Network

The root processor, located at level 0 distributes a fraction of the dataset to each of its

children processors, each of which searches for a record in its allocated fraction. Let the

links and children processors be numbered 1,2, .-+, M. Each processor at level 1 will search

for a record as soon as it receives the entire single installment dataset fraction from the root

processor. Figure 4 contains the timing diagram of communication and computation for a

single level tree network with single installment load distribution. Let the children processors

be numbered 1,2, ---, M. For Figure 4, the corresponding recursive load distribution equations

are

aw;iTe, = asp12ip1Tem + Aipwig Tep 1=0,1,---

and the normalizing equation is:

M
3
i=0
Equation (16) can be rewritten as

(Wig1 + 2410 6
oy = | ———————) - Q441

w;

where:

0= T,

These recursive equations can be solved by expressing all the a; (i =0,1,---

terms of a s as
a; = R, -ay

where:

-1
R = (Wj+1+2j+1'(5> i=0.1...

: Wy

J=t

From equation (17), the value of cy; is obtained as:

1
1+ YR,

8373

Thus, the fraction of the processing load assigned to the m®™ processor is:

[0 (it
Jj=m Wy
am

eI () “

From Figure 4, it can be seen that the finish time T'finisn (M) is also the processing time of

the root processor given by apweT:p.

I—IM—l wz-+1+zz-+1-6
7=0 w;

Tfinish, (M) =) oncp (24)

M-11TM-1 {wiji1+2j416
j+1tZi+1
1+ 375 [T (w5

3. Multi-Installment Distribution in Single Level Tree Network

The expected time of searching for a reccrd is expected to decrease as the finish time become
smaller. Sending the load fraction in more than one installment so that a processor can begin
its computation earlier in time will make the finish time and the time to start searching
smaller [5].

Consider a system in which the load is distributed in NV installments. The installments
are such that all the processors will nominally stop computing at the same time instant. Let
@;; be the fraction of the j* installment assigned to the i** processor and «; be the fraction
assigned to the i** processor.

N
o= (25)
i=1
The timing diagram is shown in Figure 5, from which the recursive equations are expressed

as follows:

ai,NwiTcp = Q41N (Zi+1Tcm + wi+chp) 1=1,2,-- M-1 (26)

9

M i
;
o jwile, = E at,jZH-E ajv12| Trm
1=1

[=i4+1

i o= 1,2, M; Jj=12--- N-1

M N
anOTcp = E E ai,jZiTcm + aM,NwMTCp

i=1 j=1

The normalizing equation is given by

(28)

(29)

Note that in equation (27) the first summation in the right hand side vanishes when i = M.

For convenience, let:

Yo = Qo

Yig = Qi &

Using equation (31), equations (26), (27), (28) and (29) are rewritten as follows:

w;

1 .
%,N?T% = YitrN (2it1Tem + wir1Top) 1=12,---
(]

i+1

Tem

M i
w.
7i,j_z'fTCP = [Z Yi,; + Z%,jﬂ
1=1

=i+1

i = 1,2,-,M; j=1,2,-N-1

M N

UJMT
YoWolcp = Z Z YijTem + Ym,n *
i=1 j=1
+ 2,7 — 1

or

T4 .
7i,N=7i+1,N‘<‘7i+) 1=12- M-1

10

(36)

=
<
i
- '
M=
=2
&,
+
=
Ly
+
-
S

(39)

Here, the parameter o; is the ratio of the communication delay to the computation time of

a unit load for i* link and processor.

o = ziTcm
;= ——
w;iTep |

For further simplification the following notation is used:

Yij = Ymn e

Here:

k=i+(—-1)M

Now, equation (36), (37) and (38) are expressed in terms of v, 5 as follows:

M-1
0- 0
76,N=7M,N‘H(01+—l—) i=12.. M-1

=i

M i
Z Riyi-nym + Z Riyim| o

l=i+1 =1
1,2""7M; J=1121)N—1

Yij = TMN

?

M N
0o
Yo = YM.N Z Z Riy(i-1ymT0 + Ymn

o
i=1 j=1 M

11

(40)

(41)

(42)

In equation (44) and (45), there are two summations. Here these two summations are reduced

to one summation. Using (42), equation (44) and (45) are rewritten as follows:

M+(j-1)M i+iM
Yi; = YMN Z R+ Z Ri| o,
=it (j—1)M+1 I=1+jM
E+M
= O;: Z Rl
I=k+1
i = 1,2,--, M; j=12,--. N-1
and
MN-1 0
Yo = <Z Rk+1>(70+7MN >
k=1
5
= YMN (‘703'1' —0‘>
oM
where:
MN-1

R= ZI: Ri+1

Also Ryy = 1. Then, from equation (43) and (47), Ry can be expressed as follows:

MN-1
R =] [o,+i], k=(N-1)M+1,-- MN -1
Ik Oi+1
k+M
Be = U[mod(k—n}—l)ﬂ] ' ; £, k=12 (N-1)M
I=k+1

Here, mod(k/M) is the remainder after & is divided by M.

Substituting equation (41) and (49) into equation (39):

MN-1
(00R+ﬂ>+ ____[:gﬁ__l_i =1
oM k=1 z[mod(k—;,l)+l] <M

Then), ; can be obtained as follows:

1
TMN =
MN -1
<2M+Z m-{-GOR-}'%)

12

(46)

(47)

(50)

(53)

(54)

Thus, from the Figure 5, the finish time Tfinisn (M, N) is given by:

Tfinish (M N) = anOT(‘p

= ’Y()wOTcp

J¢o
= YM,N <00R + —'—> wolep

oM

UoR + :—181 T
= Wode
1 MN-1 R p P
e T 2k +ooR+ 2%

B. Time to Start Searching

Z[mod(%l)-kl}

Defining the time for each processor to start searching for a record is important since this

gives the lower limit of the amount of time till a record is found on a given processor. Let

S be the time for the m®™ processor to start searching. Then this time is given in table 1.

Table 1: Time to start searching

Model

So

S (m=1,--, M)

Linear Daisy Chain Network

0

Ty [(1 = Thooes) - 2 Tem)

Single Level Tree Network(N = 1)

m
ijl o 2 Tem

Single Level Tree Network(N > 2)

m
> 1251 2 em

C. Expected Time

In order to completely specify the expected time of searching, one must identify the random

variable that describes the record position in the dataset. Here, a record position variable is

described in terms of the uniform distribution and is denoted as X, where:

X ~ U(0,1)

13

(59)

Since the dataset is normalized, a record is positioned between zero and one. Further, it
is assumed that the dataset is very large. Thus, the distribution of a record position is
regarded as continuous variable. Now, considering the quantity that must be described as
the amount of time till a record is found on a given processor, this random variable denoted

by Y depends on and can be obtained from the random variable of a record position, X.
Y =g(X) (60)

Here, g (X) is the transformation function from X to Y.
Also Y,,, defined as the distribution of a record in time when the record is found in the

m®™ processor can be obtained from X using the individual transformation function g, (X).
Yo = gm (X) (61)

where gr, (X) depends only on wn,, the inverse speed of the m** processor. For the originating

processor, the transformation function is described as follows:
9o (X) = X’LUoTcp + So 0 S X S (&1)) (62)

For the m*™ processor, the transformation function, gn, (X) (1 < m < M) is as follows:

m~1 m—1 m
9gm (X) = <X -3 ai) UnTp+Sm Y a<X<Y o (63)
=0

=0 =0

Here, S,, is the time for the m*® processor to start searching as before. Figure 6 and Figure
7 depicts this relationship between X and Y. For the linear network and single level, single
installment tree network the transformation function of Figure 6 maps the record position (a
continuous variable from 0 to 1) into Being found on a one of the M+1 processors. Similarly
the transformation function of Figure 7 maps the record position into a processor for multi-
installment distribution or a single level tree network. In other words, the transformation

14

function, g (X) is the sum of the g, (X) defined as the distribution of a record in time when

the record is found in m* processor.
M
(X)) =) gm(X) (64)
m=0

From equations (61), (62) and (63), the probability density function of Y,,, denoted as

f(y|pm), is obtained as:

1
f(Y|pm) - Tfini.sh (M) - Sm

Sm <Y < Ttinisn (M) (65)

It is also assumed to be uniformly distributed on (S, Tfinisn (M)).

Assuming that a single record exists in the dataset, this record exists at one of the (M +1)
processors with the probability which is equal to its fraction of the normalized dataset. In
other words, if the record is in the fraction assigned to the m'® processor, its probability
equals to ayy,.

Pr {a record exists at pp,,} = am (66)

Now, from the definition of the expected value, the expected time of searching for a record

can be written as:
Tfinish(M)
BlY] - [y - £(y)dy (67)
0

From Bayes’ Theorem, the probability density function of Y can be expressed as:

M
fly) = Z f(y|pm) - Pr {a record exists at py, } (68)

m=0
M

> Hylpm) - om (69)

m=0

i

Here, the probability that a record exists at py, is already defined and equals to a,,. From

15

equation (69), equation (67) can be rewritten as:

Tinish (M) M
EfY] = /O y: [Z fylpm) - am} dy (70) ,

m=0

M Trinish (M)
= > am / y - f(ylpm)dy
m=0 0

From equation (65), f(y|pm) is only defined on (Sm, Tfinisn (M)). Thus the lower bound of

(71)

the integral on the right side of equation (71) can be substituted as S,, instead of as 0:

Ttinish (M) Trinisn(M)
/ y - £(y|pm)dy= / ¥ - Ky lpm)dy (72)
0

Solving the integral of the right hand side of the above equation by substituting equation

(65) yields:

Tfinisn(M) [Tinisn (M)]® = [Sm]? 1

f - d — finish m| 73

Lm Y (ylp) Y 2 Tfinish (M) - Sm ()

— Tfinish (M) + bm (74)

2
Therefore the closed form of the expected time of searching for a record is:
N Trimian (M) + S
_ finish m

Intuitively, this equation holds that the average record search time is the weighted sum of

the mid point of each segment weighted by the size of the segment.

IV. EQUIVALENT EXPECTED TIME OF SEARCHING FOR MULTIPLE RECORDS

The expected time of searching for a single record was considered above. The solution of
the expected time of searching for multiple records quickly becomes unmanageable since the

last record to appear in the dataset is not always the last record to be detected. This occurs

16

because the processors shift through the data concurrently changing the order in which
detection are made. However, in the case of a single processor, the last record is detected
last. Furthermore, since this is a linear model, the expected time of finding all of the records

can be obtained by applying the mean of the last record position.
BEY.] =g(E[XL]) (76)

Here, E[X;] is the mean of the last record position in the normalized dataset.
A multiprocessor will be modeled as a single equivalent processor. For the case of a
single equivalent processor denote for convenience the transformation function as geq ().

Accordingly let:
Y = geg (X) (77)

Furthermore, since it is clear that g., (-) depends on w,,, the inverse speed of the equivalent

processor, one can use the equation (62) as follows:
Geq (X) = XwegTep + Seq (78)

Here, Seq is the quasi start time of the equivalent processor. For a single processor, there is no
communication delay. However, in the equivalent single processor, the quasi start time should
be defined as virtual communication delay which occurs and is preserved in transforming a
multi-processor to an equivalent single processor. The general relation between X and Y is

given below by combining the last two equations is:
Y = XwegTop + Seq (79)

Since a multi-processor is considered as a single equivalent processor, the conditional proba-
bility density function in equation (65) can be directly applied to probability density function

17

of Y.

1

f(ly) =
(Y> Tfinish (M) - Seq

Seq < y S Tfinish (M) (80)

By the definition, the expected time of Y is derived as follows:

Trinisn(M)
BIY] = /5 y - f(y)dy (81)
f;finish.(M) 1
B /Seq nyinish (M) — Seq dy (82)
Seq + Tf;nz’sh (M))

To obtain Seq, let equation (83) equal to equation (75). Then:

M
Seq = Z (6799 (Tfinish (M) + Sm) - TfiniSh (M) (84)

m=0

Taking the expectation of both sides of equation (79) yields:
E[Y] = E [X] weqTep + Seq (85)

The expected value of the distribution X is u(=0.5) when the distribution X is uniformly
distributed on (0, 1). The speed of the equivalent processor w,, can be expressed as follows

using equation (85):

Weq =

M N
{Z g LLini2" (12‘4 L+ Sm Seq] (86)

1
pTep | 5,

From equation (84), S, is known. Therefore equation (86) is rewritten as follows:

1

M
Tim's M +Sm
Weq = ——-—T Tfinish (M) - E Qm ! h (2) (87)
'UI P m=0

However, equation (79) is still not linearly proportional. To create a linearly proportional
equation, change the variable Y as:
Y=Y-5, (88)

18

Then the relation between X and Y’ is:
Y' = Xwe, T (89)

It 1s linear.
Assuming that L records are distributed uniformly in the normalized data, the expected

value of the last record location is [11]:

=y

BlX.]=2pr— (90)

Similarly, E[Y] can be expressed like equation (76).
E[YIL] = E[XL]wequ (91)

L
= QwaechzJ (92)
or
L Al

E{YL] = QmeeqTCp + beq (93)

Substituting equation (84) and (87) into equation (93), the explicit form of above equation

is represented as:

L ul Ttinish (M) + Sm,
BIYi) = 27 | Troman (M) = D e 220]
m=0

M
+ [Z m (Tinisn (M) + Sm) — Ttinisn (M):|
m=0
The above equation is the expected time of finding all of L records in the dataset.
V. RECORD SEARCH EVALUATION

The finish time, the expected time (section III) and the equivalent expected time (section IV)
in a linear daisy chain network and in a single level tree network including multi-installment

19

load distribution are shown in Figure 8 and Figure 10, respectively. Clearly, as the number of
processors increases, all plots in Figure 8 and Figure 10 are decreased. Comparing these two
figures, the record searching time in a single level tree network are better than that in a linear
daisy chain network with the same parameters. In Figure 10, as the number of installments,
N is increased, one can achieve a faster record search time. In Figure 8 and Figure 10 only
one record exists in a dataset. In this case, the expected time and the equivalent time are
identical.

Figure 9, 11, 12 and 13 shows a comparison of the simulation results and analytic results
for the equivalent expected time. Assuming P records in a dataset, the time to search for
each record can be calculated using the transformation function in Figure 6 and Figure
7. The largest time to search among P records is the time to search for all records. The
stmulation result provides the mean time to search for all records. As shown in these figures,

the simulation result is very close to the equivalent expected time.

VI. CONCLUSION

In this paper, the expected time for single record and multiple record search time was
evaluated. Here, a linear daisy chain network and a single level tree network were used
as target architectures for illustrative purposes. It should be noted that networks as general
as a hypercube network can be analyzed using a spanning tree network load distribution
model. Furthermore a general tree network which has more than one level can be transformed
into a single level tree network by collapsing parent processors with children processors into

equivalent processors starting from the terminal node in order to solve for its expected time.

20

The methodology of section IV is then applicable. The use of divisible load theory to solve

for expected record search time is noteworthy as it leads to a tractable analysis and elegant

results. The approach taken here can be used for a variety of interconnection topologies and

load distribution schedules.

REFERENCES

[1] W. A. Carpenter, and G. S. Heman, ”Comparative Analysis of On-line Data Storage

[3]

[5]

Technologies,” Technical Letter 11990, MITRE Corporation, McLean, Virginia 1986

S. Bataineh, T. Hsiung, and T. G. Robertazzi, “Closed Form Solutions for Bus and
Tree Networks of Processors Load Sharing a Divisible Job.” IEEE Transactions on

Computers. 43. 10 (1994): 1184-96

S. Bataineh, and T. G. Robertazzi, “Special Section Correspondence: Bus-Oriented
Load Sharing for a Network of Sensor Driven Processors.” IEEE Transactions on Sys-

tems, Man, and Cybernetics. 21. 5 (1991): 1202-5.

V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi, Scheduling Divisible Loads in
Parallel and Distributed Systems. : IEEE Computer Society Press, Los Alamitos CA,

1996.

V. Bharadwaj, D. Ghose, and V. Mani, “Multi-installment Load Distribution in Tree
Networks With Delays.” IEEE Transactions on Aerospace and Electronic Systems. 31.

2 (1995): 555-66.

21

[6] Y. C. Cheng, and T. G. Robertazzi, “Distributed Computation with Communication

Delay.” IEEE Transactions on Aerospace and Electronic Systems. 24. 6 (1988): 700-12.

[7] Y. C. Cheng, and T. G. Robertazzi, “Distributed Computation for a Tree Network with

Communication Delays.” IEEE Transactions on Aerospace and Electronic Systems. 26.

3 (1990): 511-16.

[8] V. Mani, and D. Ghose, “Distributed Computation in Linear Networks: Closed-Form
Solutions.” IEEE Transactions on Aerospace and Electronic Systems. 30. 2 (1994): 471-

83.

[9] T. G. Robertazzi, “Processor Equivalence for Daisy Chain Load Sharing Processors.”

IEEE Transactions on Aerospace and Electronic Systems. 29. 4 (1993): 1216-21.

[10] J. Sohn and T. G. Robertazzi, “Optimal Divisible Job Load Sharing for Bus Networks.”

IEEE Transactions on Aerospace and Electronic Systems. 32.1 (1996): 34-39.

[11] H. L. Harter, “Ordering Statistics and Their Use in Estimation and Testing ,” Vols. 1

and 2, Superintendent of Documents, U.S. Government Printing Office, 1969.

Figure 1: Model of Linear Daisy Chain Network with Communication Links

Level O

Figure 2: Model of Single Level Tree Network with Communication Links

23

fipish
|

(1-op)2, T
by
aOWOTcp
(1-oy100)z, T,
P
a’lwl Tcp
(1_0‘0 %y —a2)Z3Tcm
P
aZWZTcp
(qoy—...—0)2y T,
P M-I
O Wat Tep
Py
a’MwMTcp

Figure 3: Timing Diagram for Linear Daisy Chain Network

24

Pt | e

7 oz T Joz,T 02T, AL,

aw,T o
P

oaw, T,
P
aw,T,,
P
ow, T
Py
aMwMTcp

Figure 4: Timing Diagram for Single Installment Distribution in the Single Level Tree Net-

work

25

E g S E &S £

S = S g g = S ~ 5

CINCEEACICE E

=) S = NN &9 8§83 YW g o83 N

g 82 N 8§ &8> WY o5 % Nz oz

- -z = Z =2t S22 %i 5 Z z2% =

I BT T I TJZ T TI I I T3 T

HEEEEEEEEEEEEEEEEEEEEEEEENE
B oo W Tep]
P L Wil l l 1wl 1 LW T J L I NWI Tep 1
P | oW Tep | | ai; W | Qi WA Top | laiNWﬂp]
P l Qi+l 1W+17lp| L (Xi+1;W+17Zp| (Xi+lj+lm+l7::pi l// l
i+l N Wi 1e
A I oM IWMTep | | oM W Tep l (XMj+M/MTcp| /Jf J
oMN WM Tep

Figure 5: Timing Diagram for Multi-Installment Distribution in the Single Level Network.

26

035 T T T T T T : T T T

0.3 .

T

0.25

02

Time

0.15

T
©
o
T
-
N
el
w
T
H

0.1 T —

0.05 =

0 1 1] 1 1 1 1 A]
1] 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Normalized Load

Figure 6: Transformation Function: Linear Daisy Chain Network, Single Level Tree Network;

Number of Child Processors, M = 5.

27

0.2 T T T T T T T T T

0.18

0.16

]
O
N

0.14

0.12

T

Time
o
—

T
o
w

0.06

0.04

T
T
-

0.02

0 ! 1 ! 1 | | L 1

1
0 0.1 0.2 0.3 04 05 06 0.7 08 0.9
Normalized Load

Figure 7: Timing Diagram: Multi-Installment Distribution in Single Level Tree Network;

Number of Child Processors, M = 5, Number of Installment, N = 3.

28

09l dashdot line: finish time
\\ x-mark: expected time
08L solid line: equivalent expected time
\
\.
0.7+ \
\
06 '
o [\
£ \
[N ‘
0.5

0.4

0.3
0.2 _
TTTe— ' e <
01 i 1 1 | L 1 i j.
1 2 3 4 5 6 7 8 9

Number of Processors

Figure 8: Linear Daisy Chain Network: Time vs. Number of Processors; One Record ; w; =

1,2=02Typ=1Tm=1.

29

0.9 solid line: equivalent expected time

*-mark: simulation resuit

Time

P=10
¥ * ¥
* *
s |
. P=1 |
% ¥
0.1 1 L L H L 1 i |
1 2 3 4 5 6 7 8 9 10

Number of Processors

Figure 9: Linear Daisy Chain Network: Time vs. Number of Processors and varying Number

of Records, P; w; = 1,2, = 0.2, T, = 1, Ty, = 1.

30

06 T T T T T T T

0.55 |- dashdot line: finish time 4
\\ x-mark: expected time
05y \ solid line: equivalent expected time 4
NN
Y
045 % '\ N
vt
N
04 N O . -
A\
o \..\ N
E . oo™ ~
= 0.35 N N

[a]
>
H

L

2 3 4 5
The Number of Children Processors

01
1

XX
~ —J()!

o0 XX
o
—
o

Figure 10: Single Level Tree Network: Time vs. Number of processors and varying Number

of Installments, V; One Record; w; = 1,2, = 0.2, T¢p, = 1, Ty = 1.

31

0.5

0.45

04

0.35

0.25

02

0.15

0.1
1

Figure 11: Single Level Tree Network: Time vs. Number of Processors and varying Number

solid line: equivalent expected time

*-mark: simulation result

Number of Children Processors

of Records, P; One installment (N =1); w; =1,2,=02,T,, =1,T,pn = 1.

05 T T T T T I T T

0.45 solid line: equivalent expected time 4

* *-mark: simulation result

04

0.35

Time

0.3

0.25

0.2

0.15

01
1 2 3 4 5 6 7 8 9 10

Number of Children Processors

Figure 12: Single Level Tree Network: Time vs. Number of Processors and varying Number

of Records, P; Two installments (N = 2); w; = 1,2, =0.2,Te, = 1, T, = 1.

33

0.5 T T T T T T T T
0.45 solid line: equivalent expected time 4
*-mark: simulation result

0.4

0.35

0.25

0.2

0.15

P=5
0.1 ¥ : ‘
1 8 9 10

Number of Children Processors

Figure 13: Single Level Tree Network: Time vs. Number of Processors and varying Number

of Records, P; Three installments (N =3); w; =1,2,=0.2,T = 1,T,;p = 1.

