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ABSTRACT

A kinetic mean-field theory for the evolution of the one-
particle distribution function is derived from maximizing the
entropy. For a potential with hard-sphere core plus tail, the
resulting theory treats the hard-core part as in the revised Enskog
theory. The tail, weighted by the hard-sphere pair distribution
function, appears linearly in a mean-field term. The kinetic
equation is accompanied by an entropy functional for which an
H-theorem was proven earlier. The revised Enskog theory is ob-
tained by setting the potential tail to zero, the Vlasov equation
by setting the hard-sphere diameter to zero, and an equation of the
Enskog-Vlasov type by effecting the Kac limit on the potential tail.
At equilibrium, the theory yields a radial distribution function
that is given by that of the hard-sphere reference system and thus
furnishes through the internal energy a thermodynamic description
which is exact to first order in inverse temperature. A second
natural route to thermodynamics (from the momentum flux which yields
an approximate equation of state) gives somewhat different results;
both routes coincide and become exact in the Kac limit. Our theory
furnishes a conceptual basis for the association in the heuristically-
based modified Enskog theory (MET) of the contact value of the radial
distribution function with the '"thermal pressure" since this associa-

tion follows from our theory (using either route to thermodynamics)



and moreover becomes exact in the Kac limit. Our transport theory

is readily extended to the general case of a soft repulsive core,

e.g., as exhibited by the Lennard-Jones potential, via by-now-standard
statistical-mechanical methods involving an effective hard-core poten-
tial, thus providing a self-contained statistical-mechanical basis for
application to such potentials that is lacking in the standard versions
of the MET. We cbtain very good agreement with experiment for the
thermal conductivity and shear viscosity of several saturated simple

liquids.



1. INTRODUCTION

A number of approaches have been taken fo; the development
of microscopic theories of transport in liquids. ?Notable among the
kinetic-equation approaches are those of Kirkwood;and co—workers,1
Born and Green,2 Rice~A11natt,3 and Davis, Rice and Sengers.4 In
addition, there is the Green—Kubo formalisms which relates linear
transport coefficients to integrals of time-correlation functions.
All of these approaches have produced transport theories which tend
to be technically complicated when applied to the liquid state. As
yet they have had only limited success in producing expressions for
transport coefficients that are both analytically tractable and
Isatisfactorily accurate. Furthermore, the kinetic theories do not
?appear to have been provided with entropy functionals and H-theorems
‘which characterize the irreversibility and approach to equilibrium
»of kinetic equations.6 In contrast, the kinetic theory for the
?dense hard-sphere fluid introduced and developed by Enskog,7a (SET),7b and
irecently improved by van Beijeren and Ernsf;8 in order to satisfy
:the Onsager reciprocal relations, is both analytically tractable and
Erelatively accurate. Moreover, this revised Enskog theory (RET) has
"been shown by Resibois9 to include an entropy functional and to have
an H-theorem. This theory clearly deserves to be extended to more
realistic potentials. Such aﬁ extension is given here.

Several routesYa’10

have already been developed for the purpose of
relating the transport coefficient formulae of Enskog theory and its

: ; sl i ; S 3 .
multicomponent generallzat10n58 to real fluids. The difficulties in



applying the SET and RET transport coefficient formulae lie-in relating
the contact values of the hard-sphere radial distfibution functions
(rdf) and the hard-sphere diameters that appear in the theory, to quan-
tities associated with real liquid systems (or eveﬁ with realistic
model systems such as Lennard-Jones systems). Enskog suggested7a the
interpretation of the contact value of the rdf not in terms of the
hard-sphere model but rather in terms of the '"thermal pressure" of the
fluid. Approaches based upon this association (which is only clear-cut
in the one-component case) have come to be known as the modified Enskog

a

theory (MET}.lO (Variants can be found in the determination of the

12

hard-sphere diameter.” ) Although useful in the dense gas regime,73

ﬁhe MET has met with only moderate success in application to saturated

1iquids.t%?

We describe here the properties of a kinetic mean-field theory
;nd appiy it to a description of the transport properties of saturated
%imple liquids. Its simplest version is a kinetic variational theory
based upon the maximization of entropy. Details of the derivation of
the resulting kinetic equation and entropy functional, and demonstration
?f an H-theorem, are given elsewhere..l'3 A potential with a hard-sphere
core plus an attractive tail is assumed. The hard-core part is treated
as it is in the RET to produce the collision term which is the source of
irreversibility. The tail, on the other hand, enters the kinetic equation
only linearly, in a mean-field type term. This mean-field term contributes
to the momentum flux in such a way that at equilibrium we obtain the
formula for fluid pressure that comes from approximating the full radial

distribution function by that of the hard-sphere reference system. An analogous



result is obtained for the equilibrium internal energy. As a
consequence, the equilibr?um_intefnal energy (and derived entrOp}'
‘and free energy functions) are all found to be exact throush first
order in potential tail strength and in inverse temperature.
A number of previous results in kinetic theory follow as

limits of our kinetic variational equation. The RET is recovered by
setting the attractive tail to zero, the Vlasov equation by setting

the hard—sphere diameter to zero, and an Enskog-Vlasov type equation14
by taking the Kac limit15 on the attractive tail. The theory plays

a role in kinetic theory analogous to that of the mean-spherical
approximation of equilibrium statistical mechan10516 which yields the
Percus-Yevick approximation when the tail is set to zero, the Debye-
Huckel approximation when the hard-sphere diameter is set to zero,

and a van der Waals-like approximation in the Kac limit. Viewed in
this context, the RET is conceptually analogous to the Percus-Yevick
approximation.
= ‘The thermal conductivity and viscosities which follow from our
kinetic variational equation are identical functions of temperature and
density to those of the RET. Thus, in appiication to these transbért phenc-
" mena, the kinetic variatioﬁal fhebry-énjoyé-fhe.mathematicél ffactaﬁiiié&IOf the

Enskog theory. Moreover, it provides a theoretical basis for the MET,

" which associates the contact value of the rdf (for a one component fluid)

with the thermal pressure, This association is a precise consequence of

 the systematic development of our theory for a hard-core potential with

arbitrary tail strength. Effecting the Kac limit upon the tail makes

this association exact.



Our theory naturally leads toward use of the statistical
mechanical proceduresly_zo that have become standard in equilibrium
theory to select a state-dependent hard-sphere reference potential in
relation to a full potential, e.g. of Lennard-Jones type. Thus we
have available to us a means of treating a much wider class of
potentials. That is, we have at hand several prescriptions for the
application of the hard-sphere model, in terms of hard-sphere quantities,
to a description of the transport properties of simple liquids whose
equilibrium properties are well-represented by the same hard-sphere
reference system.

Thé kinetic variational theory just described has a fundamental
limitation--it treats the contribution to transport coefficients coming
from the repulsive core of the pair interaction on the level bf accuracy
of the hard-sphere RET, and the hard-sphere RET is known to be in
significant quantitative error in its assessment of self-diffusion and,
to a lesser extent, shear viscosity at the high densities that typify the
iiquid state, We therefore go on to generalize the kinetic variational theory
to a kinetic mean-field theory in which the effect of the attractive tail

part of the pair interaction is handled just as before, but the

effect of the hard core is treated exactly, in principle. We shall call

" this our kinetic reference theory (KRT). The kinetic equation associated
with this theory can no longer be analyzed as before to yield explicit

- - i i g 21
transport coefficient formulae., However, through numerical simulation
~ the transport properties of the hard-sphere reference system are already

known, With this basis, it is easily shown that the transport coefficients

_of the kinetic reference theory are identical functions of density and .



temperature as the exact hard-sphere quantities, fbr which
an adequate description has been given by molecular dynamics simulation.21
It is well known that these MD quantities may be expressed‘in terms of the
RET expressions which are appended with suitable co;rection factors.22

We compare both corrected and uncorrected RET transport-coefficient
predictions to experimental data for several simpleﬂliquids along the liquid-
vapor saturation curve, using the results of the Weeks—Chandler—Anderson,17
Mansoori—Canfieldl8/Rasaiah—8te11,19 and Barker~Henderson20 prescriptions to
obtain a hard-sphere diameter that is state-dependent and depends also on
the chosen Lennard-Jones parameters. We obtain good overall agreement.
Moreover, for each transport coefficient at least one of the procedures for
obtaining the effective hard-sphere diameter yields results of remarkable
quantitative accuracy, and we begin in this paper to investigate the question
of which of the prescriptions is most appropriate for the computation of each
t%ansport coefficient for real fluids. We find in addition that excellent
aéreement with MD simulated shear viscosity can be had by insertion of WCA17
d;ameters into the corrected-Enskog shear viscosity formula.

f In section 2 we introduce the kinetic variational theory, construct
tﬁe hydrodynamic equations and identify the fluxes of mass, heat and
momentum, which contains the pressure tensor. In section 3, we describe
tﬁe thermodynamics associated with the theory and demonstrate how the
vériational theory justifies the MET procedure from first principles. 1In
section 4 we generalize to the kinetic reference theory and in section 5,
we apply the approximations we have developed to prediction of the thermal
conductivities and shear viscosities of saturated liquid argon, xenon aﬁd

oxygen, and also compare theory to MD simulation results. We close with

a discussion in section 6.



1T KINETIC VARIATIONAL THEORY, HYDRODYNAMIC EQUATIONS, AND FLUXES

For a single-species fluid with a pair potential of the form

¢(r) = =, r<ao

1

(1

$.(x), T >0

the dynamic equation for the one-particle generic distribution

function fl(xl,t} can be written asl3
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In (2), x; is the vector (ri,vi), m is particle mass, g=V,-V g ¢! (rlz) is
.' Al - _>-_> - = -
g¢t{r12}/dr12, Ty, is the unit vector r12/|r12|, € is the Heaviside
&unction and G(xlxz,t) is defined as the ratio of the generic two-
barticle distribution function to the product of two one-particle
functions,

i

? £, (x 5%y, ) /£, (x,8) (x,,t) = G(x; X5, t). (3)

lIn (2) and throughout this article, we display the arguments of
functions like fl’ f2, G, etc. in terms of either the x; or the
individual ¥i and 3&, depending upon the dictates of the particular
expressions in which they appear. The local number density{ average
velocity, and temperature are defined by
n(F;,t) = Jd? E (et (4a)
nﬁ(?l,t) = Jdvlv £, i(%: 5E) (4b)
-% nkT(?1 Jd m(vl—u)zfl(xl,t). (4¢c)



Equation (2) is exact, but G{xl,x t) is unknown in general. .The

2’
equation that we shall call the kinetic variational equation for f1

follows from using in (2) the approximation
o H8
G(x;,X,,t) = g, (¥;,T,[n) (5)

where ggs(r}, 2|n} is the form assumed by G for a hard-sphere system
(i.e. for ¢t = 0) in inhomogeneous equilibrium with number density
n(;;t). The equation for fl that results is implied by the
maximization of entropy subject to certain constraints appropriate
to the potential form given by (1), as we have shown elsewhere.l3
It is for this reason that we refer to the resulting theory as a
kinetic-variational (KV) theory. We shall now briefly summarize
some of its implications.

Throughout the following development G is given by (5).
Applying (4a) to (2), we obtain the continuity equation

a3 -
“z-n[rl,tJ~»V

> >
5 °nu(r1,t) = 0, (6a)

1

and applying (4b) to (2) we get the intermediate result, where
= e T S S -+ >
S— - -
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-
3 - ._1‘5 Fl ] e
§¥-nu+vl [m P+ nu u}— -n]Jdr dr2r32¢ (rsz)n r In)s(r

-

37T

21 > = AA T A >y HS - = ~
o JdvldszdG 0+g8(0-g) (vy-vylg, (rl,rl—ccln)
-+ > - A >
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Here nHS(¥ r.|n) = n@@ t)n(r t)g (r T |n) = nHS(¥ ; In).
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Symmetrization of the first term on the RHS of (6b) ylelds_
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The superscript s denotes a streaming contribution while t denotes a
contribution arising from the presence of the tail term.
Symmetrization of the second term on the RHS of (6b) yields,

where f2 = ggisflf1 is to be understood,

1
1 3 > > A S S - > A~ S
- 5-0 Vl Jdvldvzjdocja gb (o g}(vl—vl]L)dkfz(r1+l00,vl,r1
/\4‘\--}
i:fjo—ac,vz,t) (6d)
; E--I—V-PC.
\ m 1

The superscript c here denotes a contribution arising from the hard-
¢ore collision. Eliminate —E?t_n from (6b) using (6a) to obtain the

equation of motion:

‘ [Bat“u-‘?]u(r t)"f}l'v'(;’—g*‘?*?c) = 0. )

Apply (4c) to (2) to obtain the intermediate result

313 1 s+c 3 > <s+c > 1 g3
at[ nkT+—2~nmu ]+Vl [jT + 2nkTu+P u+-2~nmuu

+us (VP9 = 0,

which simplifies, when -,c%n, %ﬁ are eliminated via (6a) and (7), to:

rS+C

[3+uv1}§kT+v-3’S+°+P V.U =0 (8)

e

ot 2 L. d

which is the temperature equation. The streaming and collisional

10



heat fluxes are:

Ll Jﬁl%m(ﬁl-—ﬁ)z(ﬁl-ﬁ)fl (9a)
‘—J*C_I [ > = |, a8 > A > > > ;;*”{:l -
T =37 MO Jdvldvzjdcc-ge(c-g)(vl—vl)'[ 5 - u]
1 -+ P LT
X L}dkfz(r1+kco,v1,r1+k00—00,v2,t}. (9b)

4+ = =
Note that the potential enters the momentum flux, P = P° + PC 4 Pt,
but not the temperature-heat fluxes. The potential energy density
at (?,t) is given in general by:
- 1 > >

up(r,t) = Edeldxzfz(xl,xz,t)¢(r12)6{r1—r) (10a)

and in our case f_, = HSf £, yields
e
u+t_1d+d+HS++| 6+-+
p(r, ) = 5|dr dron, (rl,r2 n)¢(r12} {rl—r) (10b)
up on .. ;

hence Nt depends only upon gz'whlch does not couple to inhomogeneities
- in the temperature field in the one component, linear, case. Thus
there is no contribution from the potential tail to the heat flux.23 In
summary, we obtain heat and mass fluxes identical in form and content to
those found in the revised Enskog theory8 by following the procedure
used in ref. 24. There is an additional
term in the momentum flux, above and beyond that of revised Enskog theory,
which arises from the tail part of the potential. Furthermore, the
tail does no work on the system [cf. (8)] and this result is compatible
with the observation that the mean-field term does not contribute to
entropy production.13 Hence, as direct calculation bears out, we

can infer that the thermal conductivity, bulk and shear viscosities

that may be obtained from (2) with (5) via the Chapman-Enskog



development25 are identical functions of T and n to those of: the

SET (which yields the same three transport coefficients,
for a one-component fluid, as the RET). Thus, witﬁ respect to

these properties, the only (but hardly trivial) diétinction between
our kinetic variational theory, (2) and (5), and the Enskog theory7a
lies in the momentum flux, specifically in the tail contribution

found in the former.

12



ITT. THERMODYNAMICS OF THE KINETIC VARIATIONAL THEORY
As we have proved elsewhere,13 there is an H-theorem

associated with the KVT. At equilibrium, equation (3) relaxes into

the relation f;q = ggSeq fiq f?q, whereby we obtain for P° and P
the well-known results embedded in the SET7a
P* = okl (11a)
pe 2 %nc3n2kT y,(@n) (11b)

where yz(c;n) is the contact value of the hard-sphere rdf. In
addition we find, from (6¢),
pt = -.%g-nzijdr rséé(r)ggseq(r;n) s (11c)

<

S+ P + P*. We also find

and the full pressure is given by P = P

the energy per particle, e,

e=e *+ ep : (12a)
where
e, = KT (12b)
k 2
and, from (10b)
ep — %FA= Zﬂn[jdr r2¢t{r)ggseq(r;n). (12¢)

Hence the theory provides two distinct thermodynamic descriptions.
Using (12) and

3
3 13
ei=rgp B8y - (13)
we obtain the free-energy per particle, fe, originating from energy:

fe = stq-Zﬁn[jdr r2¢t(r)ggseq(r;n). (14)

13
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Alternately, using (11) and

P = nz{if] (15)
on T
we obtain the free-energy per particle, fp:
n
_ S _2m . o, HEEH - .o
fp fH 3 L}dn L?dr T ¢t(r)g2 (x;n'), (16)

In general, fp # fe. Both (14) and (16) contain the same exact
hard-sphere reference free energy fHS, however (14) also contains
all contributions to the exact f through order (kT)O, as found in

perturbation theory,26’27

whereas (16) is lacking a term of this order.
Hence, the thermodynamic descriptions, based upon (14) and

(16) will, in'general, be differenf;i_ﬂe now-distinguish three

cases.

(A) The Kac-tail Limit

Upon introducing the Kac potential15

6, (x) = Lin YV (yr) (17)
Y-+0

into (11lc) we obtain the well-known result

p¥ = _an® (18)

where a = —Zﬁljdx XZV{X) is a constant. Also, one obtains fp = fe =:
where f is the exact result as obtained, e.g. from the partition
function. Hence, in this 1limit, (17), the kinetic-variational theory
embodies the exact thermodynamic description.for a potential consisting
of hard-sphere core and an infinitely weak long-range attraction. In

particular, we find that the tail does not change the entropy of the

system, i.e.



__[2f) . .S
S—_BT = 5 .
n

The entropy obtained from f [either (14) or (16) in the limit (17)]
is precisely the same function which the nonequilibrium entropy
functional that accompanies the kinetic variational equation13
relaxes to in equilibrium.

In the 1limit (17), the mean-field term in (2) with (5) takes

the form of a: Vlasov mean-field term and the full kinetic equation

takes the form of an Enskog-Vlasov type equation%s’14 The full pressure
is given by [cf. (11)]:
P = nkT[1+2 10" o;n)] é 19
=n 3 n)’z(,n} -an . ( )

As already noted, the transport coefficients for this theory are the
same functions of T and n as those of Enskog theory,7ain which_yz
plays a fundamental role. Enskog used the equation of state, (19), as

a means to relate the hard sphere transport coefficients to experimental

-

quantities.28d The ingredients for a second approach,28b based upon the

association

2 __ 3 k [g’rp] % Wl
— - = Vv
% o yz(a,n) KT 5 (20)

where T[g%% is the "thermal pressure'" of the fluid under study, are
contained ii Enskog's paper.7a Upon differentiation with respect to T,
an identical expression follows rigorously from (19), which we now know
to be a good qualitative representation of the real-fluid equation of
state.

-Furthermore, in the limit (17), the tail contributions to the
transport coefficients obtained via more rigorous theory29 vanish, so
that the hard-sphere forms (for which Enskog theory gives an approximate

representation) represent the full contributions to the transport

coefficients,

15



(B) KVT with Arbitrary Soft Tail

In this case, the tail (assumed to have no discontinuity
except at r = 0) can take any form, but the hard-sphere diameter is
fixed. Then Pt, (11¢), and ep, (12¢), are still temperature
independent. Thus (14) and (16) yield the same entropy, SHS, as
before (case A) and in agreement with the kinetic-theoretic quantity,l3
evaluated at equilibrium. That is, the tail again does not change s

from the hard-sphere reference value.z7 Though the thermodynamic

descriptions derived from (14) and (16) disagree, both free

energies again lead to the association (20); despite disagreement

between tail contributions to the pressure both contributions are
temperature independent. Hence the KVT supports the association (20)
in a broader context than just the van der Waalsian equation of
state (19) which was the original basis for {20).7a We note
that the thermodynamics obtained from (16) is inferior to that
from (14); for example, the equation of state (11) is not as accurate as that
which follows from (14). Furthermore, because (14) is exact to first order in
perturbation expansion, the Gibbs-Bogoliubov inequaiity render527
£z fe (21)

where f is the exact free energy.

(C) The KVT with Optimized Thermodynamics

The hard-sphere diameter, 0, may be made state dependent by

choosing it to minimize the upper bound fe in (21), as was done by

16



MCIS/Rslg, or to optimally mimic a smooth-potential fluid, treated

approximately, in other ways.”’z0 This optimization is made on

equilibrium properties. We take up this last case'again in section 5
where the O(T,ﬁ) are used in a study of transport properties of

simple fluids.

17
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IV. KINETIC REFERENCE THEORY

A number of generalizations of the KVT may be contemplated. Here we
_consider ogg;of”them. _Computé;_simulations?l'hav¢ demonstrated large
;:Qeficiencies in th¢ RET shear viscosity and se1f~diffusion coefficients

at densities characteristic of the liquid state. It is clear that the

_same deficiencies are present in the KVT transport coefficients for the B

more general class of potentials treated by the theory.

Quantitative improvement upon the KVT in this regard can be had

by replacing the variation-based approximation (5) with the quantity

HS
G (xl,xz,t) (22)

G(xl,xz,t) =
in the collision term of (2), where the GHS is the exact two-particle
correlation function for the hard-sphere fluid. We call the theory

generated by this new equation

d > —18 .["*A 1 > HS » =
[§€+‘vl-v1]f1(xl,t) =5 5?? fl(xi’t) Jdr2r12¢t{r12)n(r2,t)g2 {rl,r2|n}

A il 5> A =
+00,v2,t)f1(r1,vl,t)f1(r +00,vi,t)

21 = A A F N S HS - > >
+0 Jdvzjdc o-g8(c+g){G {rl,vi,r 1 ¥00,V},

1

HS -> P -> ~ ?
-G (xl,rl—oo,vz,t]fl (xl’t)fl (rl-co,x 2,t) } (23)

the kinetic reference theory (KRT).

The GHS is unknown in form; therefore (23) is not solvable to
produce explicit transport coefficient formulae. However, the fluxes
and hydrodynamic equations may be constructed. It is found that the
mean~fiéld term enters these in KRT in the same way as for KVT.

Thus the potential tail does not enter the transport coefficient

formulae explicitly, and the thermodynamics embedded in KRT is the
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same as for KVT, since GHS relaxes to ggSeq at equilibrium. "Furthermore,

though we cannot obtain explicit transport coefficient formulae from
(23), the transport coefficients of the KRT are tﬁe exact hafd—sphere
transport coefficients for which a description hasjbeen obtained via
molecular dynamics21 (MD) from which in turn analytic expressions have
been developed22 in the form of density dependent multiplicative
correction factors appended to the transport coefficient formulae of

the SET.
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V. APPLICATIONS

We shall now explicitly consider the question of how to
interpret and determine the o and Yo appearing in our formulae [e.g.,
Eqs. (27)] when applying them to real fluids, contrasting our method
with that of the MET.

The MET interpretation typically has three ingredientsuloa’28
The association (20) provides two of these. First, the real-fluid
thermal pressure is inserted into the RHS of (20). To disentangle
03 and Y9s the low density limit, n -+ 0 (in which Yo = 1) is used,
thereby associatingrjswith the real-fluid second virial coefficient
and its temperature derivative. Finally, the Ao and (N appearing in
(27a,b) [which take the explicit forms (27c¢,d) in the SET]
are interpreted as the dilute-gas transport coefficients for the real
substance under consideration. The MET transport coefficients defined
in this way yield correct transport properties in the 1ow—density.
limit by construction. We note, however, that the assurance of an
internally consistent effective hard-sphere diameter of the fluid has
been lost through this combination of procedures. The problem is that
the o defined by (20) is both density and temperature dependent, while
the o defined by the low-density limit of that expression is only tempera-
ture dependent. Moreover, its temperature dependence is not in general
the same as that given by Eq. (27c,d) when either real-gas or model (e.g.,

Lennard-Jones) values for Ao and n, are taken.
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The interpretation that we have utilized here in our applica-
tions of the formulae (27) instead maintains a hard-sphere fluid
representation of the real fluid by consistently employing the same
state-dependent 0 throughout (27) and (28). In fact, by using any of
the three well-known approachesl7—20 available for assigning this o,
we automatically achieve a censistent portrayal of the real-fluid
equilibrium and transport properties through a single equivalent-hard-
sphere-fluid representation. This state-dependent diameter approach,
described in detail below, is conceptually and technically different
than the MET. Conceptually, the most striking advantage our model has
over the MET is that it does not rely on supplementary thermodynamic
(PVT and second virial coefficient) input, nor on dilute-gas transport
properties, both of which are essential ingredients in the MET. We
apply below the state—depeﬁdent—diameter approach to a description of
the thermal conductivity and shear viscosity of simple liquids which
are described by the Lennard-Jones 6-12 potential. Hence, as input
we require atomic masses, LJ parameter values, and only the temperature
and density of the state point. As we shall see, the results compare

favorably to those transport quantities experimentally determined for

argon, xenon and oxygen.



We model the Lennard-Jones potential

oy 22 o
)= o H_ﬂ - [—%J*m (24)

which we assume to be a good representation of the inter-particle
potential for real simple liquids. A number of ways have been
proposed17"20 to approximate the equilibrium properties of a liquid

described by the potential (24) through an optimally chosen hard-

éphere reference potential and a perturbing potential which is treated

in first order perturbation theory. We will not go into detail on
these techniques, but only summarize here the salient results.
Barker and Henderson20 (BH) focus on a piece of the repulsive part

of the potential (24) to obtain a hard-sphere diameter that is

temperature dependent and is closely approximated by the formula17b
kT
BH 1.068 + 0.3837%
G =0p; T (25)
1+ 0.4295

Weeks, Chandler and Anderson17a (WCA) consider the whole repulsive

part of the potential and obtain a hard-sphere diameter that is

temperature and density dependent. As shown by Verlet and Weis ,17b

22



a good approximation for the WCA diameter is given by the expression

e S 3 (26)
where {
Ao 1-4.25 ¥, +1.362 Y§~ 0.8751 Y3
1 - Y,
B = 210.31 + 404.6 =
: O ¥T

. 1 2

Yo=Y -y
|
- Tn M43,

As already mentioned, Mansoori and Canfield18 (MC) and Rasaiah and
Stell19 (RS) find the least upper bound to f [cf. (21)], i.e. minimize
fe’ (14), hence making o both temperature and density dependent.

(A) Comparison of Theory and Experiment

In the applications that follow we begin to assess which of the three

‘approaches to diameter assignment renders the most accurate predictions of

___the transport properties of real simple liquids and also what L-J parameter

~ values are appropriate. The experimental data for transport properties and

saturation lines used in this connection was obtained from ref. 30.

| Inasmuch as the models we use satisfy the conditions for
applicability of the principle of corresponding 5tates,31 the
iheoretical transport properties of the model fluids will appear
ﬁimilar. It appears that the noble liquids conform quite closely32
to a simple corresponding-states principle,31 and indeed this feature
has been exploited in ref. 30 to generate the transport properties of

xenon and krypton from those of argon. However, it appears that liquid

oxygen conforms more closely to a generalized corresponding-states
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principle which accommodates rotational degrees of freedom.33 These

qualitative differences manifest themselves in our results, as will

be seen.

The remaining ingredients that have gone into our comparison
of theory and experiment are:
: - 7a
1. The Enskog expressions:
thermal conductivity A

.y 3 e B B0
i 7,1+ 5m0’y, +0.757 (% mo”y, )] (27a)

shear viscosity Mg

n
£ - 5:[1+.§§ ﬂn03y24-0.761[%-ﬁn03y2)2] (27b)
0

and dilute hard-sphere gas values:

: A o= 43 .75 ¢ A7m yic] (27¢)
f 0 3 4 a? &
" 12

n, = 1.016 3% Vmk/m SL?-’ (27d)

2. Numerical CorreCtiOHSZZ'to Ng via molecular dynamics sin‘mlations.z1
 These corrections characterize the deficiency of KVT hard-sphere shear viscosity,
' éndmﬁhéhtappliéd to (27b) yield the KRT shear viscosity, n, which is con-
éeptualiy exact for the hard-sphere fluid. B

3. The Carnahan-Starling expression34 for Yot

i 3
l—ﬁnd

(28)
(1-% n0®)°

Yy T
4. For 0 we use the BH diameters obtained from (25), or the WCA
diameters obtained from (26), or the MC/RS diameters obtained by
minimizing (14), using an analytic approximation for the integral in (14)

which follows from the results of Larsen et al.35
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We note that for all but one experimental point (T = 150K for

argon) we observe that

MC/RS v 1y < "Aer,n) < R (T) | (29)
which implies that

M

WIC/RS . o JWOR o s 2 3B g 500

and similarly for shear viscosity, E and its MD corrected counter-
part, n.
In figures 1 and 2 are shown various predictions of theory

for €/k = 119.8K and o, ; = 3.405 R. This L-J set has been used

LJ

extensively for relating equilibrium theory to the properties of
argon, and, clearly, yields very good agreement with experiment for

both transport coefficients, with judicious choice of calculational

route. First we note that the KVT and KRT are superior to the DRS36 theory

MC/RS

in this application. We observe that O yields a good theoretical

A but a relatively poor n and n. Indeed, no amount of adjusting

E

€ and D AT force ﬂgC/RS or HMC/RS up without at the same time raising XMCXRS.

Thus the MC/RS approach exclusively is not the route for best fit of

both transport coefficients. The combinations XBH and nBH, or ANCA and

RORISWAN L.\ olf, OO0 e e o omeissssee s e s o
nkcA, can yield a closer fit (by adjustment of € and GLJ] than shown here,
however. The need for MD corrections on shear viscosity, i.e., the superiority ¢

of KRT to KVT, is apparent here, especially so at the lower temperatures and

higher densities. Save that visual comparison suggests the overall

fRS'and either n“CA or

best fit is to be had with the combination AMC
nBH, we cannot conclude from this figure whether a single thermo-

dynamic optimization or a combination of approaches is best.
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MC/RS WCA
a )

That a combination of approaches, e.g. X\

MC/RS BH ; ;
A / and n , seems necessary for overall best fit is strongly suggested by

nd n T
figure 3 which shows the diameters required via A and n to yield the experi-
mental results for argon. The Op clearly dominates 0y over most of the
saturation ]iﬁe, exceﬁt for the critical region where Ul fises'éharply in
responsémtb'a large anomaldus ihéfease in thermal cénductivity.

Another L-J set that was studied for argon is the pair (120K,
3.4 K) which gave good results in a study by Rahman37 of the velocity

autocorrelation function. This set yields a closer fit for AMC/RS

and HWCA than shown in figures 1 and 2; however, the difference would
not be apparent on the figure.

To emphasize the sensitivity to values of L-J parameters, we
display in figures 4 and 5 a comparison between theory and experiment
for xenon for different sets of L-J properties. The impact of a change
in L-J parameters is similar for A, Ngs M- It is O3 which has the
greater influence on the transport coefficients. For example, the set
(230.05K, 3.95 X) produces an HWCA that is indistinguishable from the
same quantity at (225K, 3.95 R), shown in figure 5. The L-J parameter
values used for these figures are within the range of values used in
correlating equilibrium properties, but were chosen to reflect better

MC/RS g nWCA

fits. The best combination here is A , but this result
does not confirm this pair as the overall best combination. These
results do seem to show that, for the simplest liquids, best fit to
thermal conductivity and shear viscosity can provide a stringent test

for choice of MC/RS, WCA, or BH optimization procedures and also for

L-J parameters.



Now we may inquire what changes arise when the liquid is not of
the simplest kind. A comparison for oxygen is shown in figures 6 and 7.
In contrast to the previous results, we find for the set (117.5, 3.386 ﬁ),

within the range given to equilibrium correlations, a good fit by AMC/RS

MC/RS

and n and for (117.5K, 3.3 ﬁ), whose 0, . is outside that range,

LJ

the indication that for slightly larger o, . a good fit is to be had by

LJ
the WCA or BH route. We can conclude, however, that MD corrections
appear necessary, in any case.

A comparison between KRT, MET and experimental values for
argon is given in table 1. Herein, KRT thermal conductivity is given

iIC/R , ; J ;
MEIRS and shear viscosity by nhCA, for the reasons outlined above.

by A
The alternate L-J set discussed earlier is used. The MET shear vis-
cosities in the table do not contain MD corrections, as do the MFKT
values. This omission may cause one to conclude that better agreement
could be had by the MET if MD corrections were included. In the
results of ref. 10a, however, it is seen that the MET predictions for
the shear viscosity of oxygen are much above the experimental values.
Therefore appendage of MD corrections would result in very great
disparity between MET predictions and experiment, especially far from
the critical point. On the other hand, as we have already shown, the
transition from KVT to KRT actually improves the shear viscosity
predictions.

In closing this section, we point out that a generalized

Eucken relation, derived by Mo and Starling,38 between thermal conduc-

tivity and shear viscosity has the form, for the simplest liquids,



Table 1. Comparison of theoretical and experimental values for

thermal conductivity and shear viscosity of saturated

liquid argon.

Thermal conductivitya

Temp.

T(K) >\E}(PT. AEC/RS XEET
85.0 132.2  138.9  ---
90.52 122.7 129.5 163.2
105.6 101.0 105.8 117.6
120.7 82.8 84.2 86.6
1.35.0 65.7 63.9 -—--
150.0 54.4 35.6 -

é units are mw/M-K
é units are cp
é from ref. 30
L-J parameters 0/k=120K, ©

from ref. 10a

LJ

Shear viscosityb

nEXPT. ngCA ZET
0.2778 0.3092 e
0.2364 0.251 0.182
0.1590 0.1705 0.138
0.1095 0.121 0.110
0.0752 0.084 e
0.037 0.042 —-—-

= 3.4 %

28



A = R({{’— n(1-+ 8.5 n¢]. (31)

Here R is the gas constant and nk, n, are the streaming and collisional

_ ¢
parts of the shear viscosity. The presence of AH, enthalpy departure
from the ideal state value, suggests that A should be sensitive to the
whole potential, and more so than the shear viscosity. This could

explain the seeming preference for the MC/RS route by thermal conduc-

tivity, at least for argon and xenon.

(B) Comparison of Theory and MD Simulation

As a last application, theory and MD simulation for the full

L-J potential are compared in table 2. The values €/k = 119.8 K and
LJ

MD approaches are accessible for comparison: the time-correlation
function method39 and nonequilibrium state simulation.40 Also shown
in the table are predictions of the state-dependent-diameter approach
using the formulae of KV theory (no hard-sphere MD corrections imposed
.on shear viscosity) and of KR theory (which includes the hard-sphere

21,22
).

In a broad sense, theory yields remarkable agreement with the

MD corrections on shear viscosity

MD results. However, the relationship between theory and MD simulation
is not made clearcut by this comparison. Hence, despite the specific
quantitative successes, expanded upon below, some caution must be
exercised in establishing a perspective. First of all, disagreement
between.predictions of the two MD approaches (cf. point 1) bespeaks the

need for further work in this area to develop a set of results which

o, . = 3.405 & are used (i.e. simulation is made for argon). Two distinct

29
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present a more consistent basis for comparison. Discrepancies between
results of 25% are probably not sufficient to clearly signal superiority
of one approach over another, at this stage of development in simulation
accuracy.

Point 1 shows a comparison between the MD approaches for the
same point. Though the results of ref. 39a have been criticized in

PR e R

refs. 40, Ashurst and Hoover have discussed at length
Culties of simulation near the triple point, represented by point 1, and
these presumably carry over to point 5. Note that nKR depends upon time-
correlation-function simulation21 and not nonequilibrium-state simulation,
so that our theory here is expected to be more consistent with results of
the formef type whenever there is discrepancy between results of the two
simulation types. (In ref. 40d a shear viscosity result near the triple
point obtained via a new nonequlibrium MD approach corroborates the
findings attributed to ref. 40a at point 1. Furthermore, in 40d is reported
a bulk viscosity of 0.14 cp.) Though inconclusive from a quantitative
viewpoint, this comparison shows that the MC/RS diameter is the best choice
for thermal conductivity prediction, and, in spite of disagreement with MD
results, the KR/WCA and KR/BH ratios for k/n are compatible with experi-
mental results.41

Points 2-4 show a closest overall agreement given by the KR/MC/RS
values, in contrast to the findings of the experiment-theory comparison.
These results from ref., 39b have been criticized in 39a as being about 30%
too small. We offer here further argument to support this assertion. First
we note that the MD results are almost uniformly smaller than the KR/WCA
shear viscosities by 20%. Like Levesque et al,, Gosling et al. compare

their MD results to predictions based upon an equivalent hard-sphere model
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such that the diameter is chosen to match first peaks between the L-J
and equivalent hard-sphere fluid structure factors. The former find a
value for this ratio of 0.85, whereas the latter group finds 0.82,
0.83, and 0.83 for the three points 2, 3, 4. Using the numbers and
equations supplied by Levesque et al.393 we compute a ratio of 1.16
for their point, i.e. it appears an error has been made in their
computation for the equivalent hard-sphere shear viscosity. If

this ratio is a reliable measure(which underscores the theme of

this section) then we conclude that Gosling's et al. results are
systematically low, by an amount that would bring them into close
agreement with the KR/WCA values.

Points 6-9 fall on or near the saturation curve which under-
lies the experimental results shown in figure 2, though the shear
viscosities themselves do not fall on that experimental line.

Herein we obtain extremely close agreement to MD results with MFK/
WCA theory, over a significant portion (101.8- 147.1 K, at least)
of the saturation curve. Clearly, here the WCA diameter represents
the best choice for shear viscosity prediction. Of course, this
result may not carry over to the comparison with experiment, since
there, the simple theory we are using must absorb a number of real-
system features which are not built into our L-J model. Finally
we note the overall quantitative superiority of the KR/WCA theory
for shear viscosity compared to the MET when applied to the

: 4
simulation at points 5, 6, 7, 8. 0a



Table 2,

Comparison of theoretical and MD values for shear (n) and bulk (k) viscosities (in cp) and

thermal conductivity (A, in mw/M-K) for “the L-J fluid, with ¢/k = 119.8 K, opy = 3.405 R.
MD results from ref. 39 are for Green-Kubo expressions, those from ref. 40 for nonequilibrium

MD simulation

p=1.418 gm/cc
T=286.5K

p=1.346 gm/cc
T=112.3 X

p=1.228 gm/cc
T=120.4 K

p=1.051 gm/cc
T=139.3 K

p=1.4327 gm/cc
T=83.9 K

0=1.2777 gm/cc
T=104.5 K

p=1.1621 gm/cc
T=119.56 K

Theory MD
MC/RS WCA BH
n 0.224 (KR) 0.210 (Kv) 0.217 (KV) 0.364 (Ref. 39a) [0,348*]
) 0.342 (KR) 0.377 (KR) 0.262%0.009 (Ref. 40a)
A 143.9 1720 177.6 124.1+ 7.5 (Ref. 40a)
K 0.20 0.247 02257 0.095 (Ref. 39a)
K/n 0.89 (KR) 0.72 (KR) 0.68 (KR) 0.26 (Ref. 39a)
n 0.174 (KR) 0.182 (KV) 0.187 (XKV) 0.183 (Ref. 39b)
0.226 (KR)
n 0.126 (KR) 0.137 (KV) 0.139 (XV) 0.128 (Ref. 39b)
| 0.153 (KR)
n 0.083 (KR) 0.092 (KV) 0.092 (KV) 0.077 (Ref. 39b)
0.095 (KR) R
n 0.239 (KR) 0.218 (KV) 0.225 (KV) 0.297 (Ref. 40a)
0.385 (KR)
n 0.1431 (KR) 0.1765 (KR) 0.1815 (KR) 0.1734 (Ref, 40a)
n 0.1060 (KR) 0.1249 (KR) 0.1268 (KR) 0.1255 (Ref. 40a)

Cx



Table 2, continued

8. p=0.8017 gm/cc n 0.0497 (KR) 0.0536 (KR)
T=147.1 K

9. p=1.2763 gm/cc n 0.142 (KR) 0.149 (KV)
T=101.83 K 0.175 (KR)

*Unpublished result by Levesque, shown in ref, 40d.

0.0536 (KR)

0.152 (KV)

0.180 (KR)

o

I+

.0579 (Ref. 40a)

172
0.005 (Ref. 40b)

£¢



VI. DISCUSSION

For a hard-core potential both KVT and KRT engender the association (20)
which is a primary element in the MET methodloa for applying the Enskog theory
transport coefficients7a to real substances. For soft~;ore potentials, however,
both KVT and KRT support a more general route in relating hard-sphere transport
coefficients to those of real substances, which utilizes a consistent interpre-
tation of the quantities o and Y5 as.hard-sphere quantities described in terms
of a state-dependent diameter chosen for representation of thermodynamics that
is optimal in one of several well-defined senses. In the applications investigated
so far, on saturated simple liquids, this use of a state-dependent diameter on a
fundamentally consistent level is quantitatively superior to the MET, and appears
to be conceptually cleaner and technically more tractable than the MET, In

42

addition, the mixture versions of KVI = and KRT lead to a natural generalization

of our methods,43 whereas, for the MET, no mixture analog of (20) exists.

¥
i

* Our numerical results already demonstrate a good agreement between theory
and e#periment, via the Lennard-Jones model and for L-J parameters appropriate
to deécription of equilibrium phenomena. Even though our theory is purely

i #
"clas$ical” in its description of the critical region, providing no allowance for
anomaious critical behavior, it yields good results even into the critical region
where' the thermal conductivity is known to exhibit a large anomalous increase and
the shear viscosity behavior is more regular.44 For thermal conductivity, in
particular, the results we obtain here are best regarded as describing the
background terms against which the éritical anomalous increases are measured.

e . 45 y
We note some related earlier work. For liquids, Ely and McQuarrie ~ used a BH/MET

combination whose accuracy is surpassed by our KRT/WCA approach. Complementary to



our work is g

that of Dymond and Alder?® who defined a temperat;re-dependent diameter
by fit of (19) to experimental gas pressures and thence obtained good
predictions for dense gas transport properties. Wé have begun a study
to determine the best combinations for diameter as%ignment, among the
MC/RS, BH and WCA approaches, and the best L-J parameter set for
overall best fit of theory to experiment. Results will be reported

at a later date. Failure of the MET to accurately predict results

47

obtained by molecular dynamics’® is not surprising in the light of

~ our work here, which suggests that it would be of great interest to
apply our state~dependent-diameter approach to the soft-sphere system
_studied by __?_i?_?vsr_-f?t_’_______ i

In summary, the kinetic variational theory is conceptually
?obust from several viewpoints. It plays a central role as a general
kinetic theory in relation to previously known theories. It furnishes
a theoretical basis for the MET. It interfaces cleanly with the
glready established program of optimized thermodynamic approximation,
%hereby interpretation of all variables in the transport-coefficient
formulae is made naturally in hard-sphere terms. The kinetic
variational theory also contains an entropy functional, and the kinetic
;quation gives rise to an H-theorem. The KVT shear Viscosify and

self-diffusion coefficients admittedly suffer the inaccuracies incumbent

" upon the velocity chaos assumption; we have shown how these can be
removed by generalizing the theory, The resulting KRT shares all the
___desirable predictive properties of the KVT above, although we canno

longer identify an entropy functional and prove an H-theorem.
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The alteration of the KV shear viscosity that is manifested
by the KRT is such as to improve the agreement between theory and
experiment and theory.and MD simulation, especially when the
formulae are interpreted in the framework of the state-dependent-
diameter approach. Under these conditions, our results suggest that
in comparison with MD simulation on simple liquids, the MC/RS and WCA
diameters are most appropriate to correlate thermal conductivity and
shear viscosity, respectively. In comparison with experiment, this
is not as clear, but the same correlation is strongly suggested by
our preliminary investigation.

The KV and KR theories we have introduced here are but two
members of a family of kinetic "weighted mean-field" theories defined
by Eq. (2). Both use the equilibrium pair distribution function ggs
of a hard-sphere system as the weight function G in the mean-field
term of (2) and differ only in the choice of the weight function in
the collision term. One can also contemplate using the full equilibrium
pair distribution function g, instead of the hard-sphere reference-
system ggs in either the mean-field or collision term; we hope to explore
the results of this and other choices as well as the rationale for the
kinetic equations they yield. A systematic study in this framework is

yet to be made and appears worthwhile.48
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

FIGURE CAPTIONS

Comparison of theoretical and experimental thermal conduc-
tivities for saturated liquid argon. The MC/RS (refs. 18,
19), WCA (ref. 17), and BH (ref. 20) curves reflect state-
dependent diameters based upon the L-J parameters eg/k =

119.8 K, 0, . = 3,405 A. The DRS result for the square-

LJ
well potential was taken from ref., 36,

Comparison of theoretical and experimental shear viscosities
for saturated liquid argon. Results without and with MD
correction factors are shown. The L-J parameters e€/k =
119.8 K, 0, 4
found via the MC/RS, WCA and BH procedures. The DRS result,

from ref. 36, does not contain MD corrections beyond the

basic DRS formula (ref. 4).

Effective diameters 9y and Un to reproduce experimental

thermal conductivity and shear viscosity of saturated liquid

argon via (27a) and (27b) with MD corrections, respectively.

Comparison of theoretical and experimental thermal conduc-
tivities for saturated liquid xenon. The L-J sets (225 K,
4.05 &) and (225 K, 3.95 R) underlie, respectively, the

subscript 1 curves and subscript 2 curves.

= 3,405 § underlie the state-dependent diameters
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Figure 5.

Figure 6,

Figure 7,

43

Comparison of theoretical and experimental shear viscosities
for saturated liquid xemon. Results without and with MD
correction factors are shown. The L-J set (225 K, 4.05 K)
relates to subscript 1 curves and the set (225 K, 3.95 K)

to subscript 2 curves.

Comparison of theoretical and experimental thermal conduc-
tivities for saturated liquid oxygen. The subscript 1
curves are based upon the L-J set (117.5 K, 3.386 R), and

the subscript 2 curves upon the set (117.5 K, 3.3 R).

Comparison of theoretical and experimental shear viscosities
for saturated liquid oxygen. The L-J set (117.5 K, 3.386 1Y)
relates to subscript 1 curves and the set (117.5 K, 3.3 R)

to subscript 2 curves.
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