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ABSTRACT

A kinetic mean-field theory for the evolution of the one-

particle distribution function is derived from maximizing the

entropy, For a potential with hard-sphere core plus tail, the

resulting theory treats the hard-core part as in the revised Enskog

theory, The tail, weighted by the hard-sphere pair distribution

function, appears linearly in a mean-field term. The kinetic

equation is accompanied by an entropy functional for which an

H-theorem was proven earlier. The revised Enskog theory is ob-

tained by setting the potential tail to zero, the Vlasov equation

by setting the hard-sphere diameter to zero, and an equation of the

Enskog-Vlasov type by effecting the Kac limit on the potential tail.

At equilibrium, the theory yields a radial distribution function

that is given by that of the hard-sphere reference system and thus

furnishes through the internal energy a thermodynamic description

which is exact to first order in inverse temperature. A second

natural route to thermodynamics (from the momentum flux which yields

an approximate equation of state) gives somewhat different results;

both routes coincide and become exact in the Kac limit. Our theory

furnishes a conceptual basis for the association in the heuristically-

based modified Enskog theory (MET) of the contact value of the radial

distribution function with the "thermal pressure" since this associa-

tion follows from our theory (using either route to thermodynamics)



2

and moreover becomes exact in the Kac limit. Our transport theory

is readily extended to the general case of a soft repulsive core,

e.g., as exhibited by the Lennard-Jones potential, via by-now-standard

statistical-mechanical methods involving an effective hard-core poten-

tial, thus providing a self-contained statistical-mechanical basis for

application to such potentials that is lacking in the standard versions

of the ~ffiT. We obtain very good agreement with experiment for the

thermal conductivity and shear viscosity of several saturated simple

liquids.
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1. INTRODUCTION

A number of approaches have been taken for the development
I

of microscopic theories of transport in liquids. I Notable among the

kinetic-equation approaches are those of KirkwoodIand co-workers, 1

Born and Green,2 Rice-Allnatt,3 and Davis, Rice and Sengers.4 In

addition, there is the Green-Kubo formalismS which relates linear

transport coefficients to integrals of time-correlation functions.

All of these approaches have produced transport theories which tend

to be technically complicated when applied to the liquid state. As

yet they have had only limited success in producing expressions for

transport coefficients that are both analytically tractable and

satisfactorily accurate. Furthermore, the kinetic theories do not

~appear to have been provided with entropy functionals and H-theorems
I

:which characterize the irreversibility and approach to equilibrium

,of kinetic equations.6 In contrast, the kinetic theory for the,

: dense hard-sphere fluid introduced and developed by Enskog,7a (SET),7b and
i

:recently improved by van Beijeren and Ernst8 in order to satisfy

the Onsager reciprocal relations, is both analytically tractable and

;relatively accurate. Moreover, this revised Enskog theory (RET) has

been shown by Resibois9 to include an entropy functional and to have

an H-theorem. This theory clearly deserves to be extended to more

realistic potentials. Such an extension is given here.

7a 10
Several routes' have alreadybeen developedfor the purpose of

relating the transport coefficient formulae of Enskog theory and its

. . . 8,11 f1
.
d Th d'ff ' . .

mu1tlcomponent genera11zatl0ns to real Ul s. e 1 lcu1tles ln
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applying the SET and RET transport coefficient formulae lie in relating

(rdf) and the hard-sphere

i
hard-sphere radial dist~ibution functions

I

diameters that appear in,the theory, to quan-
i

the contact values of the

tities associated with real liquid systems (or even with realistic

model systems such as Lennard-Jones systems).
7a

Enskog suggested the

interpretation of the contact value of the rdf not in terms of the

hard-sphere model but rather in terms of the "thermal pressure" of the

fluid. Approaches based upon this association (which is only clear-cut

in the one-component case) have come to be known as the modified Enskog

theory (MET).lOa (Variants can be found in the determination of the

hard-sphere diameter.12) Although useful in the dense gas regime,7a

the MET has met with only moderate success in application to saturated>
\

\1" "d lOa
I.lqUl s.

We describe here the properties of a kinetic mean-field theory

and apply it to a description of the transport properties of saturated

~imple liquids.I Its simplest version. is a-kinetic variational theory

based upon the maximization of entropy. Details of the derivation of

~he resulting kinetic equation and entropy functional, and demonstration

of an H-theorem, are given elsewhere. 1.3 A potential with a hard-sphere

core plus an attractive tail is assumed. The hard-core part is treated

as it is in the RET to produce the collision term which is the source of

irreversibility. The tail, on the other hand, enters the kinetic equation

only linearly, in a mean-field type term. This mean-field term contributes

to the momentum flux in such a way that at equilibrium we obtain the

formula for fluid pressure that comes from approximating the full radial

distribution function by that of the har~-sphere reference system. An analogous
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result is obtained for the equilibrium internal energy. As a
.. --.---.-

.- consequence, the. equi:Ilb:r~~um~:internalenergy (and.derived entropy..

and free energy functions) are all found to be exact throuQh first

order in potential tail strengt~- and _:il~_~!ly~!se temperaJ~!lJ'e.

--.'----

A number of previous results in kinetic theory follow as

limits of our ,kinetic variational equation. The RET is recovered by

setting the attractive tail to zero, the Vlasov equation by setting

the hard-sphere diameter to zero, and an Enskog-Vlasov type equationl4

by taking the Kac limit15 on the attractive tail. The theory plays

a role in kinetic theory analogous to that of the mean-spherical

approximation of equilibrium statistical mechanics16 which yields the

Percus-Yevick approximation when the tail is set to zero, the Debye-

Huckel approximation when the hard-sphere diameter is set to zero,

and a van der Waals-like approximation in the Kac limit. Viewed in

this context, the RET is conceptually analogous to the Percus-Yevick

approximation.

'~~.~=~-.~--~--=~~=T_h.e-.~~_e:rm~(co~~.~~_t~1,T.~ ty- aria-viscosl ties-wlifch- farrow -fi~:11=O~r:=-=~-=

.- kinetic variational. equation-are i<!enticalfimctions o.f ter.1perature-a~d- nu_..

- --

densi ty t.o those of the RET.
- . - --

Thus, in application to these tr1!IlsporJ. pheno-
p-- -- -. .-

mena, the kinetic variational theory enjoys the mathematical tractability of the

Enskog theory. Moreover, it provides a theoretical basis for the MET,

,-:' WliIchassocfates- the-.corifa-c:Cvalue-- o:f-fh-e--rd:tlfor-a- onecomponent fluid;

with the thermal pressure. This association is a precise consequence of

_._!tt_~ sys!~ITI~'t:i~__d~y~~()pmen!- Ef our th~orY..:f:o£CJ.__h_~~~--c°.E~_.E()!~E!i.~~_\Vi !J:1 ~

arbitrary tail strength. Effecting the Kac limit upon the tail makes

this association exact.
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Our theory naturally leads toward use of the statistical

mechanical procedures17-20 that have become standard in equilibrium

theory to select a state-dependent hard-sphere reference potential in

relation to a full potential, e.g. of Lennard-Jones type. Thus we

have available to us a means of treating a much wider class of

potentials. That is, we have at hand several prescriptions for the

application of the hard-sphere model, in terms of hard-sphere quantities,

to a description of the transport properties of simple liquids whose

equilibrium properties are well-represented by the sa~me hard-sphere

reference system.

The kinetic variational theory just described has a fundamental

limitation--it treats the contribution to transport coefficients coming

from the repulsive core of the pair interaction on the level of accuracy

of the hard-sphere RET, and the hard-sphere RET is known to be in

significant quantitative error in its assessment of self-diffusion and,

to a lesser extent, shear viscosity at the high densities that typify the

liquid state. We therefore go on to generalize the kinetic variational theory

to akinetic m~~n:!ield the~!y in which the effect-of the attractive tall

part of the pair interaction is handled just as before, but the

effect of the hard core is treated exactly, in principle. We shall call

this o~r kinetic-refere-ncetheory-(KRT) . The kinetic equationassociate~

with this theory can no longer be analyzed as before to yield explicit

L__'t~J].~~Q:rl_~Q~:(fi_~:l~1!tfO.!:IJ1ul~~~_H()",-~~_~~~_tl!!E~gb:num~!"_ical_~~~JJl~!atio~~-

the tr~nsp~t p~op-erti;sof-the-hard':'sp};:erere-fer-en-c-e--systeni--are--afreaay-

known. With this basis) it is easily shown that the transport coefficients

- - of the_kinetic- reference -theory --~I'e -identical- functions o( den~~_ty- ~d ---~---



temperature as the exact hard-sphere quantities,

I

\
\
I

\
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an adequate description has been given by molecula~ dynamics simulation.21

It is well known that these MD quantities may be expressed in terms of the

RET expressions which are appended with suitable cotrection factors.22
!

We compare both corrected and uncorrected RET transport-coefficientI
,

predictions to experimental data for several simple liquids along the liquid-

vapor saturation curve, using the results of the Weeks-Chandler-Anderson,17

Mansoori-Canfield18/Rasaiah-Stell,19 and Barker-Henderson20 prescriptions to

obtain a hard-sphere diameter that is state-dependent and depends also on

the chosen Lennard-Jones parameters. We obtain good overall agreement.

Moreover, for each transport coefficient at least one of the procedures for

obtaining the effective hard-sphere diameter yields results of remarkable

quantitative accuracy, and we begin in this paper to investigate the question

of which of the prescriptions is most appropriate for the computation of each
,

\

transport coefficient for real fluids., We find in addition that excellent

agreement with MD simulated shear viscosity can be had by insertion of WCAl?
. .

d~ameters into the corrected-Enskog shear viscosity formula.

In section 2 we introduce the kinetic variational theory, construct

t~e hydrodynamic equations and identify the fluxes of mass, heat and

momentum, which contains the pressure tensor. In section 3, we describe

the thermodynamics associated with the theory and demonstrate how the

variational theory justifies the MET procedure from first principles. In

section 4 we generalize to the kinetic reference theory and in section 5,

we apply the approximations we have developed to prediction of the thermal

conductivities and shear viscosities of saturated liquid argon, xenon and

oxygen, and also compare theory to MD simulation results. We close with

a discussionin section 6.
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II. KINETIC VARIATIONAL THEORY, HYDRODYNAMIC EQUATIONS, AND FLUXES

For a single-species fluid with a pair potential of the form

II
~(r) = 00, r < a I

! (1)

= ~t(r), r > a

the dynamic equation for the one-particle generic distribution

. . 13
wr1tten as

function f1 (xl,t) can be

[

3 -+

)

1 3
J

A ,

81:+ vloVl fl (xI,t) = ill~ fl (xI,t)o dX2 r12~t(r12)f1 (x2,t)G(x1,x2,t)
1

2
J

-+

J

-+ A -+

{

-+ -+, -+ . A -+, -+ -+, . -+ . -+

+ a dV2 d8 8og8(aog) G(rl,vl,rl + aa,v2,t)fl (rl,vl,t)f1 (r1+a&,v2,t)

-+-+-+ A -+-+ -+ A-t-

}- G(rl,vI,rl-aa,v2,t)fl (rl,vl,t)fl(r1-aa,v2,t) ,
(2)

. -+-+.. -+-+-+,.
In (2), xi 1S the vector (ri,vi)' m 1S part1cle mass, g=v2-vI' ~t(rI2) 1S
" A -+

1

-+

Ip~t(rI2)/dr12' r12 is the unit vector r12/ r12 ' 8 is the Heaviside
I

function and G(~~2,t) is defined as the ratio of the generic two-

particle distribution function to the product of two one-particle

functions,

f2(xI,x2,t)/f1(xI,t)fl(x2,t) = G(X1,x2,t).
(3)

In (2) and throughout this article, we display the arguments of

:functionslike fl' f2' G, etc. in terms of either the xi or the
-+ -+

individual r. and v., depending upon the dictates of the particular1 1

expressions in which they appear. The local number density, average

velocity, and temperature are defined by

-+

J

-+

n(r1,t) = dVlf1 (xI,t)
-+-+

J

-+-+

nu(r1,t) = dV1v1fl(X1,t)

3 -+

f

-+l -+-+2
TnkT(rl,t) = dVITm(vl-u) fl(X1,t).

(4a)

(4b)

(4c)



9

HS ~ ~

where gz (r1,rzln) is the form assumed by G for a hard-sphere system

(Le. for <Pt ::0) in inhomogeneous equilibrium with number density
~

n(r,t). The equation for f1 that results is implied by the

maximization of entropy subject to certain constraints appropriate

to the potential form given by (1), as we have shown elsewhere.13

It is for this reason that we .refer to the resulting theory as a

kinetic-variational (KV) theory. We shall now briefly summarize

some of its implications.

Throughout the following development G is given by (5).

Applying (4a) to (Z), we obtain the continuity equation

d ~ ~ ~

a-tn(r1,t) +'V1-nu(r1,t) = 0,
(6a)

and applying (4b) to (Z) we get the intermediate result, where

~

J
5 ~ ~~~~ ~~

P = dV1m(vl-u) (v1-u)fl(rl,vI,t),

r

~

) J
d ~ 1 s ~ ~ 1 ~ ~ A I HS ~ ~ ~ ~

a-tnu+'VI-\m P +nu u =-m dr3drZr3Z<Pt(r3Z)nZ (r3,rzln)o(r3-r1)

Z

J

~ ~

J
A A ~ A ~ ~I ~ HS ~ ~ A

I+ a dV1dvz da a-g8(a-g) (v1-vI)gZ (r1,rl-aa n)

~ ~ ~ A ~

- f1 (r1,v1,t)fl (r1-aa,v2,t).

HS~~ ~ ~ HS~~
I

HS~~
I

Here nZ (r3,rzln) = n(r3,t)n(r2,t)g2 (r3,rZ n) = n2 (r2,r3n).

(6b)

Symmetrizationof the first term on the RHS of (6b) yields

Equation (Z) is exact, but G(xI,xZ,t) is unknown in general.
The

equation that we shall call the kinetic variational equation for f1

follows from using in (Z) the approximation

HS ! (5)G(x1,xZ,t) = gz (r1,rZ n)
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I
\
\
I
\
\
I
\

1
J

+ + A HS + + I + + + + I ,
- 2m dr3dr2r32n2 (r3,r2 n)[o(r3-rl)-o(r2-rl)Ht(r32)

1
J

+ + + A HS + + I '
1

1: + + + +

= 2m 'VI- dr3dr2r32r32n2 (r3,r2 n)~t(r32) fA 8[A(r3-r2)+r2-rl]
1 01

1 r- f + +A HS + + + + + ,!

=2m 'Vl-~ dA dsssn2 (rl+As-s,rl+AslnHt(s?

=_1\7 _:tp
- m VI .

10

(6c)

The superscript s denotes a streaming contribution while t denotes a

contribution arising from the presence of the tail term.

where f2

Symmetrization of the second term on the RHS of (6b) yields,

= g~Sflfl is to be understood,

f f 1
1

1 3 + + A A A + A + +, + + A + +

- 2a 'VI- dVldv2 daaa.g8(a.g)(vl-Vl) 0 d\f2(rl+Aaa,vl,rl
A A +

+ Aaa-aa,v2,t)+-+
:: - 1 'V.pc

m 1

(6d)

the superscript c here denotes a contribution arising from the hard-

~ore collision. Eliminate ;tn from (6b) using (6a) to obtain the
,

equation of motion:

(

a +

J

+ + 1 +-t:t +t
n -at+U-'V u(rl,t)+m 'V-(P +P +P) = O. (7)

~pply (4c) to (2) to obtain the intermediate result

which

a
(

3 1 2

) [
-ts+c- -nkT +-nmu + 'V - J. +at 2 2 1 T

+ ~
+ U- ('V1 - P ) = 0,

simplifies, when adtn, aat'~ are eliminated via (6a) and (7), to:

[

d +

)

3 -+s+c +-+s+c +n -+ u.'V - kT + 'V -J + P ''V u = 0at 1 2 1 T . 1

3 + ~+c + 1 2+
-nkTu + P -u+ -nmu u
2 2

(8)

which is the temperature equation. The streaming and collisional
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heat fluxes are:

+s

J
+ 1 + + 2 + +

JT = dVl2"ffi(vl-u) (vl-u)fl

J J [

+t +
+ C 1 3 + + AA + A + +, + V +v
J = -ma dv dv dao.g8(o.g)(v -v). -1--lT 2 1 2 1 1

1

1
+ A+ + A A+

x dAf2(rl+Aoo,vl,rl+Aoo-oo'V2,t).

(9a)

- ~)

(9b)

++ ++ ++ ++

Note that the potential enters the momentum flux, P = ps + pC + pt,

but not the temperature-heat fluxes. The potential energy density

at (~,t) is given in general by:

+ I
f

+ +

up(r,t) = 2" dXldx2f2(xl,x2,t)~(r12)o(rl-r)

and in our case f2 = g~Sflfl yields

+ I
f

+ + HS + + + +

up(r,t) = 2" drldr2n2 (rl,r2In)~(r12)8(rl-r) (lOb)

hence ~depends only upon ~~ which does not couple to inhomogeneities

(lOa)

in the temperature field in the one component, linear, case. Thus

there is no contribution from the potential tail to the heat flux.23 In

summary, we obtain heat and mass fluxes identical in form and content to

those found in the revised Enskog theory8 by following the procedure

used in ref. 24. There is an additional

term in the momentum flux, above and beyond that of revised Enskog theory,

which arises from the tail part of the potential. Furthermore, the

tail does no work on the system [cf. (8)] and this result is compatible

with the observation that the mean-field term does not contribute to

- . 13
entropy productlon. Hence, as direct calculation bears out, we

can infer that the thermal conductivity, bulk and shear viscosities

that may be obtained from (2) with (5) via the Chapman-Enskog
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\

I

\

development25 are identical functions of T and n io those of. the

SET (which yields the same three transport coefficients,
I

for a one-component fluid, as the RET). Thus, with respect to
,

these properties, the only (but hardly trivial) di~tinction between

our kinetic variational theory, (2) and (5), and the Enskog theory7a

lies in the momentum flux, specifically in the tail contribution

found in the former.
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IIr. THE~IDDYNAMICS OF THE KINETIC VARIATIONAL THEORY

As we have proved e1sewhere,13 there is an H-theorem

associated with the KVT. At equilibrium, equation (3) relaxes into

. eq HSeq eq eq . s c
the relatlon f2 = g2 f1 fl' whereby we obtaln for P and P

the well-known results embedded in the SET7a

pS = nkT

c 2 3 2
)

p ="3 7fO n kT y 2 (0; n

(lla)

(lIb)

where Y2(o;n) is the contact value of the hard-sphere rdf.

addition we find, from (6c),

t - 27f 2[ 3, HSeq.
p - - Tn dr r <pt(r)g2 (r,n) ,

- - - - - --5 (,;

and the full press~re ~s given by P = P + P

In

(Uc)

+ pt. We also find

-- --- n --- -----

the_energy per particle, e, -- n - --_n

-- -- ---u--

e = ek + ep
(l2a)

where

3
ek = "2kT

and, from (lOb)
u

[ 2 HSeq
e = ~ = 27fn dr r <p (r)g 2 (r;n).

p n t

(12b)

(12c)

Hence the theory provides two distinct thermodynamic descriptions.

Using (12) and

d
e = - (Bf)aB n

(13)

we obtain the free-energy per particle, f , originating from energy:e

L

co
S 2 - HSe

f = ~ + 27fn dr r <p (r)g 2 q(r;n). (14).e t
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-

Alternately, using (11) and

P = n2
[

af

)an T

we obtain the free-energy per particle, f :
p

~

n

[
S 2n 3, HSe

fp = rH -3 dn' dr r <pt(r)g2 q(r;n').

In general, f f f. Both (14) and (16) contain the same exactp e

(IS)

(16)

hard-sphere reference free energy ~S, however (14) also contains

all contributions to the exact f through order (kT)O, as found in

perturbationtheory,26,27whereas (16) is lackinga term of this order.

Hence, the thermodynamic descriptions, based upon (14) and
- -- -- -- - ---- --- -- --- --- - - -- -- - -- --h

(16) wilL ~I}__gene~al,J~e diff_er--ent.~'Je now distinguish three -----

cases.

(A) The Kac-tail Limit

Upon introducing the Kac potentiallS

<P (r) = lim y3V(yr)
t y-+O

(I7)

into (lIe) we obtain the well-known result

t 2P = -an

where a = ~2n rdX x2V(x) is a constant. Also, one obtains f = f = f
Ope

where f is the exact result as obtained, e.g. from the partition

(18)

function. Hence, in this limit, (17), the kinetic-variational theory

embodies the exact thermodynamic description for a potential consisting

- of hard-sphere core and an infinitely weak long-range attraction. In

particular, we find that the tail does not change the entropy of the

system, 1. e.
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s = -[~~) = sHSn

The entropy obtained from f [either (14) or (16) in the limit (17)]

is precisely the same function which the nonequilibrium entropy

functional that accompanies the kinetic variational equation13

relaxes to in equilibrium.

In the limit (17), the mean-field term in (2) with (5) takes

the form of a: Vlasov mean-field term and the full kinetic equation

takes the form of an . 13 14
Enskog-Vlasov type equatlon. ' The full pressure

is given by [cf. (11)]:

23. 2
P = nkT[l +"3 TIa n Y2(a;n)] - an . (19)

As already noted, the transport coefficients for this theory are the

same functions of T and n as those of Enskog theory,7ain which. Y2

plays a fundamental role. Ellskog used the equation of state, (19), as

a means to relate the hard sphere transport coefficients to experimental

quantities.28a The ingredients for a second approach,28b based upon the

association

2 3 TraPI
"3 TIna Y2(a;n) = ~ nkT (20)

where T(~~)v is the "thermal pressure" of the fluid under study, are

contained in Enskog's paper.7a Upon differentiation with respect to T,

an identical expression follows rigorously from (19), which we now know

to be a good qualitative representation of the real-fluid equation of

state.

.Furthermore, in the limit (17), the tail contributions to the

ff
' .

b
.

d
. .

h 29 . htransport coe lClents 0 talne Vla more rlgorous t eory vanls, so

that the hard-sphere forms (for which Enskog theory gives an approximate

representation) represent the full contributions to the transport

coefficients.
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(B) KVT with Arbitrary Soft Tail

In this case, the tail (assumed to have no discontinuity

except at r = a) can take any form, but the hard-sphere diameter is

fixed. Then pt, (llc), and e , (12c), are still temperaturep

independent. Thus (14) and (16) yield the same entropy, sHS, as

before (case A) and in agreement with the kinetic-theoretic quantity,13

evaluated at equilibrium. That is, the tail again does not change s

27
from the hard-sphere reference value. Though the thermodynamic

descriptions derived from (14) and (16) disagree, both free

energies again lead to the association (20); despite disagreement

between tail contributions to the pressur~ both contributions are

temperature independent. Hence the KVT supports the association (20)

in a broader context than just the van der Waalsian equation of

state (19) which was the original basis for (20).7a We note

that the thermodynamics obtained from (16) is inferior to that

from (14); for example, the equation of state (11) is not as accurate as that

-whichfolfows -frO~ T14) PurthEi-rI!lore,because-- (f4T-Tsexact-to-flrs--i-order in-~- ----- - - -- ---- - - -- - - ---

perturbation expansion, the Gibbs-Bogoliubov inequaiity renders27

f < f
- e (21)

where f is the exact free energy.

(C) The KVT with Optimized Thermodynamics

The hard-sphere diameter, a, may be made state dependent by

choosing it to minimize the upper bound f in (21), as was done bye
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MC18jRS19, or to optimally mimic a smooth-potential fluid, treated

. 1
. h 17,20 Th. .,.. dapproX1matey, 1n ot er ways. 1S opt1m1zat,10n1S ma e on

I

equilibrium properties. We take up this last case; again in section 5

I

where the a(T,n) are used in a study of transport properties of

simple fluids.
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IV. KINETIC REFERENCETHEORY

A number of generalizations of the KVT may be contemplated. Here we

--~.. ----- -- -Computer- si;llulations21. have de!:lonstratea large--m
consider one- or them.

deficiencies-in the RET shear viscosity and self-diffusion coefficients- -

at densities characteristic of the liquid state. It is clear that the

------sam~-deficiende-s--ar-e present in-th~ KVT transport coefficients for the

more general--class of potent:l.als treated-bY: the theory:____----- -n- _m

Quantitative improvement upon the KVT in this regard can be had

by replacing the variation-based approximation (5) with the quantity

HS
G(xl,x2,t) = G (xl,x2,t) (22)

in the collision term of (2), where the GHS is the exact two-particle

correlation function for the hard-sphere fluid. We call the theory

generated by this new equation

[

3 -+

1

I 3

I

-+ A, -+ HS -+ -+

Iat+Vl.\\ fl(xl,t) = m 3Vl fl(xl,t). dr2rI2<Pt(r12)n(r2,t)g2 (rl,r2 n)

2

J

-+

J

A A -+ A -+ HS -+ -+ -+ A -+ -+ -+ -+ A-+

+0 dV2 do 0'g6(0.g){G (rl,vi,rl+oo,vz,t)fl(rl,vi,t)fl(rl+oo,vz,t)

HS -+ A -+ -+ A-+

- G CXI,rl-oo,v2,t)fl (xI,t)fl (rl-oo,v2,t)} (23)

the kinetic reference theory (KRT).

The GHS is unknown in form; therefore (23) is not solvable to

produce explicit transport coefficient formulae. However, the fluxes

and hydrodynamic equations may be constructed. It is found that the

mean-field term enters these in KRT in the same way as for KVT.

Thus the _potential tail does not enter the transport coefficient

formulae explicitly, and the thermodynamics embedded in KRT is the
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same as for KVT, since GHS relaxes to g~Seq at equilibrium. "Furthermore,

(23), the transport coefficients

transport coefficient formulae from
i
!

of the KRT are tlieexact hard-sphereI
I

though we cannot obtain explicit

transport coefficients for which a description has been obtained via

molecular dynamics2l (MD) from which in turn analytic expressions have

been developed22 in the form of density dependent multiplicative

correction factors appended to the transport coefficient formulae of

the SET.
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v. APPLICATIONS

We shall now explicitly consider the question of how to

interpret and determine the a and Y2 appearing in our formulae [e.g.,

Eqs. (27)] when applying them to real fluids, contrasting our method

with that of the MET.

The MET interpretation typically has three ingredients.IOa,28

The association (20) provides two of these. First, the real-fluid

thermal pressure is inserted into the RHS of (20). To disentangle

a3 and Y2' the low density limit, n + 0 (in which Y2 = 1) is used,

thereby associatinga3with the real-fluid second virial coefficient

and its temperature derivative. Finally, the A and n appearing in0 0

(27a,b) [which take the explicit forms (27c,d) in the SET]

are interpreted as the dilute-gas transport coefficients for the real

substance under consideration. The MET transport coefficients defined

in this way yield correct transport properties in the low-density

limit by construction. We note, however, that the assurance of an

internally consistent effective hard-sphere diameter of the fluid has

been lost through this combination of procedures. The problem is that

the a defined by (20) is both density and temperature dependent, while

the a defined by the low-density limit of that expression is only tempera-

ture dependent. Moreover, its temperature dependence is not in general

the same as that given by Eq. (27c,d) when either real-gas or model (e.g.,

Lennard-Jones) values for A and n are taken.0 0
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The interpretation that we have utilized here in our applica-

tions of the formulae (27) instead maintains a hard-sphere fluid

representation of the real fluid by consistently employing the same

state-dependent cr throughout (27) and (28). In fact, by using any of

the three well-kno~~ approachesl7-20 available for assigning this cr,

we automatically achieve a consistent portrayal of the real-fluid

equilibrium and transport properties through a single equivalent-hard-

sphere-fluid representation. This state-dependent diameter approach,

described in detail below, is conceptually and technically different

than the MET. Conceptually, the most striking advantage our model has

over the ~ffiTis that it does not rely on supplementary thermodynamic

(PVT and second virial coefficient) input, nor on dilute-gas transport

properties, both of which are essential ingredients in the MET. We

apply below the state-dependent-diameter approach to a description of

the thermal conductivity and shear viscosity of simple liquids which

are described by the Lennard-Jones 6-12 potential. Hence, as input

we require atomic masses, LJ parameter values, and only the temperature

and density of the state point. As we shall see, the results compare

favorably to those transport qUIDltities experimentally determined for

argon, xenon and oxygen.
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We model the Lennard-Jones potential

~(r) = 4E [[a~Jr2 - [a~JJ J (24)

which we assume to be a good representation of the inter-particle

I?otential for real simple liquids. A number of ways have been
,

'
dI7-20 "

h
"
l

O
b

" "
f 1

. °
dpropose to approxlmate t e equl 1 rlum propertles 0 a lqUl

described by the potential (24) through an optimally chosen hard-

~phere reference potential and a perturbing potential which is treated

tn first order perturbation theory. We will not go into detail on

these techniques, but only summarize here the salient results.

Barker and Henderson20 (BH) focus on a piece of the repulsive part

of the potential (24) to obtain a hard-sphere diameter that is

temperature dependent and is closely approximated by the formu1a17b

kT
aBH= a 1.068 + 0.3837~

LJ 1 + 0.4293~T
17a

Weeks, Chandler and Anderson (WCA)

(25)

consider the whole repulsive

part of the potential and obtain a hard-sphere diameter that is

temperature and density dependent. As shown by Verlet and Weis ,17b
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a good approximation for the WCA diameter is give~ by the expression

aWCA = aBH(l + ~) (26)

where
2 3

A = 1 - 4.25 Yw+ 1. 362 Y'1.- 0.8751 Yw
(1 - Yw)

c
B = 210.31 + 404.6 kT

1 2Y =Y--Y
w 16

Y = ~n (aWCA)3.

As already mentioned, Mansoori and Canfield18 (MC) and Rasaiah and

Stell19 (RS) find the least upper bound to f [cf. (21)], i.e. minimize

f , (14), hence making a both temperature and density dependent.e

(A) Comparison of Theory and ExperiDent
~~ ~ -

- -- ~ - ~-

~ -- ~-rn-t]le- applications that fo-110w we -begln to--assesswhich of the three

--~- - -ap~pro-achesto diameter -assignment renders the most accurate predIctions of- f.-- -- ~ - -.

I

~---~--the transport pr()perties of re-al simple l~(itifds and also-~h~t_-C":J parameter

~yalues ar-e appropriate~ _T~e- experimental data for transport properties and

saturation lines used in this connectiQnwas obtainedfrom ref. 300

Inasmuch as the models we use satisfy the conditions for

applicability of the principle of corresponding states,31 the

theoretical transport properties of the model fluids will appear

similar. It appears that the noble liquids conform quite closely32

to a simple corresponding-states principle,31 and indeed this feature

has been exploited in ref. 30 to generate the transport properties of

xenon and krypton from those of argon. However, it appears that liquid

oxygen conforms more closely to a generalized corresponding-states
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principle which accommodates rotational degrees of freedom.33

24

These

qualitative differences manifest themselves in our results, as will

be seen.

The remaining ingredients that have gone i~to our comparison

of theory and experiment are:

1. Th k . 7a
e Ens og expresslons:

thermal conductivity A

A 1 4 3
(

2 3
)
2

"'I= -[1 + -TIna Y2 + 0.757 "3 TIna Y2 ]
A Y2 5 .
0

shear viscosity nE

(27a)

Y1E 1
[

8 3 (2 3 )
2- = - 1 + - TIna Y + O.761 - TInaY ]

n Y2 15 2 3 20
(27b)

and dilute hard-sphere gas values:

!,:

A = ~ . 22 k A/TIm T 2
0 42 64 02

1
- 5"'-'-- T'2

n - 1.016 16 vmk/TI -.
0 02

(27c)

(27d)

2. Numerical
. 22 .

1 1 d . "
1

. 21
correctlons to nE Vla mo ecu ar ynamlcs SlillUatlons.

These C_O~!_~c:!ions characterize'._t.hE;-~~#~ie!1c:y~~g lO/T .h~n:1~sph~re~?hea:~~' vi~~osi ty,

-~~-~'~~'~Il({~ w~~Ii-~~ppil~edt-o-T27b) 'yT~l~~!he KRT~b~9:~-'yls .c_oi~~i~-n'~-~t1'~1l~;-'~on-

. -.n -- .. __m n ----.

ceptually exact for the hard:-sJ>~.ere-~luid.

.n -_u. - ,,' u -. n_..

-- n ,

3. The Carnahan-Starling

TI 31 - - no
y - 122 -

(
TI 3)

3 .
1 - 6" nO

. 34 f
expresslon or Y2:

(28)

4. For a we use the BH diameters obtained from (25), or the WCA

diameters obtained from (26), or the MC/RS diameters obtained by

minimizing (14), using an analytic approximation for the integral in (14)

which follows from the results of Larsen et al.35
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We note that for all but one experimental point (T = ISOK for

argon) we observe that

OMC/RS(T,n) < OWCA(T,n) ~ OBH(T)

which implies that

AMC/RS(T,n) < AWCA(T,n) ~ ABH(T)

(29)

(30)

and similarly for shear viscosity, nE' and its MD corrected counter-

part, n.

In figures I and 2 are shown various predictions of theory

for E/k = l19.8K and °LJ = 3.405 X.
This L-J set has been used

extensively for relating equilibrium theory to the properties of

argon, and, clearly, yields very good agreement with experiment for

poth transport coefficients, with judicious choice of calculational
;

~oute. First we note that the KVT and KRT are superior to the DRS36 theory

in this application. We observe that oMC/RS yields a good theoretical

~ but a relatively poor nE and n. Indeed, no amount of adjusting

d f MC/RS' ~1C/RS " h 1
""" ,MC/RS

8 an °LJ can orce nE or n up W1t out at tle same t1me ralslng A .

fhus the MC/RS approach exclusively is not the route for best fit of

both transport co~fficients.
. " BH BH \\TCA

The comblnat10ns A andn , or A and

;WGA. - .--~_.- ~_.-_._--------------------_._------------

---n ; can-:ylelda closer fit (by adjustment of 8 and °LJ) than shown here,

however.

I

The need for MD corrections on shear viscosity, i.e., the superiority"

~ ~:f:__1CRT t~_.KYTLi_~EE.~ren t.- ~~E~,__~e~E~_c~_~_~_l_y_s~--~_t ~h~__m!9~~J:_!~!l1P~l'a t.!:!!~?_~..!!~-----

higher densities. Save that visual comparison suggests the overall

b f"" b h d
" h h b" " ,MC/RS d

.
h

WCA
est lt 1S to e a Wlt t e com lnatl0nA an e1t er n or

nBH, we cannot conclude from this figure whether a single thermo-

dynamic optimization or a combination of approaches is best.
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0 0 MC/RS WCA
That a comb1nat10nof approaches,e.g. A and n or

HC/RS BH - - 0 0-

A and n , see~~ necessary for overall be~t f1t 1S strongly suggested by

__figure 3 which shows the~i_a8~ter~u--I~~l!{~ej~-via A and_~TL~!?~y~~ld _the_:experi-

men~al -~e~3U1tsfor aJ:'g?~:~-~'fheor) clearly domin~tes- °)..over most of the
--- --------

saturation lineL except for the critical region w!l.ere°A rises sharply in

response- to a large anoualous increase in thermal conductivity.

Another L-J set that was studied for argon is the pair (120K,

3.4 A) which gave good results in a study by Rahman37 of the velocity

autocorrelation function. This set yields a closer fit for AMC/RS

and r)WCA than shown in figures 1 and 2; however, the difference would

not be apparent on the figure.

To emphasize the sensitivity to values of L-J parameters, we

display in figures 4 and 5 a comparison between theory and experiment

for xenon for different sets of L-J properties. The impact of a change

in L-J parameters is similar for A, nE' n. It is °LJ which has the

greater influence on the transport coefficients. For example, the set

(230.05K, 3.95 A) produces an r)WCA that is indistinguishable from the

same quantity at (225K, 3.95 A), shown in figure 5. The L-J parameter

values used for these figures are within the range of values used in

correlating equilibrium properties, but were chosen to reflect better

fits. Th b b. .
h 0"\ MciRS d \\TCA

b h
0 1e est com 1nat10n ere 1S A an r) , ut t 1S resu t

does not confirm this pair as the overall best combination. These

results_do seem to show that, for the simplest liquids, best fit to

thermal conductivity and shear viscosity can provide a stringent test

for choice of MC/RS, \\TCA,or BH optimization procedures and also for

L-J parameters.
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Now we may inquire what changes arise when the liquid is not of

the simplest kind. A comparison for oxygen is shown in figures 6 and 7.

In contrast to the previous results, we find for the set (117.5, 3.386 ~),

,
h
'

h
' .

I
'
b

'
1

,
d f'

b 1 MC/RS
Wlt ln t e range glven to equl 1 rlUfficorre atlons, a goo lt y A

and DMC/RS and for (117.5K, 3.3 ~), whose °LJ is outside that range,

the indication that for slightly larger °LJ a good fit is to be had by

the WCA or BH route. We can conclude, however, that MD corrections

appear necessary, in any case.

A comparison between KRT, MET and experimental values for

argon is given in table 1. Herein, KRT thermal conductivity is given

by AMC/RS and shear viscosity by DWCA, for the reasons outlined above.

The alternate L-J set discussed earlier is used. The MET shear vis-

cosities in the table do not contain MD corrections, as do the. MFKT

values. This omission may cause one to conclude that better agreement

could be had by the MET if MD corrections were included. In the

results of ref. lOa, however, it is seen that the MET predictions for

the shear viscosity of oxygen are much above the experimental values.

Therefore appendage of MD corrections would result in very great

disparity between MET predictions and experiment, especially far from

the critical point. On the other hand, as we have already shown, the

transition from KVT to KRT actually improves the shear viscosity

predictions.

In closing this section, we point out that a generalized

Eucken relation, derived by Mo and Starling,38 between thermal conduc-

tivity and shear viscosity has the form, for the simplest liquids,
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~ units are mw/M-K

b units are cp

"-- -" - - - -

Table 1. Comparison of theoretical and experimental values for

thermal conductivity and shear viscosity: of saturated
\

liquid argon. I
I

!

Thermal conductivitya Sh" b
Temp.

ear Vl$COSlty

T(K) AEXPT. AMC/RS ABET EXPT. WCA MET
c d e TIc Tld TIe

85.0 132.2 138.9 --- 0.2778 0.3092 --

90.52 122.7 129.5 163.2 0.2364 0.251 0.182

105.6 101.0 105.8 117.6 0.1590 0.1705 0.138

120.7 82.8 84.2 86.6 0.1095 0.121 0.110

135.0 65.7 63.9 --- 0.0752 0.084

150.0 54.4 35.6 --- 0.037 0.042

c from ref. 30

d L-J parameters 0/k=l20K, 0W = 3.4)\
i
i

from ref. lOae
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A = R(145 T)k(l- ~ ~}+; T)<p).
(31)

Here R is the gas constant and T)k' T)<pare the streaming and collisional

parts of the shear viscosity. The presence of ~, enthalpy departure

from the ideal state value, suggests that A should be sensitive to the

whole potential, and more so than the shear viscosity. This could

explain the seeming preference for the MC/RS route by thermal conduc-

tivity, at least for argon and xenon.

(B) Comparison of Theory arid MD Simulation

As a last application, theory and ~ID simulation for the full

L-J potential are compared in table 2. The values £/k = 119.8 K and

GLJ = 3.405 A are used (i.e. simulation is made for argon).

MD approaches are accessible for comparison: the time-correlation

function method39 and nonequilibrium state simulation.40 Also shown

Two distinct

in the table are predictions of the state-dependent-diameter approach

using the formulae of KV theory (no hard-sphere MD corrections imposed

on shear viscosity) and of KR theory (which includes the hard-sphere

MD . h .. 21,22)correctl0nson sear Vlscosity .

In a broad sense, theory yields remarkable agreement with the

MD results. However, the relationship between theory and MD simulation

is not made clearcut by this comparison. Hence, despite the specific

quantitative successes, expanded upon below, some caution must be

exercised in establishing a perspective. First of all, disagreement

between predic.tions of the two ~ID approaches (cf. point 1) bespeaks the

need for further work in this area to develop a set of results which

- - --
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present a more consistent basis for comparison. Discrepancies between

results of 25% are probably not sufficient to clearly signal superiority

of one approach over another, at this stage of development in simulation

accuracy.

Point 1 shows a comparison between the MD approaches for the

same point. Though the results of ref. 39a have been criticized in

refs. 40, Ashurst and Hoover have discussed at length40a,c the diffi-

cuI ties of simulation near the triple point, represented by point 1, and

these presumably carryover to point 5. Note that nKR depends upon time-

correlation-function simulation2l and not nonequilibrium-state simulation,

so that our theory here is expected to be more consistent with results of

the former type whenever there is discrepancy between results of the two

simulation types. (In ref. 40d a shear viscosity result near the triple

point obtained via a new nonequlibrium ~ID approach corroborates the

findings attributed to ref. 40a at point I. Furthermore, in 40d is reported

a bulk viscosity of 0.14 cp.) Though inconclusive from a quantitative

viewpoint, this comparison shows that the ~1C/RS diameter is the best choice

for thermal conductivity prediction, and, in spite of disagreement with MD

results, the KR/WCA and KR/BH ratios for Kin are compatible with experi-

41
mental results.

Points 2-4 show a closest overall agreement given by the KR/MC/RS

values, in contrast to the findings of the experiment-theory comparison.

These results from ref. 39b have been criticized in 39a as being about 30%

too small. We offer here further argument to support this assertion. First

we note that the MD results are almost uniformly smaller than the KR/WCA

shear viscosities by 20%. Like Levesque et al., Gosling et al. compare

their MD results to predictions based upon an equivalent hard-sphere model



31

such that the diameter is chosen to match first peaks between the L-J

and equivalent hard-sphere fluid structure factors. The former find a

value for this ratio of 0.85, whereas the latter group finds 0.82,

0.83, and 0.83 for the three points 2, 3, 4. Using the numbers and

equations supplied by Levesque et al.39a we compute a ratio of 1.16

for their point, Le. it appears an error has been made in their

computation for the equivalent hard-sphere shear viscosity. If

this ratio is a reliable measure(which underscores the theme of

this section) then we conclude that Gosling's et al. results are

systematically low, by an amount that would bring them into close

agreement with the KR/WCA values.

Points 6-9 fall on or near the saturation curve which under-

lies the experimental results shown in figure 2, though the shear

viscosities themselves do not fall on that experimental line.

Herein we obtain extremely close agreement to MD results with MFK/

WCA theory, over a significant portion (101. 8 - 147.1 K, at least)

of the saturation curve. Clearly,here the WCA diameter represents

the best choice for shear viscosity prediction. Of course, this

result may not carryover to the comparison with experiment, since

there, the simple theory we are using must absorb a number of real-

system features which are not built into our L-J model. Finally

we note the overall quantitative superiority of the KR/WCA theory

for shear viscosity compared to the MET when applied to the

. 1 . .
5 6 7 8 40a

Slmuatlonat pOlnts , , , .



Table 2. Comparison of theoretical and MD values for shear (n) and bulk (K) viscosities (in cp) and
thermal conductivity- (A.-,-in. lhw/M..;K) -f6:t-the'L-J fluid, with E/k = 119.8 K, °LJ = 3.405 A.
MD results from ref. 39 are for Green-Kubo expression';, those from ref. 40 for nonequi1ibrium
MD simulation '

~
N

Theory MD

MC/RS WCA BH

1. p = 1.418 gm/cc n 0.224 (KR) 0.210 (KV) 0.217 (KV) 0.364 (Ref. 39a) [0.348*J

T = 86. 5 K 0.342 (KR) 0.377 (KR) 0.262 :t 0.009 (Ref. 40a).

A. 143.9 172.0 177.6 124.1 :t 7. 5 (Ref. 40a)

K 0.20 0.247 0.257 O. 095 (Ref. 39a)

K/n 0.89 (KR) 0.72 (KR) 0.68 (KR) 0.26 (Ref. 39a)

2. p = 1. 346 gm/cc 1l 0.174 (KR) 0.182 (KV) 0.187 (KV) 0.183 (Ref. 39b)

T= 112.3 K 0.226 (KR)

3. p = 1.228 gm/cc n 0.126 (KR) 0.137 (KV) O. 139 (KV) 0.128 (Ref. 39b)

T = 120.4 K 0.153 (KR)

4. P = 1.051 gm/cc n 0.083 (KR) 0.092 (KV) 0.092 (KV) 0.077 (Ref. 39b)

T = 139.3 K 0.095 (KR)
--- -_._._-

5. p = 1.4327 gm/cc n 0.239 (KR) 0.218 (KV) 0.225 (KV) 0.297 (Ref. 40a)

T = 83.9 K 0.385 (KR)

6 P = 1. 2777 gm/cc 1l 0.1431 (KR) 0.1765 (KR) 0.1815 (KR) 0.1734 (Ref. 40a)

T = 104.5 K

7. p = 1.1621 gm/cc 1l 0.1060 (KR) 0.1249 (KR) 0.1268 (KR) 0.1255 (Ref.40a)

T = 119.56 K



Table 2, continued

*Unpublished result by Levesque, shown in ref. 40d.

tN
tN

8. P=0.8017 grn/cc TI 0.0497 (KR) 0.0536 (KR) 0.0536 (KR) 0.0579 (Ref. 40a)

T =147.1 K

9. P = 1. 2763 grn/cc TI 0.142 (KR) 0.149 (KV) 0.152 (KV) 0.172

T=101.83 K 0.175 (KR) 0.180 (KR) I 0.005 (Ref. 40b)
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VI. DISCUSSION

For a hard-core potential both KVT and KRT engender the a~sociation (20)

MET method lOa for appfying the Enskog theory
I

For soft-tore potentials, however,

which is a primary element in the

transport coefficients7a to real substances.

both KVT and KRT support a more general route in relatirig hard-sphere transport

coefficients to those of real substances, which utilizes a consistent interpre-

tation of the quantities 0 and Y2 as hard-sphere quantities described in terms

of a state-dependent diameter chosen for representation of thermodynamics that

is optimal in one of several well-defined senses. In the applications investigated

so far, on saturated simple liquids, this use of a state-dependent diameter on a

fundamentally consistent level is quantitatively superior to the MET, and appears

to be conceptually cleaner and technically more tractable than the MET. In

addition, the mixture versions of KVT42 and KRT lead to a natural generalization

of out methods,43 whereas, for the MET, no mixture analog of (20) exists.

Our numerical results already demonstrate a good agreement between theory

and e~periment, via the Lennard-Jones model and for L-J parameters appropriate

to de7cription of equilibrium phenomena.,
Even though our theory is purely

"clasSical" in its description of the critical region, providing no allowance for

anomalous critical behavior, it yields good results even into the critical region

where'the thermal conductivity is known to exhibit a large anomalous increase and

the shear viscosity behavior is more regular.44 For thermal conductivity, in

particular, the results we obtain here are best regarded as describing the

b~ckground terms against which the critical anomalous increases are measured.

We note some related earlier work. For liquids, Ely and McQuarrie45 used a BH/MET

combination whose accuracy is surpassed by our KRT/WCA approach. Complementary to
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our work is

that of Dymond and Alder46 who defined a temperature-dependent diameter

by fit of (19) to experimental gas pressures and thence obtained good

predictions for dense gas transport properties.

,

W~ have begun a study

to determine the best combinations for diameter assignment, among the
i

MCjRS, BH and WCA approaches, and the best L-J parameter set for

overall best fit of theory to experiment. Results will be reported

at a later date. Failure of the MET to accurately predict results

obtained by molecular dynamics47 is not surprising in the light of

-- our work here ,~~whichsuggests-t}iatTt-woufd--be -oT grea'-t-inte-r~Stto--~

apply our state-dependent-diameter approach to the soft-sphere system

---~__-=,_!~di~~~X~!~~~~I'"- 4 7~ ~ ~ ~-~--~~--------

In summary, the kinetic variational theory is conceptually

robust from several viewpoints.
\

It plays a central role as a general

kinetic theory in relation ~o previously known theories. It furnishes

a theoretical basis for the MET. It interfaces cleanly with the

already established program of optimized thermodynamic approximation,

~hereby interpretation of all variables in"the transport-coefficient

formulae is made naturally in hard-sphere terms. The kinetic

variational theory also contains an entropy functional1 and the kinetic

equation gives rise to an H-theorem. The KVT shear viscosity and

self-diffusion coefficienB admittedly suffer the inaccuracies incumbent

T ~. ---~~---~.-

upon the velocity chaos assumption; we have shown how these can be

removed by generalizing the theory. The resulting KRT shares all the

~desir_ClQJ«:LQ.I:~_gi_ctiYe pXQJ>erties_Q£_th~_m _;:!,bQye....a1thoqgh- we_C_cULTIQ.____----

longer identify an entropy functional and prove an H-theorem.

,
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The alteration of the KV shear viscosity that is manifested

by the KRT
is such as to improve the agreement between theory and

experiment and theory and MD simulation, especially when the

formulae are interpreted in the framework of the state-dependent-

diameter approach. Under these conditions, our results suggest that

in comparison with ~ID simulation on simple liquids, the MC/RS and WCA

diameters are most appropriate to correlate thermal conductivity and

shear viscosity, respectively. In comparison with experiment, this

is not as clear~ but the same correlation is strongly suggested by

- our preliminary investigation.

The KV and KR theories we have introduced here are but two

members of a family of kinetic "weighted mean-field" theories defined

by Eq. (2).
Both use the equilibri~~ pair distribution function g~S

of a hard-sphere system as the weight function G in the mean-field

term of (2) and differ only in the choice of the weight function in

the collision term. One can also contemplate using the full equilibrium

pair distribution function g2 instead of the hard-sphere reference-

system g~S in either the mean-field or collision term; we hope to explore

the results of this and other choices as well as the rationale for the

kinetic equations they yield. A systematic study in this framework is

yet to be made and appears worthwhile.48

" --. u-
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FIGURE CAPTIONS

Comparison of theoretical and experimental thermal conduc-

tivities for saturated liquid argon. The HC/RS (refs. 18,

19), \\TCA(ref. 17), and BH (ref. 20) curves reflect state-

dependent diameters based upon the L-J parameters Elk =
0

119.8 K, 0LJ = 3.405 A. The DRS result for the square-

well potential was taken from ref. 36.

Comparison of theoretical and experimental shear viscosities

for saturated liquid argon. Results without and with MD

correction factors are shown. The L-J parameters Elk =

119.8 K, 0LJ = 3.405 A underlie the state-dependent diameters

found via the MC/RS, WCA and BH procedures. The DRS result,

from ref. 36, does not contain MD corrections beyond the

basic DRS formula (ref. 4).

Effective diameters 0A and On to reproduce experimental

thermal conductivity and shear viscosity of saturated liquid

argon via (27a) and (27b) with MD corrections, respectively.

Comparison of theoretical and experimental thermal conduc- .

tivities for saturated liquid xenon. The L-J sets (225 K,

4.05 A) and (225 K, 3.95 A) underlie, respectively, the

subscript 1 curves and subscript 2 curves.



Figure 5.

Figure 6.

Figure 7.
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Comparison of theoretical and experimental shear viscosities

for saturated liquid xenon. Results without and with MD

correction factors are shown. The L-J set (225 K, 4.05 A)

relates to subscript 1 curves and the set (225 K, 3.95 A)

to subscript 2 curves.

Comparison of theoretical and experimental thermal conduc-

tivities for saturated liquid oxygen. The subscript 1

0

curves are based upon the L-J set (117.5 K, 3.386 A), and

the subscript 2 curves upon the set (117.5 K, 3.3 A).

Comparison of theoretical and experimental shear viscosities

for saturated liquid oxygen. The L-J set (117.5 K, 3.386 A)

relates to subscript 1 curves and the set (117.5 K,- 3.3 A)

to subscript 2 curves.
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