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SUMMARY 

This is a study of a very small pa r t i c l e  leaving the surface of a 

f l a t  p la te  and entering a surrounding laminar boundary layer, The Stokes . 

drag in the horizontal and v e r t i c a l  directions is the only force acting on 

the par t ic le ,  A s  a consequence of the above two statements the f lu id  

Reynolds number is  RE >> I and the pa r t i c l e  Reynolds number i s  Re << 1. The 

governing equations are  two simultaneous, second order, ordinary, nonlinear 

d i f f e ren t i a l  equations with one parameter, A complete d i g i t a l  computer 

solution and analyt ic  l imi t ing  solution f o r  large and small. values of the 

independent variable, T, have been obtained, Both numerical and analytic 

solutions a re  in close agreement. Results are presented i n  the form of the 

t ra jec tory  of the pa r t i c l e ,  and a lso  the forces acting on the par t ic le  and 
1 

I the absolute veloci ty  of the pa r t i c l e  a t  every poin t  i n  the trajectory. It 

I has been found t h a t  t he  p a r t i c l e  comes in to  equilibrium with the f lu id  very 
I 
i quickly with respect t o  the  s p a t i a l  coordinates, raising only several r a d i i  

I i r o m  the surface in i ts  e n t i r e  f l igh t .  



NOTATION 

R = radius 

= velocity of par t ic le  

t = time 

sub scr ipt  

g, f f lu id  

p, s part ic le  

L l e f t  

m Magnus 

p = density 

= force 

= angular vel. of pa r t i c l e  

U = veloci ty  of f lu id  in horizontal  direction 

= dimensional hori2;ontal distance from the leading edge 

x X = - dimensionless horizontal  distance from the leading edge 
x b  

7- = me *,' t dimens ionle s s time *e R ep 

y = dimensional v e r t i c a l  distance from pla te  

Y Y = T  



I 
1 ' = boundary layer thickness 

F5 = Stokes drag force,  



INTRODUCTION 

The e f fec t s  of rotation, shape, and acceleration of the par t ic le ;  

. the  shear, i n e r t i a  and non-Newbonian prope-rties of the fluid; and the pres- 

ence of a r ig id  wall and graqity have been neglected. 

F. P, Bretherton [3] investigated the motion of par t ic les  of 

different  shapes i n  Couette flow and concluded t h a t  t h i s  'does not a f f ec t  the 

t r a j ec to ry  of "very" small par t ic les .  

F, Odar and W. S, Hamilton 141 experimentally oscil lated a pa r t i c l e  

in a st i l l  f l u i d  such tha t  the pa r t i c l e  a t ta ined  large accelerations and 

small velocities.  Their r e su l t s  agreed with the Basset-Boussinesq-Oseen 

equation: 

I where the f i r s t  term i s  the same a s  the Stokes drag, and the second term i s  

I .  the same a s  the v i r tua l  mass e f f e c t  in a per fec t  fluid.  

i S. T. Rubinow and J. B. Keller [f investigated, theoretically, a 

1 spinning pa r t i c l e  with ' 4 ' . They found tha t  the angular velocity 

does not a f f ec t  the Stokes drag; and t h a t  the .par t ic le  experiences a ve r t i ca l  

1 force, FL , orthogonal t o  i ts  direct ion of motion: 
N 

1 

I 
t h i s  force i s  used t o  explain the curving of a pitched baseball  and the long 

I range of a spinning golf ba l l .  These are  examples of par t ic les  i n i t i a l l y  

i having a rotation. 

R. B, Edelman and D. H. Kiely [I] investigated the flow of a di lute  
1 

suspension of sol ids  in a laminar gas boundary layer. The force in the ver t ica l  
! 



di rec t ion  considered in the study is: 

' t h i s  i s  cal led the Magnus force. The force is produced by the velocity dif- 
I 

! ference between the upper and lower portion of the par t ic le  caused by the shear 

I i n  'the veloci ty  f ie ld .  

GOVERNING EQUATIONS 

The equations of motion i n  dimensionless form of the particle, 

undergoing a Stokes drag i n  the horizontal and ve r t i ca l  directions, with 

s t retched time variable are: . . 

, Ug and %; a r e  components of the gas velocity in 

the horizontal  and ve r t i ca l  d i rec t ion  i n  dimensionless f  o m  respectively. 1% 

is  assumed tha t  7 at i= 0 , implying that the 
I d X  
! dimensions of the par t ic le  are small compared with the boundary layer thickness 
t I , 

at x ( d < < s )  , t h i s  i s  a necessary condition fo r  a par t ic le  to  be considered 
0 

small. Therefore, it is val id  t o  use i n i t i a l l y  only the f i r s t  term in  the 
1 

\ Blasius ser ies  solution fo r  the veloci ty  prof i le  in the l a k r  boundar). layer* 



It is shown i n  the resul ts  tha t  f o r  r e a l i s t i c  values of 4 the 

first term in the Blasius se r i e s  solution is suf f ic ien t  f o r  a l l  time. The 

governing equations with the above assumptions a re  : 

METHOD OF SOLUTION 

An analy t ic  small time series solution has been obtained by expand- 

- ing t he  dependent variables X and Y in terms of the independent 

va r i ab le  T, 

subs t i tu t ing  i n t o  Eql s. (3-a) and (3-b) , and equating the coefficients of 

. l i k e  powers of T. The first two coefficients in each ser ies  are determined 

by t h e  i n i t i a l  conditions 

r e s u l t i n g  in 
A,= 0 

The other  coeff ic ients  are:  



and 

6 
24 J .. 

g t  l a r g e  time t h e  s o l i d  pa r t i c l e  is in equilibrium with the surrounding 

fluid. The governing equations of motion reduce t o :  
- ., 

With the exac t  ana l f i i c  solutions being: 

Equations (3-a) and (3-b) have also been solved numerically using 

t h e  p red ic to r -cor rec to r  method [2). This method needs two preceding 
1 

points ,  s a y  R, and Rmr , t o  predict  the next point Rm+, ( Rw is the 

dependent va r iab le ) ,  

and c o r r e c t  by 

t h e  supe r sc r i p t s  correspond t o  the number of times the point, Rtr , has % 

been cor rec ted  (predic t  = superscript (o)), and corresponds t o  the 

I increment in t h e  independent variable 3, where 

where 70 



Equations (3-a) and (3-b) can be expressed as  four simultaneous 

ordinary d i f f e ren t i a l  equations with four dependent variables 

The above equations are of a form t h a t  can be solved by the predictor- 

correct o r  method, 

ERROR ANALYSIS 

Thrse methods of e r ror  analysis were used t o  check and correct the 

e r r o r  in the computer (numerical) solution. 

The f i r s t  method consisted of reducing the size of the intervals of 

integration. The intervals were contracted u n t i l  the small time results . 

were invariant  t o  any fur ther  reduction of s ize ,  This produced excellent 

agreement with the analytic small time solution. This i s  an important point. 

because large e r ro r  is  normally acquired by the computer when there are large 

gradients. I n  t h i s  problem the l a rges t  gradients occur a t  very small time. 

The second method consisted of computing numerically i n  each time 

i n t e r v a l  EX, and Eyl : 

I 

where i s  the l o c a l  acceleration of the par t ic le  a t  time 
AT 



T =  AT (m being a posi t ive integer). The numbers calculated f o r  EYI 
and Ex/ acquire meaning. by comparing the i r  value f o r  small and large time. 

A t  small time, it is already known tha t  the computer resul ts  are good. I f  

the values of Eyl and 'Ex, f o r  large time remain of the 'same order as  

they were f o r  small time, t h i s  will give some confidence i n  the resu l t s  f o r  

large time . 
The th i rd  method consists of evaluating numerically an integrated 

form of the basic equations 

and calculating EX* and. Ey2 . 

A t  every point T = MAT the terms y. , v , 7.9 , 2( are h o r n  from the 
9 

, solution of the problems. Therefore qm and zl,,, can be easi ly  calculated 

(from exis t ing resu l t s ) .  Ey2 and EyZ a r e  interpreted in the same manner 

as  Exi and Eyj - 
RESULTS . 

Four basic t e r n  appear in equations (3-a) and (3-b). They are  

PC K P = *  J ?= G X e  ' and - . The parameter, =G. - ~9 ell 
lo 2 u 2/ 
Is , consists of two p a r t s  o(=x . The f i r s t  term,. ,, i s  dependent of 

- 2  
the i n i t i a l  posit ion, yG KQP - , and, the second term, , contains the 

m 3h 
fl*xo 

properties of the f l u i d  and the sol id ,  --, I8rf . A large value of o( 



t o  a l a rge  pa r t i c l e  located close t o  the leading edge uithin a 
A 

f l u i d .  such t h a t  (s . A r e a l i s t i c  upper limit is  o(= . 
PC -, 

Graphs ( see  Figs. 1, 2, 3 and h) contain the resul ts  of the computer 

L e t  us  examine the curves f o r  d = 1. Fig. 1 shows the par t ic le  

i n i t i a l l y  a t  zero  ve loc i ty  a t  X = 1, The par t i c le  reaches very quickly a 
I 
I maximum v e l o c i t y  a s  it moves down the pla te  from the leading edge, and then 

fa l ls  o f f  s lowly t o  zero again, The values f o r  the velocities 74 and -V 

have the same cha rac t e r i s t i c s  but in a l l  cases the maximum value of th'e vel- 

o c i t y  U i s  reached a f t e r  t h a t  of the velocity Zr . It should be noted t ha t  

i t h e  va lues  of t h e  ordinate i n  curve (2A), V f o r  o( = 1, must be multiplied 

by one thousandth t o  obtain i ts  actual  value. Therefore, the maximum value 

f o r  t h e  v e l o c i t y  V f o r  o[ = 1 i s  0.6166. 

Fig. 2 shows the .  force act ing on the par t ic le  a t  given distances from 

t h e  l e ad ing  edge. I n i t i a l l y  there i s  a posit ive force corresponding t o  the 

. surrounding f l u i d  t r ave l ing  f a s t e r  than the  so l id  part icle.  When the part icle 

reaches  i t s  maximum ve loc i ty  i n  Fig, 1, Fig. 2 shows zero force; that  is  to  

say, t he  surrounding f l u i d  and the so l id  pa r t i c le  are traveling a t  the same 

speed. The p a r t i c l e  then advances i n to  slower moving f l u id  and there is  a 

negat ive  fo r ce  ac t i ng  on the par t i c le ,  or ,  the slower f l u i d  i s  trying t o  hold 

back the  p a r t i c l e .  Even though the par t i c le  is  now going fas te r  than the 

surrounding fluid, t he  so l i d  pa r t i c le  i s  i t s e l f  slowing down, as it can be 

1 .  seen  in f i g ,  1. The s o l i d  pa r t i c le  reaches a maximum negative difference in 

v e l o c i t y  wi th  t h e  f l u i d  and then tends (in a l l  cases of d. ) assymptotically I 

t o  t h e  same v e l o c i t y  a s  the f luid.  T h i s  occurs f o r  both ver t i ca l  and hor- 

i z o n t a l  d i r e c t i o n s  a t  d i f ferent  times. 

Fig. 3 shows the  t ra jec to ry  of the  s o l i d  par t ic le .  The solid 



p a r t i c l e  which follows the ~4 = -1 curve comes in to  equilibrium with the 

f l u i d  very quickly with respect t o  the s p a t i a l  variables, Coincidentally, 

the  t ra jec tory  f o r  0(=  .1 i s  the same a s  t h a t  f o r  a f lu id  par t ic le  which, 

a t  one time, occupied the po in t  Y =  1 1 2 ,  X = 1.. The sol id  I h e  (2) 

represents the t ra jectory of a so l id  pa r t i c l e  with o( = 1, A t  X 3.66 the 
1 

so l id  pa r t i c l e  comes into equilibrium with the f lu id .  The dashed l ine which 
' 

meets the so l id  l i ne  a t  t h i s  point ,  l i n e  (2A ), reprssents the trajectory of 

the f lu id  par t ic le ,  o r  the stream l k e ,  which the solid par t ic le  comes into 

equilibrium, In other words, the dashed l ine ,  (2A.), represents the stream 

' ' l i n e  tha t  a so l id  par t ic le!  s t ra jec tory ,  with = 1, eventually coincides. 
. . 

The computer solutions f o r  o( = 10 and o( = 100 were not carried out t o  the 

time of equilibrium with the f l u i d ,  The stream l ines  tha t  they coincide with 

when they are  a t  equilibrium with the f l u i d  a re  not  known due t o  the growth 

in  e r r o r  in the computer solut ion,  

Since sol id  pa r t i c l e s  f o r  d = O , l  ' and o( = 1 are in equilibrium 

with the . f lu id  a t  - X = 5,  the t r a j ec to ry  of the  sol id  par t ic les  fo r , '  X>S i s  . 

the  same a s  the corresponding stream l ine  and, therefore, can be calculated 

by equation (7-b) , 

It is assumed throughout this study t h a t T < /  f o r  the solid par t ic le  

and t h a t  equation (2-a) and (2-b) are 'appl icable  a t  a l l  times. Firstly,  if 

o(< -1 the la rges t  value of 7 f o r  the  p a r t i c l e  is its i n i t i a l  value, For 

7 .  so l id  par t ic les  of , t h e  t r a j ec to rg  is the same as  the stream l ine  
. . 

which passes through 'Y= 1/2, X = 1. 

i s  assumed which 

I n i t i a l l y  

was. jus t i f ied  a t  the beginning of-ihe 

paper, Rewriting 7 =  Rep a s  time increases T.0,  X)11 therefore 
f i  i/e 

2Rex a X 



< I . Secondly, it is eas i ly  seen t h a t  th i s  is  true fo r  o( = 1, ~ ~ 7 1 ~ ~  
and it should be kept mind tha t  o( = 1 is  the r ea l i s t i c  upper l i m i t .  

! 
In l i g h t  of the resu l t s  presented the Magnus force, l i f t  force due 

I t o  the rotat ion of the f lu id ,  and the Stokes drag i n  the ve r t i ca l  direction 

! 

I 
may be compared f o r  t h e i r  re la t ive  significance, I f  we l e t  A equal the 

I $ 

I l o c a l  angular rotat ion of the f lu id ,  we f ind  the l i f t  force due t o  rotation 
I 

. of the par t ic le ,  6 , and the Magnus force, 6 , t o  d i f f e r  by a  factor of 
' 

8/3. Next, l e t  us consider K/F5 : . 
, 

Then 

With 

The Stokes drag is l a r g e r  than the l i f t  force only for  extremely small par- 

t i c l e  s. 

These r e su l t s  indicate t h a t  the same problem with many part ic les  

i n i t i a l l y  a t  different  posit ions on the p la t e  must also consider the poss ib i l i ty  

I of interact ion ( c o ~ i s i o n )  . 
It is also evident tha t  it would be d i f f i c u l t  t o  obtain good exper- . 

imental data of the t r a j ec to ry  of "extremelyr1 small par t ic les  f o r  the purpose 

of determining the veloci ty  p ro f i l e  of the laminar boundary layer due , t o  the. 

very low f l i g h t  of the  pa r t i c l e ,  I r r egu la r i t i e s  in the plate of the same 

order of magnitude a s  the diameter of the  pa r t i c l e  will mos t  probably cause 
4 

the pa r t i c l e  t o  .'follow a d i f f e ren t  t r a j ec to ry  than tha t  predicted in t h i s  

study. 
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