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SUMMARY

This is a study of a very small particle leaving the surface of a
flat plate and entering a surrounding laminar boundary layer. The Stokes -
drag in the horizontal and vertical.directions is the only force acting on
the particle. As a consequence of the above two statements the fluid
Reynolds number isf?E:x> | and the particle Reynolds number is Rg<kﬂ. The
governing equations are two simultaneous, second order, ordinary, nonlinear
differential equations with one parameter. A complete digital computer
solution and analytic limiting solution for 1arge and small values of the
independent variable, T, have been obtained. Both numerical and analytic
solutions are in close agreement. Results are presented in the form of the
trajectory of the particle, and also the forces acting on the particle and
the absolute velocity of the particle at every point in the trajectory. It
has been found that the particle comes into equilibrium with the fluid very
quickly with respect to the spatial qoordinates, raising only several radii

%rom the surface in its entire flight.
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radius . ' P, s particle
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velocity of fluid in horizontal direction

dimensional horizontal distance from the leading edge
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dimensionless time
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dimensionless horizontal distance from the leading edge
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JNTRODUCTION

The effects of rotétion, shape, and écceleration of the particle;
.the shear, inertia and non~New£onian properties of the fluid; and the pres-
ence of a rigid wall and gravity have been neglected.

F. P. Bretherton [3] investigated the motion of particles of
different shapes in Couette flow and concluded that this does not affect the
trajectory of "very" small particles.

F. Odar and W. S. Hamilton [L] experimentally oscillated a particle
in a still fluid such that the particle attained large accelerations and
small velocities. Their results agreed with the Basset—Bdussinesq—Oseen
equation: . ‘

. 2/ o t\'/'(‘(")
f=6nRal + 4(5TR)Y + SRma)* | L o
whefe the first term is the same as the Stokes drag, and the second term is -
the same as the virtual mass effeét in a perfect fluid.

S. T. Rubinow and J. B. Keller [5] investigated, theoretically, a
spinning particle with FﬁQ<: l' » They found that the angular velocity
does not affect the Stokes drag; and that the particle éxperiences a vertical

force, Fi s orthogonal to its direction of motion:
"~

F=nRpax(-v) @

~
this force is used to explain the curving of a pitched baseball and the long
range of a spinning golf ball. These are examples of particles initially
having a rotation. |

R. B. Edelman and D. H Kiel;,? [1] investigated the flow of a dilute

suspension of solids in a laminar gas boundary layer. The force in the vertical



direction considered in the study is:

. U |
/Em ::-g-’-']TF\) (V'F VD 0( {: -(2)

‘this is called the Magnus force. The force is produced by the velocity dif-
ference between the upper and lower portion of the particle caused by the shear

in the velocity field.

GOVERNING EQUATIONS

The equations of motion in dimensionless form of the particle s
undergoing a Stokes drag in the horizontal and vertical directions, with

stretched time variable are:

dX _ dX —_— (1-a)

2
,d_.l = U§O< - % A (l—b).

ol T
where 3 2
3z - 2
X = —Xm s = -—Z , Uy and VU, are components of the gas velocity in
X, d g = 79
the horizontal and vertical direction in dimensionless form respectively. It
is assumed that 77 Y py % << ’ - at T=0 »implying that the

d:Lmens:Lons of the particle are small compared with the boundary 1ayer thickness
at XO (d<<5) , this is a necessary condition for a particle to be considered
small. Therefore, it is valid to use initially only the first term in the

‘Blasius series solution for the velocity profile in the laminér boundary layer.

o, BY* U [V i
Y = (2-a)
VT duz | 4vYX J X




) - W |
= — 7/( 29 (2"b)
% X Uy (-ﬁ 0 X DX )

It is shown in the results that for realistic values of o<  the
fir‘st term in the Blasius sefies solution is sufficient for all time. The

governing equations with the above assumptions are:

dZX — ..\:_ — .C_?l_)i . (3-a)
ar: = “PxE T 4T o
£y _ pYy* _ dY (3-b)
dT? 4 X3 = dT

METHOD OF SOLUTION

An analytic small time series solution has been obtained by expand-
ing the dependent variables

X and Y in terms of the independent
vai'iable T,

Ve A, + AT+ r + AT+ (h-a)

XVZ: B, + BT+~ + 8§T5+ R (4-b)

substituting into Eq's. (3-a) and (3-b), and equating the coefficients of

like powers‘ of T. The first two coefficients in each series are determined .
by the initial conditions

dX = dY _ .
dT“c(T""O at T=0 (5)
X.-: R :—;: ~
resulting in A _ n

o= E A,-zo




and

= 0(/3
B, = - C}é (4 ‘*P*wﬂ? ’L)

At 1arge time the SOlld partlcle is in equilibrium with the surrounding

2

5-\::”9{.@.. B = *o—(-ﬁ(%zd )

fluid. The governing equations of motion reduce to:
ay _ o - SpY*

AT 7 Xz

With the exact analytic solutions being:

- l/s
Y= (—ZL)% [ZpT+2] / (7-2)
Y= % X' (7-0)

Equations (3-a) and (3-b) have also been solved numerically using

(6-a)

the predictor-corrector method [2]. This method needs two preceding
points, say Rm and Rm—[ , to predict the next point R, . (R, is the

dependent variable).

R . =R, +2hf(RuSm)

m+|

_ and correct by
1)
(') = R, + = [‘F(f? S + 76('%:7&//) S”"*’)]

the superscripts correspond to the number of times the point, Rm-;-[ » has

4

been corrected (predict = superscript (o)), and R corresponds to the

increment in the independent variable S, where
AR _ £(R,S)
as ¢/-1)
/ < &

The correcting process stops when (RM-H - an+/

where € > O -



Equations (3-a) and (3-b) can be expressed as four simultaneous

ordinary differential equations with four dependent variables
EET ’ o7 d % ‘{_

dY . dv
E{TF“'V.; '-;{:/:‘.:o(,?@~7/‘.

The above equations are of a form that can be solved by the predictor-

corrector method.

ERROR ANALYSIS

Three methods of error analysis were used to» check and correct the
error in the computer (numerical) solution.

The first method consisted of reducing the size of the intervals of
integration. The intervals were c;ontracted until the small time results
were invariant to ény further reduction of size. This produced excellent
agreement with the analytic small time solution. This is an important point,
because large error is normally acquired by the computer when there are large
gradients. In this problem the largest gradients occur at very small time.

The second method consisted of computing numerically in each time

interval EX, and EY‘

Uy~ Uy |

r AT [ Ugm U]
XI

1

e [0, =V ]

X Vg — Vr,

EY’ =

Viy = Ui
AT

where is the local acceleration of the particle at time



T =mA] (m being a positive integer). The numbers calculated for EYI
and E)(] acquire meaning.by comparing their value for small and large time.
At small time, it is already known that the computer results are.good. If
the values of EYI. and 'Ex; for large time remain of the ‘same order as
they were for small time, this will give some vconfideﬁce in the results for
large time.

The third method consists of evaluating numerically an integrated

form of the basic equations

Uy, 2 fﬁm [ <2 (7) - u(’v/)] dy

Vam & fmT[«vg (Y)=v () ]dr

" and calculating EXZ and. EYZ .

Uz = U
Ey, = ZL2m 1

U
— 'Vzm — VUV,
EYZ - Vin .
At every point T = m AT the terms —u§ sV, 7,(9 , ¥ are known from the

solution of the problems. Therefore 1, and U, can be easily calculated

(from existing results). | E)Q and EYZ are interpreted in the same manner

as Ex, and Ey; .
RESULTS -

Four basic terms appear in equations (3-a) and (3-b). They are

e uw o o YUoX, Ug
R = ¢ and -2, The parameter
£ P Lp RQX Y a Y p ?

S.;,( ,- consists of two parts o(':)\ . The first term,.7%¥ ., 1s dependent of

the initial position, Yy = ._838._., , and the second term, _\ , contains the

R

properties of the fluid and the solid, A\ =— /8@ . A large value of <

QR




corresponds o a large particle located close to the leading edge within &

£luid: such that ~@—7>) - A realistic upper limit is &= |

-f.
Graphs (see Figs. 1, 2, 3 and L) contain the results of the computer

caloulations.. Let us examine the curves for o= 1. Fig. 1 shows the particle

initially at zero velocity at X = 1. The pafticle réaéhes very quickly a
maximum velocity as it moves down the plate from the leading edge, and then
falls off slowly to zero again. The values for the velocities U and V-
have the same characteristics but in all cases the maximum value of the vel-
ocity U 1is reached after that éf the velocity VU™ . It should be noted that
“the values of the ordinate in curve (2A), V for K =1, must- be multiplied
by one thousandth to obtain its actual value. Thefefore , the maximum value
for the velocity 7~ for X =1 is 0.0166.

Fig. 2 shows the force acting on the ‘particle at given distances from
the leéding edge. Initially there is a positive force corresponding to the
jsurrounding fluid traveling faster than the solid particle. When the particle
reaches its maximum W‘I‘elocity in Fig. 1, Fig. 2 shows zero force; that is to
say, the surroﬁnding fluid and' the solici pérticle are traveling at the same
speed. The particle then"advances into é{lqwer movin;g fluid and there is a
negative force acting on the particle, ‘or, the slower fluid is trying to hold
back the particle. Even though the partlcle is now going faster than the
surrounding fluid, the solid particle. is 1’oself slowing down, as i’c can be
.seen in Fig. 1. The solid particle reaches a maximm negatlve difference in
velocxty with the flu:Ld and then tends (in all cases of X ) assymptoticallyr

to the same veloc:Lty as the fluid. ThlS occurs for both vertical and hor-

izontal dlrect:l_ons at dlfferent tlmes. '

Fig. 3 shows the ’cra;]ectory of the solid particle. The solid



'par_ticlé which foiloWs the oL = .1 curve éomes into equilibrium with the
fluici very quickly with respect to the spatiél variabies. Coincidentally,
the frajectory for K = ,1 is the éame as that for é fluid particle which,
at one time, occupied the po:.nt Y 1/2 X = 1.-' The solid J.'ine (2)
represents the trajectory of a solid partlcle with O( l. A XY 3.66 the
solid partlcle comes into equilibrium with the fluid. The dashed 1irle which
meefs the solid line at this point, line (24 ), represents the trajectory of
fhe fiuid particle, or the stream.line, which the solid particle comes into
equilibrium, .In other ’words , the dashed line, (2A), represents the stream
line that a solid particle's trajectory, with X = 1, eventually Qoincides.

. .The computer solutions f‘or X = 10 . and X = 100 were not carried out fo the
time of equilibrium Wlth the fluld. : The stream 11nes that they coincide with
when they are at equlllbr:x.um with the fluld are not known due to the growth
in error in the computer solutlon. |

»Since solid particles for X= O.l“ and X =1 are in equilibrium
with the fluid at X‘= 5, the trajectory of the solid particles for ¥>5 is
the same as the correspondmg stream llne and, ‘bherefore , can be calculated

by equatlon (7—-b).

It 1s assumed throughout thls study that7]<l for the solld. part:l.cle
and that equation (2-a) and (2-b) are appllgable at all times. Firstly, if

" o{<.1 the largest value‘ of 77 for the particle is its initial ;value. For

solid particles of '0(<"f , the trajéctory i's'the same as the stream line

which passes through Y=1/2, X =1. Initially 7 / ‘

is assumed 7( \Eﬁp_.._ <> which was’ Justlfled at the beglnnlng of the
- T=o ZRQ /2 .
paper. Rewrltlng 7? E ‘as time increases T>O, X1 therefore
f/z
2Rex
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?Z < 77/ < | . Secondly, it is easily seen that this is true for <= 1,
T=0 : o
and it should be kept in mind that XK=1 is the realistic upper limit.
In light of the results presented the Magnus force, 1ift force due

to the rgtation of the fluid, and the Stokes drag in the vertical direction

may be compared for their relative significance. If we let _fI - equal the

local angular rotation of the fluld, we find the lift force due to rotation

_ of the particle, Fi , and the Magnus force, FE; , to differ by a factof of

8/3. Next, let us consider Fz/ﬁé 3

- .
Y9~ V= Vg /T:.-o

Then F: ‘. - o p
‘ I/2

*ﬁ—‘;‘ = ’g“ Faep R—EX;O ‘ A |

The Stokes drag is larger than the 1ift force only for extremely small par-

ﬁicles. L |

:These results indicate that the same problem with many particles
initially_ét diffefent posifions on the plate must also consider the‘possibility
of interaction (collision). | |

It is also evident that it would be difficult to obtain good exper-

imental data of the trajectory of "extremely" small particles for the purpose

-of determining the velocity profile of the-iaminar boundary layer due to the.

very low flight of the particle. Irregularities in the plate of the same
order of magnitude as the diameter ofvtbe particle will most probably cause
the particle to follow a different trajectory than that predicted in this

study.
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