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SUMMARY

The condition for the inverse piezoelectric
effect in polymers is discussed and a thermodynamic
criteria is derived. The resulting expression is
related to the electrical configuration of the
polymer and several promising structures are proposed.
A dynamical model of the piezoelectric effect is
given and expressions are derived for the compliance

and electromechanical losses.
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Inverse Piezoelectric Effect in Polymers

Sumner N, Levine
State University of New York
Stony Brook, L.I.,N.Y.

It is well known that certain inorganic cfystals exhibit dimen-
sional charges on application of an electrical field° This inverse
yiezoelectric effect has been extensively discussed in the instance of
norganic materials, however; the corresponding effect in polymeric
1aterials has received little attention. It is thevpurpose of this
ommunication to establish the basic requirements for the inverse piezo-
2lectric effect and to propose some polymeric materials capable of
satisfying these requirements. In addition a simple molecular model is

yroposed and the dynamical characteristics of this model is explored.

Condition For the Inverse Piegoelectric Effect

We will first establish a general condition for the inverse piezo-
rlectric effect. Our objective is to relate the effect to the structural
:haracteristics of the polymer. We consider a solid in the presence of
in applied stress @ and an electrical field E. Representing the dimen-
iion of the solid in the direction of J'by.g and the polarization by 3}
.he free energy change, under conditions of constant temperature and

sressure, is given by the well known result

dF = - fdo- P dE (1)




The cross differentiation identity gives
S«) _ QP) (2)
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This result relates the inverse piezoelectric coefficient, on the left,
to the change in polarization with applied stress. The latter can be

expressed in a more useful way for our present purposes. Let r, be the
position vector of a charge Q5 with reference to an arbitrary origin.

The polarization can be expressed as (1)

P = z: g T (3)
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where the sum is taken over the charges in a unit volume. In the fol-
lowing we shall always assume an equal number of positive and negative
charges. On introducing the position vectors for the centers of

positive )rp) and negativel)rn) charge the polarization may be written

as

Where Q is the sum of the positive charges and
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In expression (5) it is understood that the sum is taken over the

positive charges and the sum is over the negative charges in equa-
tion (6). The desired result follows on introducing (4) into (2)

and using Hooke's law
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In (7) Y is Young's modulus, & the strain, that is the elongation
per unit length, and d the distance vector between the centers of
positive and negative charge.

It is evident from (7) that the essential condition for the
inverse piezoelectric effect is that a net displacement of the positive
and negative centers of charge occurs when the material is subject to
a strain. Thus it is required that an elongation in the direction of
the applied stress must produce an electrical asymmetry in the solid.
A number of polvampholytes passes this property as is illustrated in
figure 1. The expressions for the molecular dipole moment d, is
also given where N dis the number charges of a given sign per mole-
cule and the dimensions, a, and.f , are defined as shown. Application
of a stress results in an increase in the length of the molecule and
hence in the dipole moment. For an oriented system of dipoles this
must also result in an increase in the polarization since the latter
is defined as the dipole moment per unit volume. In the case of the

linear structure shown in 1a no inverse piezoelectric effect is to




be expected at least in directions parallel to the long axis. We also
note that the charge configuration shown in 171¢ should result in a
more pronounced effect than that shown in 1b. Actually the charge
distribution shown in 1c¢ 1s energetically unfavorable for the linear
configuration shown and the chain would tend to fold into the more
energetically favorable configuration indicated in 1d.

A second class of polyampholytes with the required electrical
asymmetry are the so-called "snake-cage polyelectrolytes™ (2).
These consist of a cross linked matrix of one poly-ion in which is
interspersed a poly-counter ion. The two polyelectrolytes can elec-
trically neutralize one another so that small mobile counter ions are
not necessary. In structures permitting the relative motion of the
poly-ions, polarization may occur in the presence of an electrical

field together with displacement of the charge centers,

Dynamical Behavior In An Electrical Field

A simple model of the behavior of a polyampholyte in an alter-
nating electrical field will be developed here. In order to be
specific we shall consider a polyelectrolyte of the kind shown in
figure 1lc consisting of anionic and catonic segments each segment
bearing N univalent fixed charges of magnitude gq. In the general
case the fixed charges will be surrounded by counter ions which form
an atmosphere of Debye length k‘1 in a medium of dielectric constant
D. In what follows we consider the electrical interaction of a single

polyanion-polycation pair. However, the influence of other polymer




molecules is taken into account by means of a molecular viscosity
and elasticity (spring) coefficient designated by Nm and Ym
respectively. The latter also takes into acecount the restoring ten-
dency due to crosslinkages. Consider an arbitrary fixed anion
designated by o in figure 2, Assuming the usual Debye-Huckel approxi-

mation, the potential at o due to the fixed cations

In the above the sum is taken over all of the anions and s is the
‘:j
distance between anion, €4, dnd the jth cation. The total electro=-

static force in the direction perpendicular to the two chains is

given by F = - ‘7¢ i.e.;

F o= o J ke o+ 1 ° (9)
D J 5% r =] L
'“ X xJ
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where WB is the equilibrium distance between the chains. This model
assumes rigid polyelectrolytes chains: an assumption which seems
Justified because of the mutual electrostatic repulsions between like
ions. Representing the displacement from the equilibrium position,

w by the variable x (so that w = wg, + x), the applied field by

0,
E{t), the effective mass of each chain by M and the total charge

on each chain by Q, the equation of motion is




MX = Q E(t) - NX - ¥ x - F(w) + Rlw) (10)

Here R(w) is a short range repulsive force which will be approximated

by a step function which vanishes at for w>W and b ecomes infinite

at WwLW . This repulsive force depends in part on the sorbed solvent

molecules which form an”incompressible shell about each polymer chain.
In order to solve the equation of motion it is necessary to

linearize the expression by expanding F in a Taylor series about

w, and to retain only the linear term. The resulting expression is

then valid for only small displacements from w,. To this approxima:

tion we have

Plw) = Fluy) + .?;E)x (11)

where the derivative is evaluated at W The equation of motion now

may be written for the region Ww>yw, as

My + Nﬁk +-LYm -+ §L£> :1 x =Q E(t) - F(wo) (12)
0

It is evident that the condition wp)»w, implies that a net extensive
force is acting on the polymer tending to increase w so that we

must have

B(t)y 10%) _ (13)




This last expression together with (9) determines, in principle, the
minimum field E; required for the inverse piezoelectric effect.
One difficulty with this type of calculation is that of estimating
W, the average equilibrium distance between the polymer molecules.
This problem has been discussed by Katchalsky and Lifson (3) as well
as by Rice and Harris (4). For the present purposes it is sufficient
to note that Em will decrease with increasing ionic strength, dielec-
tric constant and degree of sorption of solvent.

Turning to the solution of (12) we assume that the applied field

consists of steady state component upon which is superimposed a small

alternating component of frequency & and magnitude EO i.e.,

BE(t) = B, + By (1 + e ") (14)

It is evident that this applied field satisfies (13). With this
applied field the solution to (12) is (for the initial conditions

Xx=%X=o0at t = o)

X = eé-% {%wm - EO@; + K) (—-o( +$>]e—t&t
v - [E»ij + Eo(; + 19 @ug) e?t} N Eo[%; + Kejwt] (15)

where




¥ =71, + ?..E)
' (e}

K

=@’- N&?)+ JWN_

Solution (15) holds provided ﬁ # 0. When the latter is the case
the solution may also be readily obtained but it will not be

required here.

DISCUSSION

Certain features of the above solution are worthy of comment.
The electrostatic factor ( F/ W )O serves to modify the spring
constant Yﬁ so that the significant quantity is now  defined
above. The transient portion of the solution decoys in an oscilla-

tory manner when

¢ > o
and exponentially when
X/MLOE
It must also be noted that an instability occurs when = 0 80

that




- EL?) = Y (16)
2 /o -

Physically this condition corresponds to the situation where
Em Just exceeds the electrostatic and elastic counter-force. As a
result x will tend to increase indefinitely until, checked by
factors external to the present formulation.

The steady state solution may be expressed somewhat differ-

ently by writing the compliance K(@)), as

1
K(w) = J;)’rz T (17)
1 +w 7 Ny
where
Nm Nm
T = . = (18)
Y- Mw M(w -0

The frequencycoO is the resonant frequency for a hypothetical polymer
with zero viscosity. Introducing the above notation the steady state

solution becomes

x = EO[K(O) + K(w)e tj (19)

The viscoelastic properties of the system may now be calculated as

usual. Thus the energy loss W per cycle is

10.
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T W ‘ .

W= _0 — ' (20)
N (1 +¢d /r)

This loss has a maximum at

Similarly the loss per second is

E 2 wzlrz
W=_° (21)

C N, (1 +a? 7? )

We see from equation (21) that there is no loss whenw= O,

However, in the case of polyelectrolytes with small mobile counter ions
additional losses will occur due to dc conductivity and are given by
the well known expression IR where I is the dc current and R the
electrical resistance of the media. This loss will not be significant in
systems in which ions of hoth signs are large polyelectrolvtes.

Small ions will alter the change on the polymer in the presence
of weakly ionizing groups or when complex formation occurs. This
effect was also neglected in the above treatment though with a little

additional algebraic complexity it could readily be taken into account.

11.
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Figure i

The dipole moment associated with various charge configurations.



Figure 2

Forces Acting On Polyampholyte Molecule





