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ABSTRACT

Artificial Neural Networks (ANNs) have been widely advocated as tools for solving many
decision modeling problems. In this paper, we use ANNs for the prediction of coronary
artery disease. Real data from four major international medical organizations are used in the
training and testing of the ANN algorithm. To speed up the training time, we implemented the
algorithm in parallel on an Intel Paragon parallel computer. We have achieved an accuracy of
> 78%, a comparable performance to probabilistic and statistical techniques. Furthermore,
due to parallel implementation, we achieve the accuracy in < 3 minutes of training time.
Comparing with statistical approach, such savings in time is substantial. We, therefore,
conclude that ANN is a fast alternative to classical statistical techniques for z;rediction and

modeling of experimental data.

Keywords:Delta-Bar-Delta learning, RPROP learning, Pattern partitioning, Proben Database.

1 Introduction

Recently artificial neural networks (ANNs) have been widely advocated as tools for solving
many decision modeling problems. Basically, most ANNs can be considered as non-linear,
non-parametric regression [1, 2] techniques. Contrary to parametric regression in which
rigid assumptions are made about the model structure, artificial neural networks, being non-
parametric, make no assumption about the distribution of the data and are thus capable of
“letting the data speak for itself’. Consequently, artificial neural networks are robust and
are powerful tools for pattern recognition or classification of experimental data.

1This research was supported by the National Science Foundation under Grant No. ECS-9407363. Any
opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

The authors also like to thank Professors James Glimm and Yuefan Deng in the Center for Scientific
Computing of the Applied Mathematics Department in SUNY Stony Brook for the use of the Intel Paragon
parallel computer.



Inspired by the structure of the human brain, ANNs are massively parallel systems that
rely on dense interconnection of simple processing elements, or neurons. The most dominant
form of ANNs is the multi-layer feedforward network. It is a hierarchical design consisting
of fully interconnected layers of neurons (3|. Learning is accomplished through a back-
propagation algorithm. Although these ANNs have been proved to be universal function
approximator [4, 5], the backpropagation learning algorithm is very slow. Various strategies

have been proposed to speed up the learning process.

In this paper, we investigate the use of backpropagation ANNs for the diagnosis of coro-
nary disease based on a patient’s personal data such as age, gender, smoking habits; subjective
patient pain descriptions; and results of various medical examinations such as blood pressure
and electro cardiogram results. The ANN predicts if any one of the four major heart vessels
are reduced in diameter by more than 50% and thus increase the patiefit’s potential of a
heart attack.

Real data collected from four major international medical organizations, namely the
Cleveland Clinic Foundation, Hungarian Institute of Cardiology, V.A. Medical Center Long
Beach and the University Hospitals in Zurich and Basel, Switzerland are used in training and
testing of the algorithms. Each database has the same format. There are 76 raw attributes in
each database but only 14 are used in our ANN algorithm. Since these are real data, most of
the attributes have missing values. These missing values can be interpreted as “noisy” data.
Among the four database, the one from the Cleveland Foundation is the “least noisy” as it
has only two missing attributes overall. These databases have been used by other researchers
to develop probabilistic models for the prediction of coronary disease. For example, Detrano
et al. [6] have developed a probabilistic model for these data. In their case, they achieved
approximately a 77% classification accuracy. Using some clustering technique, Gennari et

al. [7] has achieved a 78.9% accuracy on the Cleveland database.

In this paper, we use backpropagation ANNs for prediction. To speed up the learning
process, we use two popular ilgérithms, the Delta-Bar-Delta [8] and RPROP [9]). We found
that both algorithms provide a prediction accuracy of about 80%. To further expedite the
training process, we implement the algorithms in an Intel Paragon computer using 10 or
20 processors. With such parallel implementation, we are able to achieve training in < 3
minutes. Comparing with the probabilistic model [6] and the clustering technique (7], our
parallel implementation of ANN provide comparable accuracy in a much shorter time. We
believe, therefore, that ANNs, especially in parallel implementation, is a fast alternative to
classical statistical techniques in prediction and modeling of experimental data.



Database Class 0 Class1 Class 2 Class 3 Class 4 | Total
Cleveland 164 59 36 35 13 303
Hungarian 188 37 26 28 15 294
Switzerland 8 48 32 30 5 123
Long Beach VA 51 56 41 42 10 200
Total Database 411 196 135 135 43 920

Table 1: The Distribution of the Heart Database.

The report is organized as follows: in Section 2 we provide a description of the database
being considered here. Section 3 is a review of the ANN algorithm, including the equations
governing the basic algorithm and the Delta-Bar-Delta [8] and RPROP algorithms for faster
convergence. Parallel implementation on an Intel Paragon parallel computer is discussed
in Section 4. Preliminary results are presented in Section 5. Finally, in Section 6, some

concluding remarks are included.

2 The Heart Disease Database

The heart database consists of real, experimental data from four international medical orga-
nizations. It is part of a set of benchmark problems called ProbenI? for ANN learning. The
name of the four major organizations and the person responsible for the data collections are:
Andras Janosi, M.D., in the Hungarian Institute of Cardiology, Budapest; William Stein-
brunn, M.D., in the University Hospital at Zurich, Switzerland; Matthias Pfisterer, M.D.
in the University Hospital at Basel, Switzerland; and Robert Detrano, M.D., Ph.D., at the
V.A. Medical Center, Long Beach and the Cleveland Clinic Foundation.

The database has 76 raw attributes but only 14 of them are actually used in the ANN al-
gorithm. A detailed description of these attributes are found in a file along with the database.

For the reader’s convenience, the 14 attributes used in ANN learning are summarized:

1. Age: age in years.

2. Gender: (1 = male; 0 = female)

2The database is available through the internet via ftp to the Neural Bench archive at Carnegie Mello Uni-
versity with internet address “ftp.cs.cmu.edu”, directory “/afs/cs/project/connect/bench/contrib/prechelt”
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3. Chest pain type:

Value 1: typical angina;
Value 2: atypical angina;

- Value 3: non-anginal pain; and
Value 4: asymptomatic.

4. Resting blood pressure (in mm Hg on admission to the hospital).
5. Serum cholesterol in mg/dl.
6. Fasting blood sugar > 120 mg/dl; (1 = true; 0 = false).

7. Resting electrocardiographic results:

Value 0: normal
Value 1: having ST-T wave abnormality

(T wave inversions and/or ST elevation or depression of > 0.05 mV)
Value 2: showing probable or definite left ventricular hypertrophy by Estes’ criteria

8. Maximum heart rate achieved.
9. Exercise induced angina (1 = yes; 0 = no).
10. ST depression induced by exercise relative to rest.

11. The slope of the peak exercise ST segment

Value 1: upsloping
Value 2: flat
Value 3: downsloping

12. Number of major vessels (0-3) colored by flourosopy
13. thallium: 3 = normal; 6 = fixed defect; 7 = reversable defect

14. num: diagnosis of heart disease (a.ngiographicdisease status)

Value 0: < 50 % diameter narrowing
Value 1: > 50 % diameter narrowing

Attributes 1-13 are inputs to the artificial neural network algorithm and attribute 14
corresponds to the desired diagnosis for the patient. As will be discussed in Section 3, the
ANN is to learn this input-output pattern for the database.

A detailed description of these attributes are found in [6, 10]. Since these are real data,
most of the attributes have missing values. These missing values can be interpreted as
“noise” of the data. Among the four database, the one from the Cleveland Foundation is the
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Figure 1: A Mathematical Model of a Neuron.

“least noisy” as it has only two missing attributes overall. For the four organizations, there
are a total of 920 sets of data, each set with 14 attributes. Table 1 shows the distribution
of these data among the four institution. Class 0 corresponds to patients with no coronary
artery reduction; Class 1 to 4 for having the diameter of one, two, three, four coronary
arteries reduced by more than 50%.

These databases have been used by other researchers to develop probabilistic models for
the prediction of coronary disease. For example, Detrano et al. [6] has developed a proba-
bilistic model for these data. In their case, they achieved approximately a 77% classification
accuracy. Using some clustering technique, Gennari et al. [7] has achieved a 78.9% accuracy
on the Cleveland database. In Section 5 we show that ANN prediction provides a slightly
improved accuracy in substantially less amount of time. Through parallel implementation,
we have achieved a prediction accuracy of 78.57% to 85.45% in < 3 minutes for the entire
database; and an accuracy of 78.57% to 92.86% in < 0.5 minutes for the Cleveland database.

3 Artificial Neural Networks °

Artificial Neural Networks (ANNs) are massively parallel systems that rely on dense inter-
connection of simple processing elements, or neurons. Each neuron has n inputs either from
an external source or from other neurons. The weighted sum of these n values is transmitted
to a non-linear function, the transfer function, to produce the output of a neuron. A diagram
of the mathematical model of a neuron is shown in Figure 1 [11].

Neural networks offer several advantages over conventional computing architectures [12].
Calculations are carried out in parallel yielding speed advantages and programming is done



Figure 2: A Three Hidden-Layer Backpropagation ANN Network.

by training through examples. These networks are characterized by their learning and gener-
alization capabilities and can be deployed as “black boxes” that map inputs to outputs with
no explicit rules or analytic function {13]. The neural network “learns” the system model by

training through a set of desired input-output patterns.

The most dominant forms of ANNs are the multi-layer backpropagation (14, 15]. Basi-
cally, it is a hierarchical design consisting of fully interconnected layers of neurons [3]. The
weights associated with each neuron are updated by taking the gradient of the total squared
error with respect to the weights and performing a gradient search of the weight space {16].
Errors are propagated backwards through the network, hence the name back-propagation.

Figure 2 shows a backpropagation network with three hidden layers.

Although these multilayer feedforward ANNs have been proved to be universal function
approximator, the backpropagation learning algorithm is very slow. Various strategies, such
as the Delta-Bar-Delta rule [8] and the RPROP algorithm [9], have been proposed to speed

up the learning process.

Figure 3 shows a flow chart of the training process. Basically, training is accomplished
through iterations. For each iteration, there is a feedforward calculation of the outputs of
each neuron from the current weight space. Asa results of such feedforward calculation, error
for all training samples are calculated. Such error are fedback to the network to calculate
the gradient of the error with respect to the weight space. Once the feedback calculation is
completed, weights are updated. To speed up the convergence rate of the backpropagation
algorithm, these weights are often updated with some speed-up algorithm, such as the Delta-
Bar-Delta and the RPROP algorithm.

In the following equations, we present the equations governing the backpropagation ANN
algorithm and the Delta-Bar-Delta and the RPROP algorithms to speed up the convergence
rate. ‘
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Figure 3: A Flow-Chart for Training an ANN.




3.1 Basic Backpropagation Algorithm

In this section, we review the basic equations for the basic backpropagation algorithm. For
expository convenience, we assume there are m inputs, n outputs, H hidden nodes, and T
training samples. The training samples are those that have the desired output values known.
The training inputs are presented to the network as X;(t), :=1,...,m, t=1,...,T and
the corresponding desired outputs are Yi(t), ¢=1,...,n, t=1,...,T. The detailed of
the algorithm can be found in [17]. For the reader’s convenience, they are also summarized

here.

The network equations consist of the feedforward and feedback components. During
the feedforward mode, the network calculates an estimated output ¥ as a function of the
inputs and the weights associated with the neurons. An error function is then produced
by comparing Y with the desired output Y. In the feedback mode, the gradients of this
error with respect to the weight space are identified. Subsequently, the weights are updated
through the steepest descent method. More specifically, for training samples, t = 1,...,T,

the feedforward equations are:

.’L‘,‘(t)=X,'(t) 1§_z§m (1)
fortc=m4+1tor=m+ H +n,

t~1 :
net,'(t) = Z I’V,'j.’tj(t)
i=1 (2)
zi(t) = s(neti(t))
Yi(t) = Tmensi(t) 1<i<n (3)
The error of the network is obtained by comparing the actual and the desired outputs.
T n

T o
E= Y E(t) = 23 05(4(0) - %(o) (4)

t=1 1=1

where Y;(t) is the output of the neural network and Y;(t) is the desired outputs. This error
is fed back to the network. The error gradient F_W;; with respect to each weight, W;; is
calculated with the feedback equations:

For training samples, t = 1,...,T, the feedback equations are:
. OE .
F-Ktr-—f—‘-:xt—}/,t i=1,...,n 5
(t) %) (t) - Yi(t) (3)




forit=m+H+ntoi=m+1,
m+H+n

Faft) = FYinmp(t)+ Y WixFonett) (6)

1=141

F neti(t) = s'(net;)x Fxi(t)

F-VV,-,-:XT:F_net,;(t)*:cj(t) Lwj=lL....m+H+n (7)

where s(z) is the sigmoidalt:;msfer function and s'(z) is the derivative of s(z). Also,
s(z) =1/(1 +e7) (8)
s'(z) = s(z) * (1 - 5(2)) (9)

Once F_W;; (the gradient of E with respect to W;;) is calculated, each weight is updated
according to: . '
New W, =W,;; —a*xF.W,; ¢,7=1,....m+H+n (10)

where a is the learning rate.

3.2 Delta-Bar-Delta Rule

To improve the convergence speed of the steepest descent/ascent method, R. Jacobs proposed
the delta-bar-delta algorithm [8]. Basically, the algorithm is a special case of the Adaptive
Learning Rate (ALR) discussed in [18]. Every weight of the network is given its own learning
rate and that the rate changes with time. According to [8], the learning rate update rule is:

K if 5¢j(t - 1)5¢j(t) >0
Aa.-_,-(t) = { —¢a,-j(t - 1) lf g,'j(t - 1)5;j(t) <0 (11)
0 otherwise.
where
5,‘j(i) = F-W.'j
&i(t) = (1—0)6i;(t) +06;(t — 1)
a;j(t) = aij{t —1) + Dayj(t)

In these equations, é;;(¢) is the partial derivative of the error with respect to W;; at time ¢
and 6;;(t) is an exponential average of the current and past derivatives with 8 as the base and
time as the exponent[8]. If the current derivative of a weight and the exponential average
of the weight’s previous derivatives possess the same sign, the learning rate for that weight
is incremented by a constant x. If the current derivative of a weight and the exponential
average of the weight’s previous derivatives possess opposite signs, the learning rate for the
weight is decremented by a proportion ¢ of its current value (8]
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3.3 RPROP Learning Rule

RPROP (Resilient PROPagation) (9] is another weight-updating scheme which performs a
direct adaptation of the weight based on local gradient information. Its main difference with
the Delta-Bar-Delta learning scheme is that only the sign of the partial derivative of the
weight is used for weight adaptation. This essentially eliminates the harmful influence of
the actual size of the derivative caused in other algorithms. Its another advantage is that
there are very few initial parameters to be set compared to the Delta-Bar-Delta rule. (
Only the initial Weight update value A;; and the magnification/reduction factors for the

update-value, namely, n* and 7~ are required to be set . )

For each weight, its individual update-value A;; is introduced , which solely determines
the size of the weight-update. This adaptive update-value evolves as the training progresses,
and depends on the current and previous partial derivative of the weight and the previous

update-value.

The learning rule is given as follows. See [9] for details.

'7+A,(-;--1), ifa_z:u%(t-l) 5 %(t) >0

i)
AP =1 Al e gECD  2EO (g 12

dw;;
Ag_l), otherwise.

In other words, whenever the derivative changes its sign, it indicates that the previous
update value was too large. In this case, the update value is decreased by a factor n~. If
the derivative retains the sign, the update value is increased by a factor n* to speedup the

training process.

Once the update-value for each weight is adapted , the weights are updated by a simple
rule. If the derivative is positive ( increasing error ), the weight is decreased by its update
valued. if the derivative is negative, the update value is added to the current weight.

-aY, it >0

Awl) =1 +AY, 122 <o (13)
0, otherwise.

And,
witl = wfj + Aw;j‘ (14)

ij
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Figure 4: Node-Partitioning of ANN Network.

4 Parallel Implementation

To exploit the inherent parallel nature of ANN algorithms, we implement the backpropa-
gation algorithm with the Delta-Bar-Delta the RPROP rules in an Intel Paragon parallel
computer with 110 nodes. The ANN algorithms can be parallelized by two techniques - node
partitioning and pattern partitioning [19)].

Basically, node-partitioning implies that the entire network is partitioned among different
processors, each computing for the whole set of training samples. Pattern-partitioning, on the
other hand, partitions the training patterns among the processors with each one representing
the entire network. In the next subsection, we include a brief description of node-partitioning.

Section 4.2 describes pattern partitioning.

4.1 Node-Partitioning

In node partitioning, nodes of the entire network are partitioned among different processors.
Our strategy is to divide the number of hidden nodes in each hidden layer equally among the
given number of processors. Because of the small number of nodes in the input and output
layers, these layers are assigned to a specific processor. Figure 4 shows conceptually, how a
2-5-5-3 ANN are partitioned among two processors. For simplicity, we have each processor
keep a copy of all weights of the network. In the forward loop, each processor calculates
node activations z;(t) in parallel and broadcasts it to other processors for computation of

next layer activations.

11
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Figure 5: Pattern-Partitioning of ANN Network.

" In the backward loop, each processor computes node errors and weight changes required
for its incoming weights. Node errors are broadcasted to other processors for computation
of previous layer errors. Each processor also computes total weight change required for all
its incoming weights. At the end of backward loop, each processor broadcasts the weight
changes calculated to update the other processor’s buffer. ( Each processor keeps a copy
of all the weights in the network.) After this, Delta-bar-Delta or the RPROP rule is used
to calculate new weights. Our preliminary investigation found that node-partition helps
to reduce execution time only for large networks. In our application, a relatively small
ANN (about 10 or 20 nodes in each of the two hidden layers) is sufficient. For such small
networks, the communication overhead involved in parallel implementation actually slows
down the overall execution time. We, therefore, implemented only the pattern-partitioning
scheme for the learning of the heart database.

4.2 Pattern-Partitioning

In our implementation of the pattern partitioning scheme, training samples are equally di-
vided among the number of processors. That is, for T training sets, and N, number of
processors, each processor computes both the feedforward and the feedback components of

the T, = - training samples. (We assume that N, divides T). Figure 5 shows conceptu-
»= N, g P
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Figure 6: Percentage of Correct Classification for Training Data.

ally that in pattern-partitioning, each of the N, processors contains the entire copy of the

network but training only with 7, training samples.

At the end of the backward loop, the weight changes computed based on the subset of
the training samples of each processor are broadcasted. Once this information is received by
all processors, the total weight changes F'_W;; are computed at every processor:

Np -
F-Wis =Y. F-Wi(k)
k=1

where F_W;;(k) (Equation T7) is the weight gradient of processor k computed based on its
own subset of training samples. Upon obtaining the total weight gradient, delta-bar-delta
or the RPROP rule is applied at all processors to update the weights which completes one
iteration.

5 Preliminary Results

In Section 2 we have presented the heart data base collected from real data and in Sections 3
and 4 we have outlined the concept of ANN and its parallel implementation. In this section,
we explain how an ANN is used to apply to the heart database to predict whether a patient’s

major coronary arteries have diameter reduction of 50% or more.

As explained in Section 3, ANNs learn by training with a number of training data. During

the training process the input-output relation of the training samples are presented to the
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network and the algorithm learned by adapting its actual output to the desired output. After
the training process is completed, the ANN will have learned the input-output pattern of
the application. To test how well the ANN algorithm predicts the outcome, a different set of
data, called the testing set, is often presented to the network, the output of the feedforward
calculation of the ANN algorithm is then the predicted output. This predicted output is
used to compare with the desired output which has not been presented to the ANN. The
accuracy in the testing set indicates how well the network has learned the underlying pattern
of the application.

In other words, the dataset used in ANN prediction must be divided into at least two
sets, the training set and the testing set. The training set is used in adapting the weight
of the network and the testing set is used to find out how the trained network performs
with a new set of data. In many cases, however, the training set is further divided into the
actual training set and a validation set. The latter is used as an intermediate test to avoid
overfitting. The overfitting phenomenon occurs when a network learns also the specific noise
associated with the training set and will therefore unable to provide accurate prediction to a

new testing data. Readers interested in more discussions on the overfitting issue are referred
to [20].

The heart database described in Section 2 has a total of 920 input-output data. We divide
the database into three sets, the actual training set with 460 data; the validation set with
230 data; and the testing set with 230 data. The actual training set is used in adapting the
weights of the ANN. For every five iterations, we use the validation set to test the predicted
outcome. If the predicted outcome is worse, then the weights adapted during the last five
iterations is abandoned. When the training process is completed, we present the testing set
to the ANN. The accuracy of the output of the ANN is then calculated.

Because the basic principle of backpropagation ANN is to adapt the weight to fit the
training set, the composition of the training set should therefore consists of a sufficient
representation of the input-output relations of the application. To ensure the group of data
in the training, validation and testing set is a mixed of all the data, it is suggested in [10]
that the original heart database be permuted differently to three databases, called Heart!,
Heart2, Heart3. These three database are identical to the original one except the order
of the individual data is different. These permuted datafiles are also part of the Probenl
database [10].

Besides the original heart database, the Probenl database also consists of a separate

datafile for data from the Cleveland Foundation. These data are the least “noisy” of all four
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sets because there are only two missing attributes. Like the original heart database, there
are also three different permutations of the Cleveland Foundation database. They are called
Heartcl, Heartc2, Heartc3.

In each of the Heartl, Heart2, Heart3 data file, there are 460 sets of actual training data,
230 validation data, and 230 testing data. In our parallel implementation, we use pattern
partitioning with 20 processors each handling 460/20 = 23 sets of training samples. For
files containing data from the Cleveland Foundation only ( Heartcl, Heartc2, Heartc3), there
are 303 data set. Since we are using pattern-partitioning for parallel implementation, the
number of processors must divide the number of patterns, we use 10 processors with 140
data for actual training, 70 for validation, and 70 for testing. Once the ANN is trained, the
prediction accuracy is calculated using the testing set which is never shown to the network

for training.

Figures 6 and 7 are the percentage accuracy of the training and testing for the six data
files (Heart1,2,3 and Heartc1,2,3). We have used both the Delta-Bar-Delta rule and Rprop
algorithm to speed up the convergence. We found that both algorithms provide comparable
performance in accuracy. For the Heart1,2,3 datafiles (the combined data set), the testing
accuracy is between 78.64% to 85.45%. For the Heartcl,2,3 datafiles (data from Cleveland
Foundation only), the accuracy is between 78.57% to 92.86%. Recall that the same database
has been used by two other groups with probabilistic and classical statistical techniques. In
those cases, the classification accuracy is 77% for the combined datafile [6] and 78.9% for
data from the Cleveland Foundation [7]. Our results using ANNs are therefore slightly better

in accuracy.

However, the time needed to achieve these results are significantly less than the classical
statistical methods. Instead of performing an indepth analysis of the different parameters,
in ANNs, learning is achieved through training by repeatedly presenting the pattern to the
network. With parallel implementation (pattern-partitioning), we are able to accomplish
training in < 3 minutes for the combined database using 20 processors on the Paragon
computer (Figure 8). For the Cleveland data file, it takes < 0.5 minutes for training using
10 processors on the Paragon computer (Figure 9). The substantially less amount of time
is due to the less noisy data and less number of data (In the Cleveland database, there are
only 2 missing values; and total number of actual training data set is 140 as opposed to 460
in the combined database.)

15
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6 Concluding Remarks

In this paper, we investigate the use of backpropagation ANNs for the diagnosis of coronary
disease based on a patient’s personal data such as age, gender, smoking habits; subjective
patient pain descriptions; and results of various medical examinations such as blood pressure
and electro cardiogram results. The ANN predicts if any one of the four major heart vessels
are reduced in diameter by more than 50% and thus increase the patient’s potential of a
heart attack.

Real data collected from four major international medical organizations, namely the
Cleveland Clinic Foundation, Hungarian Institute of Cardiology, V.A. Medical Center Long
Beach and the University Hospital in Zurich and Basel, Switzerland are used in training
and testing of the algorithms. Previous research efforts have used these database to test
prediction algorithm using probabilistic and statistical analysis. Classification accuracy for
these efforts is 77% for the combined database [6] and 78.9% for the Cleveland Foundation
data [7].

We use multilayered backpropagation ANN for prediction. To speed up the training
time, we implemented two popular algorithms, the Delta-Bar-Delta and the Rprop algorithm.
We found that the two speed-up routines provide similar performance. To further reduce
the training time, we use a parallel computer, the Intel Paragon computer, with pattern-

partitioning implementation.
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We have tested the algorithm on two kinds of datafile, one is the combined datafile
from all four medical organizations; and the second one consists of data from the Cleveland
Foundation only. For the combined data file, we obtained a classification accuracy of between
78.57% to 85.45%. For the Cleveland data base, our classification accuracy is between 78.57%
to 92.86%.

Comparing these results with earlier results from probabilistic and statistical techniques,
our accuracy is slightly better. However, for the computation time, the ANN algorithm shows
a stronger advantage over classical statistical techniques. Exploiting parallel computation,
we are able to achieve training in < 3 minutes for the combined data file and < 0.5 minutes
for the Cleveland database. We, therefore, conclude that ANN prediction is potentially a
fast alternative to statistical techniques for applications that involves large amount of data,

such as the prediction of the coronary artery disease.
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