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ABSTRACT

This paper describes the evolution of moments of the concentration of
each of the species in a two species, very rapid, Isothermal, irreversible,
second order, chemical reaction in a homogeneous turbulence in terms of an

assumed initial distribution of the concentration fields. The fields decay in

twe stages. In the stage dominated by chemical kinetics, exact stochastic

Hn

solutions are derived for a class of initial distributions. These solutions
exhibit asymptotic concentration flelds having an extremely high relative
intensity and skewness asscciated with the spatial segrezation of the species.
In the second or diffusion controlled stage exact solutions are obtained in

terms of the turbulent mixing of a nonreacting species when the molecular

diffusivities of each species are equal. An approximate solution is proposed

when they are unequal. In both cases the time scale of decay in the second stage

is entirely characterized by turbulent mixing parameters. It is shown that in
final period turbulence the reactants decay with an effective diffusivity of the

same order as the smaller of the two diffusivities.
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1. INTRODUCTION

The rate of a homogeneous reaction depends on the rate of encounter between
reactant molecules. When the reactants are not distributed homogeneously the
encounter rate and hence the reaction may be significantly altered. One extreme
situation which has been carefully analyzed using singular perturbation tech-
niquesl is that of the diffusion of one substance into a semi-infinite medium
containing & second substance with which it reacts according to a second-order
equation. The distinction between the homogeneous kinetic rate and that obtained
in the two species diffusion example just referred to is most pronounced in the
case of a very rapid reaction, when the reactive time scale is orders of magnitude
shorter than the time scale of diffusion. The latter time scale is clearly the
determining one when the two species are initially segregated as in the above

example. Furthermore, there is ample experimental evidence”’

suggesting that

for very fast reactions in turbulence the asymptotic reaction rate is of the

same order as the rate of turbulent mixing, and not of the kinetic rate for
homogeneous reactions. Again, for very rapid reactions, there is a theoryu in

the case of two reactants with equal diffusivities which estimates the evolution

of mean concentrations in a turbulent pipe flow reactor in terms of the mixing char-
acteristics of the same reactor and these predictions are in general agreement

with measurem.ats. In the case of stochastically distributed reactants which

are approximately homogeneous in the large, such as one may encounter in turbulently
stirred chemical reactors, the fluctuations represent inhomogeneities on a small

scale which may also have a profound influence on reaction rate. It is to the
exploration of such & phenomena that this paper is addressed. Specifically, we
should pose the following problem. Given an initial statistical description of
the distribution of cach species in a fully described turbulent fluid and assuming

that the local instantaneous rate of reaction obeys the normal laws of homogeneous



chemical kinetics, determine the probability laws describing the distribution of
each species at subsequent times. In fact, however, we address ourselves to a
much simpler question. Determine the probability laws describing the distribution
of each of the ahove species in terms of the probability laws describing the
evolution of a single species in a turbulent fluid from an arbitrary, statistically
prescribed, initial state (the turbulent mixing problem). For practical reasons
these probability laws are most usefully presented in terms of the evolution of

low ovder moments of the concentraticn field.

In order to isolate the role of small scale Ffluctuations from other effects
we shall assume statistical homogeneity of the random concentration fields of the
two species, a second order lrreversible isothermzl reaction and an extremely rapid
reaction rate as compared to any diffusive or convective time scale in the
turbulence. That is, the reaction is ‘'instantanecus'. We will also assume that
the turbulence itself is homogeneous and we will ignore any dynamic or chemical

role that the product or products might play.

2. MWOUENT TORMULATION

»

A reaction of the type, A + n B - product, obeys the following equations

or
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Ulhero r\ papresents n ?A, ui(x,t) is an isetropic stationary turbalent
1

velogily Field, Fz and PB are random concentration fields, ¢ is the

Linelbic veaction rate assumed constant, and DA and DB are the diffusivities

of gpecies A and B respectively. Decay equations for single point moments

L&

up to the sccond order can be deduced.

ar ar..
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The existence of triple concentration moments in equations (2.4) to (2.7)

demonstrates the unclosed nature of the mwoment formulation and the necessit

¥

of resorting, in general, to approximation techniques. It is well kniown from

studies of wmixing in the absence of reaction that the role of the turbulence

35 buried in the gradient terms of (2.5) (2.8) and (2.7) and that it lco leads

)

to a very difficult stechastic non-linsarity for which closure approximaticon

techniques are requirved.

-

In this paper we wish to point out that in the case of very rapid reactions

the random fields decay in two distinct stages. There is an initial stage which
is entirely dominated by the reaction and for which exact stochastic solutions
are possible if the appropriate initial statistical descriptions are provided.

These solutions are valid for times much shorter than the time scales of turbulent

s



convection and diffusion, say T , and if C is large enough they will

hold for times very much greater than the reactive time scale C—l. This is the

- -1 . . .
condition,C <<Tp, We imply by the term very rapid reaction. Asymptotic behavior

of the initial stage of a very rapid reaction is used to provide explicit initial

stochastic information for the second or final stage of decay. In this final

stage we exhibit exact stochastic solutions for each of the species concentrations

in the case of equal diffusivities, DA = DB. Finally, approximate solutions are

obtained in cases where DA # DB’ the approximation being determined by an
assumption based on & property of the exact solutions of the equal diffusivity

case. The solutions in the second stage are to be interpreted in the sense

mentioned in the introduction. That is, if the probability laws of the non-reacting

turbulent mixing problem are known the solutions for the reacting species can be

constructed.

3. INITIAL STAGE OF THE REACTION

For a very rapid reacticn of the kind we have described the kinetic equations

valid in the initial period up to a time much greater than C'.l are
ar
A _ X .
PP , (3.1)
GPB
—Z = T (3.2
31 LLAFB )

If the initial couceatrations TA(O), PB(O) are prascribed deterministically

-

then the solution of (2.1) and (3.2) is

T, (0) exp {C(FA(D) - FB(O))t}

H

(3.3)

r,(e) = "
g N 1 s LT - +3}-
Lo+ [1,(0) - 1,(0)] r, (e)exp{c(r, (0) FB(O))t} 1]

r.(0) exp.{C(FY(O) - FA(O))t}
[\B(t) - 2 s T - (3.8)
R . 1‘( . o e . o IS . < N ~ - . 1’ .'x._ - ‘ . .

Lo [102) - 1 (0017 r(odlenple(r (07 LAu').)L‘f. 1] -
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Y Ihe Leitial concentrations are prescribed stochastically in terms of

v joint probability density, exact expressions for concentration mowments can

ha derivaed.

For awample:

A e

T oay 5 X exp{C -7 )P (x,y) dx dy
A o oo )

1+ [:{e;“y]“l x [explC(x-y)ti-1]

(3.5%)

whnre P(FA(O), FB(O)3 is the joint probability density of the initial distri-

bution of FA(O) and rB(o).

Of special interest for ocur purposes are the following asymptotic results

which follow directly from (3.5). These are, of course, not the values attained

asymptotically by the system described by (2.1), (2.2) and (2.3) but they ave

approached in a time <t such that C~l<<T<<TT, where T

turbulent mixing of the system.

T a5

Lim FA(t) = Fk(m) = J odn f (ﬁ—y) P(x,y) dy

oo ~co -

where wa have used the Ffact that, from (3.3),

- ( [
FA(O) FB‘O) s TA(O) > PBiﬂ)

1"

FA(m)

Similarly
[<s] y .-
Jody 5 o (y-x) P(x,y)dx

-0 -0

i

Ty()

e also note the following results for second moments

AN

oo X

FAz(m} =/ dx [ (x~y)2 P(x,y) dy
[ «

[O—— ER) .

L2 2

(=) =/ dy /' (y=x)” Plx,y) dx

FAFB(m)'= G

T

0 _ rA(o> < PB(O)

T4 o 3 - e : '3
Although (3.1) and (3.2) do not cortain spatial opevators it may be

is the time scale of

(3.6},

(3.7).



useful to have correlation and cross correlation information to use as

input information for the diffusion controlled final stage of the turbulently
nixed reaction. In this case one will require joint probability densities

P[Fp(xjo) FB(x,o); FA(X',O) FB(X’,O)] and use of formulas such as
1

e oo o oo oo ) ‘
rrt(ety=Js5 £ S [¥ GXQ{C(K‘}’}“!:} :
A A I I l'?'(X“Y)"l X[e:<p{c(x_<y)t}__]‘

(3.11)

[x' exp{C(x'-y" )t}
...l ) .
1+(x -y ' [exp{C(x!'~y ' )t}-1]

1 P(x,ysx',y') dedy dzldy?

In particular,

+o0 p2d *® x!
T;TZ'(r,m) =f ax [ (z-y)dy S ax' S (x'-y') P(x,y';x',y‘)dy’ (3.12)
and
. +o X 4o y'
''Tr' {r,») =/ dx/J {(x=y)dy /- dy' [ (y'=x") PQx,y; xt,y")dx'  (3.13)
AB » ~ - -0 —co

In the circumstance that P(x,y;x',y') exhibits statistical independence

of all four variables then the above equations reduce to

—— e ~2 s
N 1 - . AR |
lAI‘A (r,t) = Ty (t); IBIB

- T 2,0, TR T =
= Ip(t)s 1, Ti(e) = T, ()T, (t)
That 1s, no correlations are induced at ron-coincident points by the reaction

N

vhere there were none initially.,

On the other hand under the same assumption of initial statistical

independence whereby FAFB(O) = ?XKO)fEZO) equation (3.10) shows that

Pl (=) =0

This suggests that the asymptotic state of the initial pericd may exhibit

large relative intensity of coucentration Fluctuations even if the initial



stochastic state did not. In situations where r.m.s. fluctuations are of the
same ordep as the mean ov larger it has been shown that the non-negativeness
of concentration as a random variable plays a crucial role in the dynamics

of decay and cannot be disregarded, for example, by approximating concen-—

. T 5 . eos . .
tration as normally distributed. Furthermore, probability density funciion.
measurements for a rapid second order reaction in the wake of a sphere have

. s ) . . 8
produced curves with qualitative resemblance to a log-normal distribution.
Therefore in order to make the simplest relevant computations on the
asymptotic state of the initial period we will assume that each species .
concentration is initially log-normally distributed and statistically
independent of the concentration of the second species at the same point
and of all concentratlons at non-coincident points in space. Furthermore
all concentrations are assumed to be Identically distributed, that is, if
F(FA(O), PB(O); PA’(O), PB'(O)) is the initial joint distribution Ffunction

for the concentration fields then ?(x,yglx};§}3 = Fl(x)Fi(y)Fi(X')Fl(y'),

aF, 1 : 1 C2
vhere = gxp {~ % (log x-n)7}, 0°< x < », ¢ > 0. Thus
dx - 2 :
XovV2T 20
T(0) = exp {u + 12102}'
r?(0) = T2(0) exp {o°}
- 2 .
72(0) I (0) = exp {62} -1
a ¥ v =
an Yayb(o) 0

where ¢ and y are the usual parameters of the log normal distribution and
vy indicates a fluctuation in concentration about the mean. TFor example
Yy ¢ FA—?A' Since the distributions of species A and B are identieal the
label A or B has been dropped excepl in the case of cross wnoments.

Under the above circumstances the following asymptotic relatiouships

can be developed using (3.6), (3.7), (3.8), (3.9) and (3.10)
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=
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r?(e) = v%(0),
— ) . 2,
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{201(= |o,1) -1}
2 .
— 7
‘(aYb(m) = - F‘( ):

where N (J%;IO,l) is the probability that Y < L yhen Y is normally

V2
distributed

Equation (3.1%#) is of special interest since it indicates that indeed
the asymptotic relative intensity can be as

by choosing ¢ for the initial distribution large enough.

/2

with zero mean and has a variance of unity.

large as one pleases simply

Purthermore, it

is easy to show from (3.14) that there is a lower bound on the relative

p =2
YZ(“’)

intensity of fluctuation under the circumstances developed here.

Hamely,

T (») > 7 - 1, the lower bound being obtained in the limit o =+ 0.

In a similar manner, large positive numbers are also predicted as lower

(3.14)

bounds for the asymptotic skewness and kurtosis of the concentration fields.

The general picture which emerges of the asymptotic state of the initial

period is one in which

the mean and the probability distribution of the concentration field cannot

be considered even approximately normal.

the fluctuations are highly intense compared to

These are ¢f course the

characteristics one expects from a state in which the two species are

segregated spatially.

In the limit of an instantaneous reaction (or no

molecular diffusion) segregation is the physical situation which arises,

unless the two reacting species are perfectly correlated or in concen-

Lrations Ffar from the s

toichiometric balance assumed in this caleculation.



L. THE DIFFUSION CONTROLLED STAGE OF THE REACTION

The asymptotic conditions derived in the previous section are not true
asymptotic states for the system described by (2.1) (2.2) and (2.3). As spatial
segregation of the two species is obtained through the reaction, molecular
diffusion of each species into the other through interface surfaces becomes more
significant, enhanced as always by the line and surface stretching characteristic
of turbulent motions. The true asymptotic state of the irreversible reactions
considered here will be the tctal depletion of one or both of the reacting
species, the later condition occurring when the initial proportions are stoichio-

metric. For very rapid reactions it is necessary to solve the full set of

equations

aT

2 4.y =D V2r - cr,T

ot = A AT A A'B (2.1)
aT

—2 ¢ u.Vr. = DV2T. - CT.T

ot ="'B B B A'B (2.2)
V'u=0 (2.3),

where the initial conditions to be used are just the asymptotic conditions of the
kinetically driven first stage derived in section 3. In spatial terms the
derivation of section 3 can be considered the outer solution of a singular
perturbation problem. The imner solution accounts for the vole of molecular
diffusivity in bringing reactive molecules together across the interfaces.

The determination of the evolution of concentration fields from the
segregated state clearly requires that the velocity field wu be fully described
statistically. Even then any attempt at a moment formulation encounters the
notorious difficulties of the turbulence mixing problen?as well as the nonlinearity
associated with the reaction. It will be shown in the following paragraphs that

when the diffusivities of the two species are equal the solution of the problem
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posed by (2.1) (2.2) and (2.3) can be determined entirely in terms of solutions
to the turbulent mixing problem. Specifically, let P[X,t] be the probability

density of X(x,t) where X(x,t) satisfies

ax (%.1)
o4 = 2

P + u.VX DV<X

V'E_E 0

and both u(y,t) and X(x,0) have an arbitrary specific stochastic description.
Then the probability densities P[FA,t], P[PB,t] for the reactant concentrations

described by (2.1) (2.2) and (2.3) can be determined from P[¥.t] provided that

(A) The Case of equal diffusivities

When D, = D_ = D it is evident that T,-T, satisfies equation (4.1)

A B AB
with X = Ty -T'y. Hence a knowledge of PX,t] from (4.1) and the initial
conditions X(x,0) = FA(§,0)— PB(§,O) is equivalent to a knowledge of P[FA—FB,t].

Furthermore, as has been pointed out elsewhere, since FAZ 0 FB >0 and

PA FB + o for a very rapid reaction.
- X, Y>0
. =
A 0 , Y<O
0, Y>0
g = {fx , ¥<0

except at the reaction surfaces the thicknesses of which approach molecular

!

dimensions as the reaction rate becomes infinite.

Thus P[TA;t] = P[X,t] + k (£)8(X) for X>0 (4.2)
> A ‘
and P[I‘B,t] = P[X,t] + k (£)8(X) for X<0 (4.3),
B
where k (£) = SOPIX,t]dX
A
x () = S P[X,tlax = 1-k ()
(o]

B A
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Some consequences of (4.2) and (4.3) can be listed as follows:

T, = /o XPIX,tldx = T = 1/2[X|
TZ(t

TZ(t)= [ x?P[x,t1aX,T2(t) = /O X?P[X,tldx
A B
where X satisfies (4.1) and X(x,0) = PA(E,O) - TB(g,o).

In particular if P[X,0] is symmetric, as for example when I‘A(gg,o) and

Ih(%,0) are identically distributed, then

We note that the elementary requirements T, 20, TAZ - T A2 >0

are satisfied by these solutions and that they include the particular solution
proposed by Toor who assumed a normal distribution for I'A - I‘B.

(B) The Case of Unequal Diffusivities

Consider the functions XA(§,t), XB(§°t) defined as solutions of the

X

*"é = 2 (4.4)
Py + E:VXA = DAV XA

BXB

I - 2
PP + E:VXB DBV XB (4.5)

FA(_>_<_,0) (4.6)

i

XA(3<_,O)

and Xp(x,0) = Ty(x,0) (u.7)

Now TA(§,t) = XA(§,t) - LA(Z’:,"‘Z) where LA(?E’t) is a representation

for the loss of species A due to its reaction with B in the element of fluid

that is at position x at time t. Similarly we can define an analogous quan-

tity LB(E,t) by the relationship
rB(gﬁt) = XB(g,t) - LB(§;t)

Furthermore when DA = DB it is easy to show by comparing (2.1)
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(2.2) and (4.4) (4.5) that

Ip(x,t) - T (x,t) = Xp(x,t) - X, (x,t) 0

if it is true at t=0.

Consequently, when DA = DB

Ly (x,1) = Ly(x,t) . (4.8)

When DA # DB (4.8) no longer holds although from the laws of mass conservation

Ly(x,t) = Lp(x,t) (4.9)

The local lack of equality of the loss term for species A and B is
caused by the interaction between the reactive decay and the non similar diffu-
sive loss of each species. In the context of single species reactions it has been
shown that an accurate approximation can be obtained which ignores the interaction
between decay and diffusion. The direct effect of reaction and of diffusion can

be taken into account by replacing (4.9) by (4.8) even when D It is

A = DB.
this approximation which we propose now as a means of solving (2.1) and (2.2).
The details follow closely the method established for the equal diffusivity

case.

Let Y = XA - XB

whe—e XA(EPt) and XB(Eﬁt) are the solutions of (4.4) and (4.5)
respectively and their solutions are assumed known from these pure mixing
equations. Therefore, for example, P[Y,t] can be considered known.

Now on applying the approximation (4.8)

Xy - %g =T, = Tp,
which is identically true in the average, we obtain
Y =T,- Ty (4.10)

By arguments quite analogous to those used in the previous section we cbtain
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PLT,,t] = PIY,t] + k(t)8(Y), Y20 (4.11)
PIT,,t] = PLY,t] + [1-k(£)16(Y) ¥<0 (4.12)
where k(t) = JoP[Y,tldY
T, = /Y PLY,tla¥ = T, (4.13)
T2, = SoyCRly,tlay (4.14)
T3 = sov’ely,tlay (4.15)

where Y(x,t) = XA(gﬁt) - XB(§3t)

and XA(§}t), XB(§9t) satisfy (4.4) and (4.5) respectively.

When DA = DB’ P{Y,t] is symmetric fqr all time if it is initially so and we
reproduce the results of section 4(A). We also note that the inequalities as-
sociated with first and second moments of non negative random functions are
preserved for all time by this solution.

To obtain concrete analytical results for the two species reaction it
is necessary to have available a pure mixing situation for which analytical re-
sults are known. Fortunately in the final period of turbulence pure mixing re-
sults are obtainable and it is precisely in that regime that the actual value
of the diffusivity is most significant. Final period turbulence is, by defi-
nition, that state of mixing in which the role of turbulent convection on the
scalar spectrum is less important for most wave numbers than the role of mole-
cular diffusion.

Consider a turbulence in which the distribution of X,, +the concen-
tration of species A in pure mixing, is accurately described by the following

normal distribution
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12 (x, - %2
PLX,,t] = (2qu(t) ) - >
B 2(t)
A
where the mean X(t) and the mean square fluctuations qu(t) are determined

by the turbulent field, the initial statistical state and DA. Since XA is

a non negative random variable this is not a possible distribution in principle
but it is a reasonable approximation if the concentration of A exhibits a
large mean and a low level of fluctuations. For the purpose of investigating
the relative roles o £ diffusivities it is analytically simple and typical of
what one expects in the final period of a non reacting scalar field.

Let the concentration of species B in pure mixing be likewise re-

presented by

=2
) (X,-X)
P[X.,t] = (2mn2(e))  2exp - § —2——
B B ——
2ug ().
-1/2 v? '
then PLY,t] = P[X,-X.,t] = {20(u, 2(t) 2 (t) )} Zexp - | ———
a7 A B 2(u, 24n,2)
Hp “tHg
- _ = _ i-— _l T e 1/2
Ty = Tp = 317 = Glw 2+ wp?D)
rZ= S5 v°PLY,tlar = (07 w7) = T,
2 _p2 _p 2 _T1 2 2
and consequently vy,% = T, I\ = 5= (uA + g )

————

where in all the above qu and UBZ refer to the variance of concentrations

of A and B in the pure mixing mode. In final period turbulent mixing it has

been shown that

2 _ ~3/2 .
N ClEQDAt] as t2w, where Cl is a constant

T . T -3/2

and qu + UBZ = Cl(Qt} /2 —3/2

(D +Dy ) , when we have assumed ap-
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proximate equalities of the constants in the expression for uAZ and uBz.

. > _ =1
lence ' (t) = E;;—Cl(Qt)

- / -
3/2 3/2 +D 3/2

(DA‘ 5 )

and an effective diffusivity D can be defined as

-3/2 _ 7-1 -3/2 -3/2,
D = 7;;—(DA + Dy )
o . ' ,-QDADB
- 3/2 _ 3/2.2/3
[D A +DB ]

To within an order of magnitude D=D_ .  where D_. is the smaller
min min

of DA and DB'

It seems reasonable to generalize this result to turbulent situations
less crucially dependent on the values of DA and DB to predict that when the
two diffusivities are widely different very fast stoichiometric reactions in
the diffusion controlled limit, decay at a rate determined by the smaller of
the two diffusivities. Such a generalization, if it holds up under experimental

examination, would make available to diffusion controlled two species reactions

the information accumulated in the literature on one species turbulent mixing.
CONCLUSTIONS

The statistical description of the reacting fields at the conclusion
of the reaction dominated first stage are easily computed in terms of the ini-
tial description of the distribution of reactants. TFor the second, or diffusion
controlled stage it has been demonstrated for instantaneous reactions in turbu-
lence that when DA:DB the mean square concentrations of species A and B
decay at a time scale entirely determined by the time scale of turbulent mixing
of a single species whose initial statistical distribution is the same as

TA—FB. When the two species have nonequal molecular diffusivities a solution



for the mean square intensities has been proposed which again relates the time
scale of decay of each species to time scales entirely assoclated with turbulent
mixing of a single species.

For kinetic reaction rates which are not very rapid, no exact solu-
tion appears to be possible. Closure approximation schemes will be necessary
similar to those employed in the study of turbulence dynamic59 except that one
must clearly be prepared to confront strongly non~Gaussian and highly skewed

concentration probability density functions.
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