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Abstract

The dielectric properties of a system of rigid

dipolar particles in the presence of an external electric field are inves-

tigated. A general expression in terms of microscopic correlations is

obtained for the dielectric suscepti~llity of the fluid expressed as the

ratio of polarization to Maxwell field, in the low-field limit, via the use

of the orientational one-particle density function. The expression is

found to be identical to one recently derived from the two-particle density

function in a field-free system of the same particles. Use of the method

is extended to a consideration of several approximations which incorporate

non-linear effects. In particular, results for dielectric saturation and

electrostriction effect are derived and compared with other theories.
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1. INTRODUCTION

Over the past few years there has appeared a substantial body of

new theoretical work concerning the distribution functions and dielectric

constant of polar fluids aimed at both a deeper understanding of those

quantities and the establishment of more accurate means of computing them

f f" ". 1 1-3
rom lrst prlnclp es. Almost all recent analysis of the dielectric

constant has exploited the fact that each dipolar particle can be viewed

as a field source acting on all the rest of the particles. As a result,

for simple polar fluids the dielectric constant given by the ratio of

polarization to Maxwell field strength in the low-field limit can

alternatively be computed from the pair distribution function in the

absence of an external field. This alternative approach however has

only marginally increased our understanding of how to directly extend

the well-known results of Debye for a system of non-interacting polar

particles in the presence of a field4 to the case of a dense fluid of

interacting particles.

In this paper we study the dielectric properties of a polar

non-polarizable fluid in the presence of an external field by considering

the field-free dielectric susceptibility computed as a ratio of the

-+ -+

polarization P to the Maxwell field E in the limit of vanishing field:

-+
P

E:-l = lim +"
4'IT E-+O E

(1.1)

---.--.-..

The polarization can be obtained

.., -7-

h -~7" fI:QnL:t.he-ill:ienta tional -one...pa~ticl e .dens ity f\JIlCt::i,QI1. .Q.LR,J;~"BJ__j:hClj:__~:lv:_~~---::-."-_..._.._----

the probability of finding a particle with orientation I,t in the presence

where E: is the dielectric constant.

-+

of an external field EO.

-+

Thus, P is given by
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-+

J
-+~ ~~ ::t

P = m(~)p(~,EO)d~/, (1.2)

-+~
where m(~) is the dipole moment of a particle having orientation ~.

Although the orientational density has already been calculated

within the context of modern approximate theoriesS,6 the results as yet

remain to be utilized in obtaining E via Eqs. (1.1) and (1.2). Here

we shall use these equations and then go on to study via Eq. (1.2)

some non-linear phenomena such as dielectric saturation and
~~

To compute P(~,EO) and, from it, the dielectric

properties of a fluid of rigid dipolar particles in the presence of a

electrostriction.

field of arbitrary strength we shall first consider the more general

problem of computing a spatially dependent one-particle density

function P(i,~,EO) in the presence of a smooth impenetrable macro-

scopic sphere of radius R2 through which an external field is passing.

The macrosphere serves to define a; surface (of curvature R;l, which is

zero on the microscale set by the diameter R of a typical fluid

particle) from which we can conveniently measure the perpendicular

distance z to a particle center. In the double limit R2 -+ 00, then
.., ~ ~ """

Z -+ 00, p(r,~,EO) becomes P(~,EO) independent of z.
For R -+ 00 but

2~-+-
small z/R2' on the other hand, p(r,~,EO) depends non-trivially upon

both z and Q (as well as EO) and describes how the mean orientation

of the fluid particle is affected by the proximity of the surface.

In section II we review some of the general statistical-

mechanical results for the correlation function of a hard spherical-

core dipolar fluid in the presence of an external field and a
-_."-~~--- -" ~~-~"~ ' ------ - -- - ---- --- ------- --- ---u --- un ---

smooth surface. This model can also represent a ferromagnetic colloid
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in an external magnetic field.? We pay special attention to the results

~~

that hold far from the wall where P(~,EO) does not depend on the

distance to the wall.

In section III, the linear case (low electric field) is discussed.

-+

The polarization is calculated in terms of EO and by establishing a
-+ -+

relation between EO and the Maxwell field E in the fluid, a general

expression for the dielectric constant is obtained.
When p (stEo) is

computed in the Mean Spherical Approximation (MSA), s coincides with

Wertheim's result8 for the dielectric constant in terms of the

field-free g(I,2).
-+-+

We also note that our result for P(~,EO) for a

fluid characterized by the exact field-free g(I,2) will yield the

exact field-independent s.

In section IV we study the r-ordered cluster expansion. In

particular, the EXP approximation ~erves to study electrostriction,

the change in density when an external field is applied. The result

when compared with the thermodynamic expressionlOand other statistical

h . 9
t eorles show that the EXP does not correlate translational and

orientational degrees of freedom adequately in the liquid state rot is

useful at gaseous densities.

We study saturation effects in section V. Explicit formulas for

the excess dielectric constant are presented both in the EXP and the

Quadratic Hypernetted Chain approximation (QHNC). The latter

approximation more adequately couples translational and orientational

correlations.

-----._---
-- u.n_- n. .0 - - 0.-..-. - 1-1-. on u- - --- - -------

In a companion paper to this one, we treat the closely related

problem of a configurationally disordered spin system in the presence



~---

5

of a magnetic field using the same techniques. In work with Rasaiah and Isbister,

one of us12 further considers in detail electrostriction in a higher-

order approximation. Our results here and -in refs. [9] and [12].

complement and extend the recent work of H~ye and Stell13 who consider

polar fluids in the presence of external fields from a somewhat different

standpoint.

II. PRELIMINARY THEORY

The results in this section were independently derived by Isbister

and Freasier (IF),5 within the context of the MSA. As we shall see,

they are valid in a more general context. Isbister and Freasier exploit

the fact that a by-now standard method of producing a fluid in the

presence of a wall can be extended to introduce a field coming out of

the wall as follows: If we consider a polar binary mixture (with

densities PI and P2 and radii Rl and R2' Rij = Ri + Rj) the dipole-dipole

potential between 1 and 2 can be written as

0 ~..., mlm2
u2l (r'~1'~2) = - ---;r- 0(12), r > R12 (2.1)

where 0(12) = slo(3r12r12-~) . s2 is the dipolar tensor.
In the limit

R2 + 00 this becomes

0 ~ -+ A +

u2l(r'~1'~2) = -mlsloEO' (2.2)

when the limit has been taken in such a way that

------ ------ lim m/R~l = EO = constant.
-R-2~ --- -- --

(2.3)

Here sl and s2 are the unit vectors in the directions of ;1 and ;2' the
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. "- -+
1

-+
Idlpole moments, r 12 = r 12/ r 12 and R12 = Rl + R2.

-+ 9
EO can be written as

The external field

-+ - 2 1/2 "-

EO - EO(3 cas 82 + 1) eO' (2.4)

where cos82 = s2or12' and eO is a unit vector in the direction of EO.

The electric field makes an angle al with respect to the normal to the

wall given by

"- A 2 COs82

cas al = eO or 12 = r'Z. <,, ,.2t:\ .1. 1 '\ 1 T'J:
(2.5)

~Vhen the limit P2 -+ 0 is also taken such that P2R~ -+ 0 we have a polar

fluid with a short-ranged interaction (which can be any potential with

cylindrical symmetry) in the presence of a wall and of an external

electric field. The density proffle P(Z,~,EO) of dipolar

molecules at a distance z from the wall and with an orientation ~ with

-+

respect to EO is related to ho(z,.~,10)' the wall-particle

correlation function, by the expression

-.. -Y p
p(z,D,EO) = 4'IT

~~

[hO(z,D,EO) + 1]. (2.6)

The wall-particle correlation function can be obtained from the

Ornstein-Zernike (OZ) equation with closure conditions for a polar

fluid, after the limit P2 -+ 0 and the limit R2 -+ 00 have been taken.

We write the results which are well known in the context of the MSA,

but which do not appear to have been made explicit heretofore, although

they follow directly from the work of Wertheim8 and Isbister and

coworkers5,6 and are used in ref. [9].

- ~ B-~fore__13.D;y:"_limi t_cis_:,taken~~_h~_- t_ot_g,_L>anctdtl,:~Gtcorx~J9Jj_9n__~ -. ,,-- c~----

""-::t ~.....
functions hI2(r,DI,~l2) and cI2(r,DI,D2)' respectively, can be expanded as
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~-t

h12 (r, ~l '~2)

~ 4

c12(r'~I'~2)

= hi2(r)

- S (- cl2 r)

I:::. 0

+ h12 (r) 1:::.(12) + h12 (r) 0 (12) +

I:::. 0

+ cI2(r)I:::.(12) + c12(r)D(12) +

(2.7a)

(2 . 7b)

In the MS~and Linearized and Quadratic HNC, only the first three terms

contribute to the dielectric properties but the expansion cannot be

truncated in the general case. When Eqs. (2.7a) and (2.7b) are

substituted in the 02 relation for a mixture, (with P2 = 0) one obtains

an infinite number of coupled equations for the different terms in the

expansion. When the limit R2 + 00 is taken we transform the correlation
-;1"" -t-t

functions hl2 and cl2 to the wall-particlehO(Z,~l,EO) and cO(z,~,EO)'

There is no guarantee that taking the limit R2 + 00 will permit us to

truncate the expansionof hO and Co and therefore to decouple the system

of 02 equations. However in the double limit R2 + 00, then z + 00, the 02

equations are decoupled in the se~e that the spherically symmetric terms

h~ and c~ satisfy an 02 equation that decouples from the orientational
I:::. 0 I:::. D +

terms hO ' hO' Co and Co exactly through order EO.

When z + 00 the effect of the wall vanishes on the microscale set

--------

by Rll. The only orientational function which has a long-range part, in

+

a theory exact through order EO (or in the truncated approximations

, IDentione~ove). is h~. which can be written as

0 ~... A -~
hO(z,~,Eo) = hO(z,~,EO) + 3KO'

(2.8)

'._--.

A -+-4
where hO(z,S1,EO) is a short-range function which goes to zero as z + 00.

-1<0' i~ -de:texm-:i.ned.-,.b¥-..tbe-e.~~ion 9 --- ' "~-:--7"'---:--

(
I ) mlEo [

3 3
]

3KO I - I+Kh + ... = - kT+ KO 2q+ (2KllPI Rll) + ql (-KllPI Rll) .
(2.9)
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Here

K = P-PI
h PI (2.10)

is the relative change in density when the external field is turned on

(electrostriction effect). The q (x) and q (x) are quantities related+ -
to the bulk correlation functions c~l (r) and c~l (r) by

- Pdcl\(0)+2co(O)]- -+
q+ - 1 - 3 - 1 - 2KllPl c (0), (2" lla)

PI [cl\(O) - coCO)] = 1- (-K )Plc-(O),q- = 1- ~ II (2.11b)

where cl\(O) and coCO) are the Fourier and Hankel transforms at k = 0 of

c~l and c~l' respectively. The functions q+ and q- are different in

general and only in linear approximations such as the MSAdo they have

the same functional form. The function Kll is given by

2 3: 3
4mnI PI = q+(2KllPlRll) - q_(-KllPlRll)' (2.12)

The general form of the left-hand side (l.h.s.) of Eq. (2.9) is not known

for an arbitrary approximation. In the MSAand LHNC, ~ = o. In the

QHNC only the first two terms shown in the l.h.s. of Eq. (2.9) survive.
.

It is important to note that Eq. (2.9) is derived from the asymptotic

behavior of c~2(r) when R2 ~ 00, then z ~ 00 .
From Eq. (2.9) it is clear that non-linear effects are sensitive

h
"

h
.". d 9,12

to w 1C approx1mat1on 1S use. In the linear case however an

exact relation for any closure can be obtained. The function Kh is of
2

order a (E0) . Thus, only the last term in the l.h.s. of Eq. (2.9) is going
--~,,~ ~..~... ""~"''''-'. .,~-"... .,.. ~"-~",---'-~-" '-' "',," "." -.,,---.--.....----.....-..--.-...-......-.--......-.----.-.
-~~""-'-' ,," " -" . ,, --- ---

to be of O(EO)'
Hence in the linear case
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m1Eo = K [2q + q ].kT 0 + - (2.13)

FromEqs. (2.8) and (2.13) the asymptotic form of the orientational part

of the total correlation function is given by
-+ -+

~ -? m1 'Eo
hO(~G,EO)= kTf (2.14)

where

f = 2q+ + q-
3 (2.15)

and Eqs. (2.2) and (2.4) have been used. This result is independent

of the orientation of EO with respect to the wall.

result that can be expected to be satisfied in any good approximation.

It is an exact

The knowledge of the bulk properties is of course necessary to calculate

finEq. (2.16). The orientational one-particle density function
-+ -+

P(~,EO) is, through O(EO)' exactly given by

(~E) = £.L
[ l m1Eo co:S 81)P , 0 47f + kTf (2.16)

where cos 81 = 5l.eO is the angle a dipole makes with the external

field. The general normalization condition

J P(~,Eo)dD = P
(2:17)

yields P = PI in the linear case [i.e., through O(EO)].

III . POLARIZATION AND DIELECTRIC CONSTANT

~-+

The one-particle density function P(~,EO) serves to define the

polarization P of the dielectric via (1.2). In magnitude, P is given by

f
-t-+ -+

P = mlP(~,EO)cos 81 d~ (3.1)

~h.t_~_h" s:~!!_9:l sQ-- jJ-~ wr_ttt:~!1:__9:~. --' ~'~--~-'--~-' ~--'-

P = <ml>p (3.2)
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where

r~_,..r ~ ,-+
<m > = ~~P(~,Eo)d~1 .-

Jp(Q,Eo) dQ

(3.3)

is the average value of ml' and use has been made of Eq. (2.17).

Substituting Eq. (2.16) in Eq. (3.1) gives

2
~ - ml PI -+
p - 3kTf Eo .

,"

(3.4)

It is interesting to point out that when f = 1 Eq. (3.4) reduces to

the expression for the polarization of an ideal polar gas.4 This is

because then q = q = 1 and there are no correlations between+ -

particles in the bulk.

~ -+

It is known that the relationship between P and EO depends on the

boundaries of the system. However, at small external fields the

-+

polarization and the Maxwell field E inside the dielectric are linearly

related by the dielectric susceptibility X independently of the

boundaries, i.e.

~ -+ E-l-+
P = XE = - E4if (3.5)

where E is the dielectric constant. This can be considered a definition

of E.
-+ -+

If we have the relation between EO and E, the dielectric constant

can be expressed in terms of the density, temperature and the molecular

quantities which appear in Eq. (3.4). Because the interactions in a

dipolar system are long-ranged this relation depends on the boundary

conditions.

The limit R2/Rl -+ 00 that we consider here, where Rl is the radius
--- --- - ___om -_c -~ -_c n- ----m ----- ----. - --~- ___m- -- -.- .-n- -- . - ---.--

of a particle of species 1, is a convenient device for generating, on the

microscale set by the particle size Rl' a flat wall
through which a
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spatially constant field is emanating. However, it is important to

recognize that the limit can equally well be thought of as a shrinking

of the fluid particles of species 1 as they become elements of a

"continuum" fluid exterior to a spherical macrocavity of diameter R2'

at the center of which there is a macroscopic dipole. This is the way

the limit would be perceived by an observer observing on the scale of R2'

which becomes the macroscale of continuum dielectric theory. It is

this picture therefore that we must use in making contact with the

~

equations of continuum theory in relating the applied field EO to the

macroscopic field. The subsequent large-z limit that we consider

defines a domain that macroscopically remains next to the outer surface

of the spherical macrocavity (since z!R2 = 0 for all z after taking the

R2/Rl + 00 limit) even though on the molecular scale of Rl one moves

arbitrarily far from the flat wal~ as z/Rl + 00.

The potential W outside the macrocavity, i.e. in the dielectric,

. 14
1S

A +
3 m2S2 -R12

W = 2E:+l R3
12

(3.6)

+ +
The field E is given by E = -~W. Then

+ 3 2 1/2 A 3 +

E = 2E:+l(3 cos 62 + 1) EOeO = 2E:+l EO'
(3.7)

+ +

which is the relation between E and EO appropriated for our boundary

conditions. From Eqs. (3.4), (3.5) and (3.7) one obtains

~ - 3y - Y
2E:+l - 2q + q - f '+ -

(3.8)

--- --.--- -- ------- _.- ---- - -- -----

. 47T 2

w1th y = 11 SmlPl.
But in the bulk

3y = q - q+ -
(3.9)
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and we are left with the result

E = q /q .+ - (3.10)

Thus, we have arrived at a formula for the dielectric constant that is

completely general and is in perfect agreement with previous results.l,3

When some particular approximation is used for q and q (e.g. the MSA)+ -

then Eq. (3.10) gives the E appropriate to that approximation.

The whole procedure described above can be checked using a general

formula for
P(a,ito) obtained by Nienhuis and DeutchlS

Pl + -:t. +
P (~,EO) = 4'IT [1 + Bmeff(&2) 'E] ,

(3.11)

where

+ -+ E-l A

meff(~) = 3y ffilSl'
(3.12)

Comparing with Eq. (2.16) we obtain

+ E-l 2q+ + q- +E =- E
0 3 q-q+ -

-
(3.13)

which gives Eq. (3.10) if Eq. (3.7) is used or viae versa.

IV. NON-LINEAR APPROXIMATIONS

The results derived in the last sections are general when the

dielectric constant is independent of the field. It is clear from

Eq. (2.9) however that if one considers non-linear effects, the truncation

of the series on the l.h.s. of the equation involves an approximation.

Thus in ref. [9] electrostriction has been studied using the QHNC

approiimaflon-whicfi-keeps.onIy -the- ffrsttwo termsin--tKe.T]l~s-~--of-h ~- ----

Eq. (2.9). In this section we present an alternative way to extend our



calculations to higher orders in the electric field, the r-ordered

cluster expansion. In particular we study the EXP approximation16 and

compare its predictions with those of the QHNC.

The MSA closures for the OZ equations8

fMSA(z) = 0Co z > 0, (4.1a)

MSA 2

cll (12) = -mlD(12) r > Rll (4.1b)

define the first in a well-defined sequence of approximations. 17 If

one replaced Eq. (4.1) by

.+

Co (z) =

:tREF

Co (z)

- REF 2
- cll (12) - mlD (12) r > Rll (4.2b)

z > 0, (4. 2a)

cll (12)

as closures for the wall-particle and bulk OZ relations, respectively,

one defines the Lowest-Order Gamma-ordered Approximation (LOGA).17

Here C~REF(z) is the direct correlation function of the reference system

in the wall-particle problem. The correlation function for the LOGA

can be written as

LOGA ~ ... REF'" -t~

hO (z,Q,EO) = hO (z,Q) + CO(z,Q,EO)
(4.3)

so that when z + 00

LOGA -t ~ -+ ~

hO (Q,EO) = Co (Q,EO) ,
(4.4)

where
A +

~ ~ mlsloEo
CO(~l,EO) = kTf

(4.5)

LOGA -t-+
It shou1dbe pointedout that the functionalform ofhO (z,Q,EO)

"".-'.: . ' u u -MSA'---~c~-'---:--=-_c u,:,:~---,-, ~---~.

is the same as that of hO (z,Q,EO)' In the LOGA, however, the

--~-_.u__.-

13

.----...-
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contribution of the reference system to Co is treated exactly, not in

the Percus-Yevick approximation as in the MSA. The r-ordered expansion

can then be extended to treat the situation-oaf a dipolar fluid in an

external field.
The expansion of ho(z,~,lo) in terms of h~EF and Co

can be written as

REF -+-+ B B B
in(gO/go ) = CO(z,rt,EO) + HO*S + SO*H + SO*SO + F (4.6)

where go = hO + 1, the notation A*B denotes a convolutionand

HO = h~OGA
(4.7)

REF REF
So = go exp Co - Co - go '

(4.8)

with the same definitions for the bulk quantities. The function F is

of order pi and is described elsewhere.17 When the limit z + 00 is
REF REF

taken, go + 1, hO + 0 and Eq. (4.6) becomes

..,)-+ ,'~... " B -t-+ B
in gO(rt,EO) = CO(~l,EO)+ CO(rt,EO)*S + SO(rt,EO)*H

~~ B 00

+ So(Q,I:O) *S + F ,
(4.9)

where

~ -::1 .., ... ...

SOO6,EO) = exp CO(rt,EO) - CO(rt,EO) - 1. (4.10)

... ... 00

The terms on the r.h.s. of Eq. (4.9) except CO(rt,EO) and F involve
00

the correlationof the wall and two particles. F involves

simultaneous correlations of the wall and at least three particles.

C
~-t . b .

If we neglect all terms but O(rt.EO) in the r expansl0n we 0 taln the

. 16..17
well-known EXP approxlmation

----
EXP 4 -+ ...

,---:g-6-{g-,-Eo+-=--:e-~-fjO (~J,--E.O) _,_::-=--=-:-,==-=:;c::'~;c-c-:;=--::-C"---::_::c=-:'-:-:"--.:-:-:::=,'-, _:,,-, :-:f4:~J,L):,-c,-_:-:-:.:.~--:-c=,=--::=c
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As we shall see this approximation gives poor results except at low

densities where it lends itself to the study of non-linear effects in

a dielectric in which a high electric field is present. The one-particle

distribution function is given by

-+

pEXP(~,10) = ~l exp Co(S"t,EO).

(4.12)

From Eq. (2.17) we find that

p = P
sinhx

I-X- (4. 13)

mlEo
where x = kTf .

This means that the density p in the presence of

the field is greater than PI' the density in the absence of the field,

i.e. there is an electrostriction effect. To O(E~) the change in

density is

KEXP = l
[

mlEo
1

2 = (E:-l) 26 E2
h 6 kTf 24nYPl

(4.14)

where use has been made of Eq. (3:8). If we compare Eq. (4.14) with

the thermodynamic formula for electrostrictionlO

)

2
1 1 dE: ~

Kh = 8" kT[ap E, T,N Q

(4.15)

where

1

Q = PlkTKT
(4.16)

and KT is the isothermal compressibility, we conclude that the EXP

is fully consistent with Kh only when Q = 1 and E: is given by the

Clausius-Mossotti equation

--

------ ------- -~-:=::--- -'~7"- !::::1
E-I-2--=--)"

_n (A L7J-.-----------

Thus the EXP gives poor results for
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electrostriction except at low densities where PlkTKT approaches one,

and Eqs. (3.10) and (4.17) give similar results.

electrostriction9

The QHNC result for

KQHNC = S (E-l) 2E2
h 24TIPlY Q (4.18)

improves the situation because it contains the correct factor Q. Thus it

couples the orientational and translational degrees of freedom in a

better way than the EXP even if it is not able to go beyond Eq. (4.17)

when consistency with the thermodynamic formula Eq. (4.15) is required.

v. DIELECTRIC SATURATION

The approximations discussed in the last section allow us to

calculate the change in dielectric constant when high fields are applied.
-

In an open system the polarization can be expanded in terms of the

. + + 18
external field EO and the Maxwell field E, to include non-linear terms

+ + 2+
P = XE + ~E E + ... , (5.1)

+ + 2+

P = bEO + cEOE + ... , (5.2)

where X is the susceptibility and ~ is the quantity of interest in

describing dielectric saturation. Usually the non-linear behavior is

expressed in terms of

/:::'E EE-E
ET = E"2

(5.3)

---~P ~ ~~::_~-_E:_!~_~~e linear- ~_i_e_1_~:.~~~-~:?~stant~~~u~E__~_dD!~Eis the qu~~~_ity.." ~P_O.__..._--_.-

which measures the deviation from E at high fields. The electric

+
inductionD can be written as
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-+ -+ 2-+
0 = EE + 4'ITl1E E (5.4)

using (5.1). Then18

!:£

ET = l2'IT11. (5.5)

When 11< 0 one has normal saturation, when 11> 0 there is anomalous
. Ie,

.saturatlon.

The EXP polarization is obtained substituting Eqs. (4.12) in

Eq. (3.2). Then

P = m1PL(x), (5.6)

where L(x) = coth x - l/x is the Langevin function and x = ~\E/. When

f = 1 we recover Debye's classic ideal-gas result.4 When x « 1, i.e. at

small field or high temperature, the polarization is linear in the field.

If we
expand the Langevin function to O(E~) we have

2 1+ .
-+ m 1P -+ m1pl' 2-+
P = 3kTf EO - ~ (kTf) 3 EOEo + ... (5.7)

Substituting Eq. (4.14) in Eq. (5.7) to take electrostriction into

account we get

2 1+
-+ m 1P 1 -+ m 1P 1 1 2-+
P = 3kTf EO + ~ (kTf) 3 EOEo + ... (5.8)

Now the polarization is written in terms of PI' the density in the absence

of the field.

-+ -+

A relation between E and EO is necessary to calculate ~E.

cannot use Eq. (3.7) because when non-linear terms are present, the

We

Laplace equation does not hold.
-+ -+

Thus we write E in terms of EO as

- - --- -------
-+ -- --- -3 - + - --- --- 2'+ --- -- --- - - -- - -

E = 2E+l EO + BEOEO + ...
----------

(5.9)



------

where B should be calculated solving the electrostatic problem for the

non-linear case.
.. .

d d b
..

h
18

An approx1mat1onconS1 ere y Bottc er relating
-?- -?-

E and EO is to take Eq. (3.7) but instead of s, to use an s' defined by

2
s' = D/E = s + 4'TTliE . (5.10)

Using this approximation we have

-?- 3-?-

E = 2s' + 1 EO (5.11)

and consequently

216 'TTli

B = - (2s+1)'+
(5.12)

Using Eqs. (5.1), (5.8) and (5.9) with Eq. (5.12) we obtain

J

3

( J

LkEXP 2'TT 4 1 s-l 2s+1 .
E2 = 12'TTli= 5"" mlPl (1<T)3 (3Y 3

(5.13)

Hence, the EXP predicts an increase of s at high fields. It is clear

from Eqs. (5.7) and (5.8) that ele~trostriction is responsible for

producing this result. (In the literature18 it is customary not to

include the effect of electro stricti on in discussing saturation, on the

grounds that experimentally it is usually found to be a negligible

contribution. In the simple Hamiltonian model we treat here, however, it

appears to be a major contribution to the dependence of s upon field, at
-?-

least for small P and all E, where the EXP is reliable. We expect

that approximations like QHNC should give better overall results than

EXP as discussed in the preceding section. To calculate 6SQHNC/E2 we

-- --- ---

first obtain the polarization via Eq. (3.1). The one-particle density

function pQHNC(Q,EO) is giv

[

en by [cf. E~S~ (:::) eand

]

(2.9)]

- -.- pQHNC(Q'~O)_=-~l+h~(Eq)~k~[~- l~..

(5.14)

S -?- .
f

-?- -?- -?-

where hO(EO) = 11m hO(z,Q,EO)dQ/4'TT.
z~

18

-------
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Therefore, the polarization to O(E~) is

\
)

+ T .

2 ~

[

~ - mlPlBEo 1
p - 3f (5.15)

. .
b

9
But Kh 1S glven y

2 2 2
r - 1 Bml Eo
I"h-6f2Q (5.16)

~
and P can be written as

2 ~ 4 2~

P - m 1P1BE 0 m 1P lIE 0E 0
- 3f + ~ (kTf) 3 ~ (5.17)

where f is given by the QHNC approximation for the bulk. Using

Eqs. (5.1), (5.9) and (5.17) with (Eq. (5.12) we arrive at the

expression

4

[ )

4

( )

1QHNC 21T ffilPl - (-1 ~ -

6( EZ = 12m) = "3 (kT)3 3y 2(+1 Q
(5.18)

If we compare Eq. (5.18) with Eq. (5.13) we note that both predict

an increase of ( at high field. In Eq. (5.18) however, the isothermal

compressibility is not the ideal-gas one due to the more adequate way

in which the QHNC couples translational and orientational correlations.

n'" . . __'_'n -"'-""--'-'U_-'-"'''---'-'---n---'''-'~'--'''~-' . .' ' ,'"'.. -.- ._....... .. -.- ..~.. -'. - ''''''-- ~ 'U'n.



_.- -- -- --

20

ACKNOWLEDGMENTS

Acknowledgment is made to the National Science Foundation, and

to the Donors of the Petroleum Research Fund, administered by the

American Chemical Society, for support of this research. We are

indebted to Steven Carnie for hi~ useful comments on a preliminary

version of this manuscript.

-

- .'--.-- '--".~-~-.



21

REFERENCES

1. G. Stell, G. N. Patey,and J. S. H~ye, Adv. in Chern. Phys. 48

(1981) and references therein.

2. W. T. Coffey and B. K. P. Scaife, Proc. Roy. Irish Ac. 76A, 195

(1976) and references therein.

3. M. Wertheim, Ann. Rev. of Phys. Chern.30, 471 (1979) and references therein.

4. G. S. Rushbrooke, "Introduction to Statistical Mechanics," Oxford

University Press, Oxford (1949).

5. D. Isbister and B. C. Freasier, J. Stat. Phys. ~, 331 (1979).

6. J. E. Eggebrecht, D. Isbister and J. Rasaiah, J. Chern.Phys. ~,

3980 (1980).

7. P. G. de Gennes and P. A. Pincus, Phys. kondens. Mat. ll, 189 (1970);

8.

P. Jordan, Mol. Phys. ~, 961 (1973).

M. Wertheim, J. Chern.Phys. 55~ 4291 (1971).

9. J. Rasaiah, D. Isbister and G. Stell, Chern.Phys. Lett. 79, 189

(1981).

10. J. G. Kirkwood and I. Oppenheim, "Chemical Thermodynamics,"

McGraw-Hill, NY (1961).

11. E. Martina and G. Stell, SUNY CEAS Report #360 (February, 1981).

12. J. Rasaiah, D. Isbister, and G. Stell, J. Chern.Phys. (in press).

13. J. S. H~ye and G. Stell, J. Chern.Phys. ~, 1597 (1980).

14. J. D. Jackson, "Classical Electrodynamics," John Wiley, NY (1962).

G. Nienhuis and J. M. Deutch, J. Chern. Phys. 56, 1819 (1972).

~-=~':=C-~'==~~"~;':"~'~c.~ ...~.~~~tc~:~::~I!~~ ~_~ha?d1,:l"'- _J---_.fl!em_',_!'.l1X~~- 57 ,-2c~ ~_8 Q~: 2 )C"-:",-.770------

15.

17. G. Stell in"Phase Transitions and Critical Phenomena", Vol. 5B,
ed. C. Domb and M. S. Green (Academic Press, London, 1976).

C. J. F. Bottcher, "Theory of Electric Polarization," Vol. I, 2nd Ed.18.

Elsevier, Amsterdam (1973).


