STAE

A NE: FORMULA FOR CALCULATING TIIE CHANGE In TEMPERATURE OF FUSION OF ALKALI AS TELL AS NOBLE METALS AT PRESSURES UP TO 40 KB BY

Spec
TAI
.N532
No. 73
C. 2


```
A New Formula for Calculating the Change in
    Temperature of Fusion of Alkali
    as well as
Noble Metals at Pressures up to 40 KB
by
K. Mukherjee
Department of Material Sciences
```

State University of New York
Stony Brook, L. I., N. Y.

ABSTRACI

Kraut and Kennedy (1966) have proposed a new melting law at high pressures wherein the melting temperature in degree centigrade at a given pressure is a innear funotion of the room-temperature compression $\Delta V / V_{0}$ at the same pressure. The proportionality constants in their equations are detarmined empiricelly. In this present endeavor it is shown that the increase in melting temperature ΔT_{m}^{P} at a given pressure is a inear function of the product of the roomatemperature compression $\Delta V / V_{0}$ at the same pressure and the absolute melting temperature at ordinary pressure. The proportionality constants in the present case have been calculated from simple thermodynamic considerations. The agreement between the calculated and the experimental values of these constants is quite good. The proposed law is given by

$$
\Delta T_{\mathrm{m}}^{P}=\left(\Delta V_{\mathrm{i}} \Omega / \chi \Delta E_{\mathrm{S}}\right)\left(\Delta V / V_{0}\right)_{p}
$$

Where $\Delta V_{i}, \Delta F_{f}$ and Ω are volume change on fusion, latent heat of fusion and molar volume respectively at ordinary pressure and \mathcal{X} is the average roommtemperature oompressibility.

I. INTRODUCTION

Kraut and Kennedy (1966) have proposed an empiricel melting law at high pressures. It is shown by the that thet the melting temperature in degree centigrade at a given pressure is a linear function of the room-temperature compression $\Delta V / V_{0}$ at the same pressure. Their result is reproduced in fig. I. It must be noted that although their finding is indeed very interesting and quite useful in extrapolating experimental data, the very empirical nature of the law does not permit any predictions in the absence of both high-temperature and high-pressure data. The loss of generality of their law stems from the rather unfortunate choice of centigrade rather than the absolute thermodynamic temperature scale. It is the purpose of this article to show that if Kraut and Kennedy's (1966) law is reformulated in terms of absolute temperature then a general law of melting at high pressures can be obtained which does not contain any empirical constant.

II. METHOD

If the absolute melting temperature at a given high pressure is written as T_{m}^{P} and the melting temperature at ordinary room-pressure as \mathbb{m}_{m}^{0}, then

$$
\begin{equation*}
\Delta T_{m}^{P}=\left(r_{m}^{P}-T_{m}^{0}\right) \tag{1}
\end{equation*}
$$

where ΔT_{m}^{P} is the increase in melting temperature at a pressure P (higher than room-pressure). Let the roometempreature compression at a pressure P be $\left(\Delta V / V_{0}\right)_{p}$. By plotting ΔT^{P} versus $\left(\Delta V / V_{0}\right)_{p}$, a straight inne of the form

$$
\begin{equation*}
\Delta T_{\text {m }}^{P}=C T_{m}^{0}\left(\Delta V / V_{0}\right)_{P} \tag{2}
\end{equation*}
$$

is obtained for different values of pressure P. Using Bridgman's (1948) room-temperature compression data and Newton, Jayaraman and Kenneay's (1962) melting point data for alkali metals we plot ΔI_{m}^{P} versus $T_{m}^{P}\left(\Delta V / V_{0}\right)_{P}$ as showm in fig. 2. From fig. 2 we have

$$
\begin{align*}
& \Delta T_{m}^{P}(I 1)=0.55 T_{m}^{0}\left(\Delta V / V_{0}\right\rangle_{p} \ldots \ldots \ldots \ldots \ldots \ldots(3) \\
& \Delta T_{m}^{P}(N a)=2.66 T_{m}^{0}\left(\Delta V / V_{0}\right)_{p} \tag{4}\\
& \Delta T_{m}^{P}(K)=1.60 T_{m}^{0}\left(\Delta V / V_{0}\right)_{P} \tag{5}\\
& \Delta T_{m}^{P}(R b)=2.75 \mathrm{I}_{\mathrm{m}}^{0}\left(\Delta V / V_{0}\right)^{\circ}{ }^{\circ} \tag{6.}
\end{align*}
$$

Similariy for the noble metals Cu, Ag and Au, we plot ΔT_{m}^{P} from the highmtemperature data of Cohen, Klement and Kennedy (1966) and $\left(\Delta V / V_{0}\right\rangle_{P}$ from the room-temperature data of Bridgman (1949) as shown in fig. 2. And for thene metals we have (from ing. 2)

$$
\begin{align*}
& \Delta T_{m}^{P}(C u)=3.96 m_{m}^{0}\left(\Delta V / V_{0}\right)_{p} \tag{7}\\
& \Delta T_{m}^{P}(A B)=5.26 T_{m}^{0}\left(\Delta V / V_{0}\right)_{P} \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\Delta T_{m}^{P}(A u)=8.12 T_{m}^{0}\left(\Delta V / V_{0}\right)_{p} \tag{9}
\end{equation*}
$$

Now in order to oalculate the constant C in eqn. (2) we proceed as follows. From eqno(2)

$$
\begin{equation*}
m_{m}^{p}-T_{m}^{0}=c T_{m}^{0}\left(v_{0}-V\right) / v_{0} \tag{10}
\end{equation*}
$$

Where $V_{0}>V_{0}$ since T_{m}^{0} and V_{0} are constants for a given element, differentiating eqn.(10) with respect to pressure P

$$
\begin{equation*}
\frac{d T_{m} / d P}{}=\left(-C T_{m}^{0} N_{0}\right)(d V / \Delta p) \tag{11}
\end{equation*}
$$

We note from fig. 2 that eqn. (10) holds for the entire pressure range from zero pressure up to 40 KB or higher, and the slope is continuous throughout. Thus we could choose a pressure P_{I} such that $P_{I}=\left(P^{0}+\alpha\right)$ and $\alpha \rightarrow 0$, 1e. a pressure very close to the room-pressure P^{0}. Since

$$
\begin{equation*}
-1 / V_{0}(\partial V / \partial P)=X \tag{12}
\end{equation*}
$$

where X is the compressibility of the solid, in the first approximation we could substitite the compressibility at $300^{\circ} \mathrm{K}$. Thus

$$
\begin{equation*}
\mathrm{at}_{\mathrm{m}} / \mathrm{dP}=\mathrm{CX} \mathrm{~T}_{\mathrm{II}}^{0} \tag{13}
\end{equation*}
$$

But from the well known Clapeyron's equation

$$
\begin{equation*}
a T_{m} / \partial p=T_{m}^{0}\left(\Delta V_{P_{i}} / \Delta H_{f}\right) \tag{14}
\end{equation*}
$$

where ΔV_{f} and $\Delta \tilde{F}_{f}$ are the volume change and latent heat of fusion respectively at the normal melting point. The volume change on fusion is generally expressed as a fraction

$$
\begin{equation*}
\Delta \Omega / \Omega=\left(\Omega_{1}-\Omega_{s}\right) / \Omega_{s} \tag{15}
\end{equation*}
$$

where Ω_{I} and Ω_{s} are the molar volumes of the liquid and the solid respectively at the melting point. Thus the experimental volume change or fusion must be multiplied by the molar volume of the solid at the melting point. In the first approximation Ω_{s} at the melting point can be replaced by the room-temperature molar volume Ω. From eqns.(13), (14) and (15)

$$
\begin{equation*}
c=\Delta V_{\mathrm{f}} \Omega / X \Delta \mathrm{H}_{\mathrm{f}} \tag{16}
\end{equation*}
$$

Thus from eqns. (2) and (16) the new melting law at high pressures could be written as

$$
\begin{equation*}
\Delta T_{m}^{p}=\left(\Delta V_{f} \Omega / X \Delta H_{f}\right) T_{m}^{0}\left(\Delta V / V_{0}\right)_{p} \tag{17}
\end{equation*}
$$

III. RESULTS AND DISCUSSION

In table 1 the calculated values of C from eqn. (16) are compared with the corresponding vaiues from fig.2. In the case of li the disagreement between the oalculated and the experimental value of the slope is greatest. It must be noted that in table I, the value of ΔV_{f} is written within parenthesis indicating that this value is probably less accurate. If for the thelume change of fusion 1s teran
as 1.1% instead of 1.6% then an almost exact agreement between the calculated and the experimental values is obtained. Considering the approximations involved and the uncertainties in the values of ΔV_{f} as pointed out by Kubaschewski (1949) the agreement seems to be quite satisfactory.
IV. ACKNOWLEDGEMENT

The author greatfully caknowledges the partial support of this work by the National Science Foundation (U.S.A) under the Grant No, GK 962.

REFERENCES

Bridgman, P. Wo, 1948, Proc. Amer. Acad. Arts \& Sci., 26, 55, 71: 1949, Ibid. 27, 189; 1958, The Physics of High Pressure; (G. Bell and Sons, London), p. 162.

Cohen, I. H., Klement; Jr., Wo, and Kennedy, G. C., 1966, Phys. Reve, 145, 519.
 1963, Selected Values of the Thermodynamic Properties of Metals and Alloys, (John Wiley \& Sons, Inc., New York).

Kraut, E. A., and Kennedy, G. C., 1966, Phys. Rev. Letters, $16^{\circ} 608^{\circ}$.

Kubaschewski, 0., 1949, Trns. Faraday Soc., 45, 931.
Mott, N. F., and Jones, H., 1958, The Theory of the Properties of Metals and Alloys, (Dover Publications Inc., New York).

Newton, R. C., Jayaraman, A., and Kennedy, G. C., 1962, J. Geophys. Res., 67, 2559.

Smithells, C. J., 1955, Metals Reference Book, (Butterworths Scientific Publications, Lonaon).

Table 1. Comparison of the experimental and the calculated values of the constant C. Also shown are the selected values of the relevant physical parameters used in this calculation.

Element	$\begin{aligned} & \Omega \\ & \mathrm{cm}{ }^{3} \text { per } \\ & \text { gmo atom } \end{aligned}$	$\begin{gathered} x \\ \mathrm{~cm}^{2} / \text { /dyne } \\ \mathrm{x} 10^{-12} \end{gathered}$	$\begin{gathered} \Delta V_{\mathrm{I}} \\ \% \end{gathered}$	ΔH_{f} Cal. per sm.atom	Slope C	
					Experimental	Calculated
Li	$13.0{ }^{\text {a }}$	$8.32^{\text {c,d }}$	$(1.6)^{\text {f }}$	717^{8}	0.55	0.82
Na	$23.7{ }^{\text {a }}$	$13.63^{\text {c, }} \mathrm{d}$	$2.5^{\text {f }}$	627^{8}	2.66	2.66
K	$45.5^{\text {a }}$	$27.63^{\text {c.a }}$	$2.55{ }^{\text {f }}$	562^{8}	1.60	1.78
Bb	$56.2^{\text {a }}$	$36.39^{\text {co, }}$	$2.50{ }^{\text {²}}$	540^{8}	1.75	1.74
Cu	7.601 星	$0.725^{\text {e }}$	$4.60{ }^{\text {b }}$	3118^{88}	3.96	3.70
AS	10.969\%	$0.965^{\text {e }}$	$5.23{ }^{\text {b }}$	$2730^{\text {f }}$	5.26	5.11
Au	10.789 年	$0.573^{\text {e }}$	$5.56{ }^{\text {b }}$	$3060{ }^{\text {²}}$	8.12	8.18

\# Value at the melting point.
() Indicates probably less accurate value.
a. Mott and Jones (1958).
b. Cohen, Klement and Kennedy (1966).
c. Bridsman (1948).
d. Bridgman (1958).
e. Bridgman (1949).
f. Smithells (1955).
g. EuItgren, Orx, Anderson and xelley (1963).

EIGURE CAPMIONS

F1g. 1. Melting temperature in degree centigrade versus isothermal compression at room-temperature in alkali metals. The points on the graph are at 5 KB pressure intervals starting from zero pressure (After Kraut and Kennedy, 1966).

Fig. 2. Change in melting temperature at a pressure P versus the product of the absolute melting temperature at ordinary pressure and the isothermal room-temperature compression at the pressure P.For the alkali metals the pressure range is 0 to 40 KB and for the noble metals. 0 to 30 KB . The points on the graph are at 5 KB intervais.

