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Abstract

et et e e v

Under the assumption that the detailed turbulence structure in
the constant-stress region of a fluid flowing over a rough wall is in a
universal state determined wholly by the friction velocity u, 2 simi-
larity analysis of a Lagrangi>n type can be applied to the relative dis-
persion of clouds of contaminant released in such a layer. It is found
that for the case in which the initial dimension of the cloud, say L,
and the initial mean height are comparable there are only two temporal
regimes and they are characterized by times smaller than or greater
than L/u*‘

For the small time regime all relative diffusivities are linearly
dependent on time and their directional properties are related to
Eulerian measurements. Of more interest are the predictions in the
long time regime. It is found that in this region also relative diffusion
is characterized by a diffusivity that is linearly dependent on time.
Such a prediction differs from that of homogeneous turbulence and

. ; '
seems to have some support from experimental data in the earth's

atmosphere.



Diffusion of Clouds of Contaminant

in a Turbulent Boundary Layer

by

Edward E. O'Brien1

_nil;_o_c}_l_l_c_:_t_i_o_{_l: This paper is concerned with the problem of predicting
the rate of growth of a small cloud of contaminant in a turbulent bound-
ary layer and for that purpose employs an extension of Batchelor's
(1959) Lagrangian similarity hypotheses which, in its original form,
was concerned only with the statistics of the velocity of single particles.
Batchelor (1964) and others, Ellison (1959), Gifford (1962) and Cermak
(1963), have made use of the similarity concept to obtain satisfactory
predictions of measurable consequences of continuous source emission
and it seems worthwhile to pursue its extension to the behavior of clouds.
We consider the region of fluid near a rigid rough boundary in

which the Reynolds stress is approximately constant and equal to the

. : 1
stress T at the boundary. This stress 18 represented in the usua
o

To i stress re-
way by a friction velocity u, [ = N /P)]- Such a uniform

i imilarity of
gion has been long recognized as being characterized by similarity
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field and there are measurements in a circular pipe by Laufer (1955)
supporting its extension to two point Eulerian functions such as velocity
correlations. A recent paper by Lumley (1964) assumes such a simi-
larity for correlation functions and a discussion of the subject can be
found in Townsend's (1956) book on turbulent shear flows. Later,
Townsend (1961) indicates reservations concerning the notion that the
turbulence is in a universal state determined by u, , but it seems to
be effectively so for transfer mechanisms.

We propose to extend the similarity concept to two particle rela-
tive dispersion which is of course properly viewed as a Lagrangian prob-
lem, but first it is necessary to define the relationship between two par-
ticle relative dispersion and cloud relative dispersion for the inhomo-
geneous situation of a turbulent boundary layer. The lucid presentation
of Batchelor (1952) for the homogeneous case is a natural starting point
and the extension to a situation with homogeneity in horizontal planes
only is so straight-forward that we suppress the detail here and present

only the results. Let the positions of the particles at the instant of re-

A .  the
i of statistical homogeneity of t
lease be x'(t,) and }f”(to)' By virtue

. ¢
boundary layer in horizontal planes the statistics of the subsequen

n the
separation x'(t) — x'"(t) which we denote by y(t), are dependent on the

i a1 vep e
i characteristic initial ve
velocity field structure, t — t, X(O) and a

a d . )
W veni lease height Z(o}
tical coordinate which for convenience we take as the re g

of either of the two particles.

er the relative

Thus for a pair of particles in such a turbulent lay




dispersion tensor<yi(t)yj(t)> can be written, using Batchelor's (1952) ‘
notation,

< Yi(t)yj(tb= crij(t =ty Z(0), y(o)).

{ 1j
| following Batchelor, is related to o  (t— ¢t i Z(0), y(0) ) in the follow-
| ij o L

Similarly we find that the cloud dispersion tensor I (t— t ), again
0

ing fashion:

-2
Z (t—t) = v 1 1 | 1 1 1
i o) IIoplgs g, t) 7t 5 2, y) dx' dy

where V is the initial cloud volume and P(x', y!, t,) = 1if both x' and y
are in the initial cloud Or zero otherwise.
It is therefore sufficient, as in homogeneous turbulence, to study

two particle relative dispersion.

QQT_I_S_gghuences of the similarity hypothesis: With the knowledge that

Eulerian two point similarity has been observed in turbulent boundary
layers of the type discussed above, we generalize the single point
Lagrangian similarity concept to two points in the following way.

"The statistical properties of the relative displacement of two

. = ‘1 »
marked fluid particles at time t after simultaneous release near the

. ficles
ground depend only on u, , t, the initial separation of the particles

y(0) and initial height of one of the particles Z(o)."



It has been pointed out by Ellison (1957) and others that the rough-
ness height of the solid boundary determines only the horizontal velocity
of the axes of reference without affecting the turbulence structure. It
should have no influence on relative displacements.

An immediate conclusion of the similarity hypothesis is that the

effective relative diffusivities take the form

1d o (20, ylo)_ 2 2 0 (1)
2 at ey G el

where g.. are universal functions.
1)
The form presented as equation (1) gives rise to just two time
scales (assuming the boundary layer is of infinite extent otherwise the

time for particles to diffuse out of the layer would introduce a third

o)
e, I
time regime) 1 =  t -

Sle sk

: i << t, ort
Specific predictions are pos sible in only two cases t 1 2

nd
and t >> t, or t,. For instantaneous cloud releases near the grou

1 2

i ses there will simply
tl will often be of the order of t, and in such ca

; ich are
be two regimes, a small time and a large time, both of which

detailed below.

Small Time Behavior
m om the
it is well known fron
For times much shorter than tl or 1:2

. . i f turbulence
work of Taylor (1921) and others that the diffusive action of tu

sts of release.
. . .+ field at the points ©
is simply conve ction by the velocity 11
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We have

< Vi(t)yj(t)>= Yi(to)Yj(to) +<Vi(to)vj(t0)>(t - to)z,

where Vi(to) is the difference velocity of the carrier fluid at the two

points of release.

Eulerian two point similarity predicts

(x)u(x+y)>—u f. (%).

Whence we find

2 v (o)
24 o (52Z00), y(o)= 1d <y (t)y(t)s = w2t (o) = £
2at 4 24t ' J ! Z(o)

y(o) .
where flJ(Z(O ) is the experimentally accessible Eulerian velocity

Correlation function.

Such a solution is consistent with the similarity hypothesis at

. . to t
Small times when we demand, by kinematic arguments similar to

i i ‘hat 1s,
above, that 14 ¢ (t; Z(o), y (o)) should be linear in t. That is
3 - = ij Y

2 dt o
the appropriate small time predictions are

from (1),
y(o)
1d =—).
> a3 G‘ij(t,‘ Z(o), X(o)) gl_] Z(o)

y i Htusivity
i ine rly time dependmxt dif
esult th-el efore 1s the usual 1i a ’ (‘)
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Large Time. Behavior
]
/] ‘
In the(temporal regime, t >> t, or tZ’ one expects loss of

¢

statistical dependence on the details of the position of the particles

at release. That is, neither X(O) nor Z(o) 1is expected to enter
significantly into the statistical description when the separation vector
iz(t)l >> lX(O) ] and Z(o). A similar kind of argument was used by
Batchelor for relative diffusion in homogeneous turbulence except
that an upper bound of t was necessary in his case so that g(t) was
still sensitive mainly to Fourier elements in the ir}ertial subrange.
Thus the equivalent regime was termed by him the intermediate time
range. The existence of but two regimes in the boundary layer case
is a consequence of the universal state of the turbulence so that

characterizes the entire structure and therefore the entire range of

Fourier components.

In view of the lack of dependence on y(o) and Z{o) simularity

theory in the large time regime predicts

d
- t)y =a..u, t,
dt G-ij() ij *

N

where a.. are absolute constants.
1]

The continued dependenc

e of diffusivity on time in the larpe

:ntions assoclated with
time limit is considerably different to the predictions ass

termediate e
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he transfer met
independent, but as Lumley (1964) has shown the 11
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interpreted spectrally, are vastly more complicated than those of homo-
geneous turbulence and where equilibrium layers are in fact attained
One cannot expect inertial subrange arguments to be applicable.

Equation (4) is really an asymptotic result and differs again from
the classical homogeneous predictions by not yielding a constant diffus-
ivity for large times unless the coefficients aij are zero. Since in the
ideal equilibrium layer of infinite depth the turbulence structure grows
with distance from the wall and since the individual particles have been
shown by Batchelor (1964) to have a mean motion which is also outwards

from the wall the arguments which lead to constant diffusivity in homo-

geneous flows seem not to be relevant. Saffrnan (1962) has reached the

Same conclusion in a more general context at least for the diffusivity

in the horizontal direction.

Frenkiel and Katz (1956) report measurements of the increase in

radius of a number of clouds released from within 100 meters of the

ground and conclude that their data supports ‘yzl ~ot This is pre-

cisely the prediction of the Lagrangian similarity theory for both small

and large times. However the question of the existence of an adiabatic

surface layer is not easily answered from their data and furthermore
an analysis shows that the time of viewing is never more than twice

y(o)
[:w__!. Thus the long time asymptote cannot be considered to be estab-

u,,
lished. It is interesting however that a diffusivity linear in time seems



m l or

large times.

Tank (1957) made dosage experiments with clouds released at 1.5

t f
meters from the grouﬁd, Conversion of cloud growth rate to dosage in-
volves assumptions about detailed concentration distributions in the
cloud which are not implied by the similarity theory. However
r,

Zimmerman (1965) has shown that in the conditions of high wind velocity
the results are compatable with !;—Z—I v ‘c2 and in this case it is fairly
clear that the time scale extends well into the asymptotic time range.
It is, however, not clear how nearly the atmospheric layer was an equi-
librium layer or to what height it extended if it was. It is reasonable to

expect i i
P in the absense of detailed measurement that dominance of wall

friction over bouyancy effects is more likely at the highest wind speeds.

In this sense then Tank's data is compatable with the conclusions of this

IR

2 2 ; |
Vi ~ t behavior to a result

analysis. Zimmerman ascribes the

due to Tchen (1954, 1959), who argued from Heisenberg's (1948) approxi-

mation to the same result in a flow where the mean shear is sufficiently

large. The two explanations are not inconsistent although Tchen's

should be merely a result for intermediate times and not valid for times

asymptotically large.
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