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Abstract

The well-known Potts Hamiltonian formaJism for the general study of
site-bond correlated percolation in lattice spin models is introduced for the
first time in the context of microscopic theories of microemulsions. The ap-
proach is sufficiently general to be used in connection with any lattice model
of microemulsions. Within a mea.n-field approximation, we obtain equations
for the percolation thresholds, average cluster size and cluster size distribution
for each of the molecular species of the mixture, which require only the knowl-
edge of the structure functions of the model and an adopted bond activation
probability.
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t. General Formalism

Water-in-oilmicroemulsions can exhibit sharp variation in dielectric be-

havior, viscosity, and (most spectacularly) in electrical conductivity, upon

appropriate variation of either the droplet volume fraction, temperature, or

salinity of the'rrricroemulsion system. Such phenomena has been extensively

Teported in the literature [1,2,3,4,5] and can be associated with a percolative

transition of the wat-er ~lobuks (swoll~ micelles) which are dispersed in an

oil rich phase. At the percolation threshold the electrical transport regime is

dominated by the motion of charge carriers on large, (electrically) connected

clusters of water droplets.

In general the mkellar Brownian motion of the water droplets, with an

attendant contmuumrreana.ngement of the clusters, appears to smear the p.er-

cola.tiontn.nsition .around the threshold [6].,thus .a1fectingthe value of the

critical exponent at the onset of the transition. Below the threshold the

(low-frequency) conductivity has a power-law behavior of the form [1,2,3]

u(T < Tp) '" (Tp - T)-. with s ~ 1.2, which is larger than the static percola-

tionexponent s' ~ 0.7. Abovethe threshold,whenthe systemis percolating,

dynamical effects are substantially reduced and the conductivity grows as a

power-law u(T > Tp) '" (T - Tp)t with t .~ 1.8, which agrees with the static

exponent ioxthe metal-msWa.torproblem [7]. The thresholds, on the other

hand, experience little or no effect from the dynamical correlations between

clusters and, therefore, are appropriately described by the static (frequency

independent) percolation problem[6]. Both the percolation thresholds and the

values of tJre criticalexpo.uents (dyJUUDicperadation) ..havelleen Buccessfully
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determined by phenomenological theories, either analytically or via computer

simulations [3,6]. The model system in these studies amsists essentially of

a one-component fluid of hard spheres, representing the water globules, in-

teracting with each other via a square-well attractive potential 18] or via .a

more realistic Yukawa tail [3]. The inter-droplet interaction, which presum-

ably arises from the surfactant monolayer coating each water droplet, accounts

for the thermal phase separation as well as for the small values of the droplet

volume fractions .at the percolation transition. The values of the thresholds are

also affected by other quantities, besides temperature, related to the adopted

definition of connectivity, e.g. the radius of the conductivity shell [6,8Jor the

strength and range of the bond activation probability 13~J.

The aim of this work is to present an entirely different approach to the

general study of correlated site-bond percolation in microemulsions, starting

from microswpic lattice models of surfactant mixtures. In this treatment the

thermodynamic and structural properties of the ~em are all derived from

theJDicroemulsion model, whereas connectedness or clustering properties such

as percolation thresholds, cluster size distribution, and many other quantities

of Jnterest, are all obtained via.4. generating function defined from a suitably

chosen q-state Potts Hamiltonian coupled to the microemulsion model. The

formalism is identical to the one employed in the celebrated approach to the

gelation transition developed by Coniglio, Stan1eyand Klein lID], and subse-

quently studied by many authors 111,12,13]. In the present work the particles

are thermally correlated according to the microemulsion Hamiltonian instead

of the Ising or Potts models.as in ~ces {IDJCIlld{13J. Besides its nov-
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elty in the rontext of microemulsions, this treatment is expected to JIJlS'Wer

questions that are difficult to address with phenomenological theories such as

the effect of structure, composition, interparticle interactions (including the

amphiphilic strength) and salinity, among others, on the clustering properties

of microemulsions. AnotherimpoTtam aspect of this approach is the fact that

there is freedom of choice for the bond activati01l probability. The strength

and xa:ngeof the active bonds <:anbeca.refully chosen, for instance, to mimic

the effect of the charge hopping process between clusters, or prescribed in

such a way as to tune the percolation transition to be in synchrony with ther-

modynamic criticality [3,10]. In a recent work, Blossey and Schick 114] use

a formalism due to Murata {15] to determine the correlated site percolation

threshold lines of a two-component lattice model which di~lays a closed-loop

pha~ diagram. They fiDd a :r.apid vMiation Df the thr~()lds with temper-

ature below the lower critical point similar to that observed in water-in-oil

microemulsion systems [3]. Despite some similarities, their approach differs

from ours in two important aspects. First, they study a correlated site per-

colationproblem where the clusters consist of <part1c1esin contact, wnereas In

our approach there is freedom of choice for the bond activation probability.

The fieOOndand most important difference is the fact that Blossey and Schick

.use 4 two-component la.tiicemodel whidl mimics the lower miscibilityga.p

found in microemulmons, but cannot be considered a microscopic mode1 for

mixtures of water, oil and surfactant over a wide range of composition, tem-

perature and interparticle interaction strengths. Consequently, as pointro out

by Blossey .and Schick, theirapproachca.nnotaddress, for instance, the effects
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of amphiphilic interACtionson the percola.tion thresholds of microemulsions.

The three molecular species are distributed over the lattice according to

the Boltzmann factors for the microemulsion Hamiltonian (sometimes referred

to as the "therma.I" HamlJtonian) And, therefore axe thermally correlated.

Each cluster is formed by a maximal set of particles connected by "active"

bonds with a prescribed probability p. Thus, there may be a "thermal" bond

between two particles, say nearest-neighbors, which contributes to the energy

of the system, but does not necessarily imply that the particles belong to the

same cluster, unless this bond is active. In addition to the site occupancy

variables of the "thermal" Hamiltonian, there is a Potts variable Vi on every

site 'of the lattice assuming values Vi ::: 1,2, ..., q.Onet:all show[13,23] that

the cluster statistics, and therefore the percolation problem, is determined by

the following dilute Potts Hamiltonian

N N

'H ='Hm{ni} - E L ~,6 (bllWi - 1)nf nf -I:I:H~( bll01- 1)nf .
iJ 01,,6 i ~

(1)

Here 'Hm {ni} is the microemulsion Hamiltonian which depends on the site

occupancy 'Wariahlesn:, n~ and ni representing water, oil and surfactant re-

spectively. A number of such models have been proposed and studied in the

literature over several recent years [16,17,18,19,20,21,22]. The sums in Q and {3

are over these three molecular species. The bl/Wiis a Kronecker delta, which is

1 if sites i and j are in the same Potts state and zero otherwise. HD; are ghost

fields for species Q and are conjugated variables to the V = 1 Potts state. The

quantities W~~ are connectivity functions, the precise form of which depend

on the details of the model. For instance, if only conventional clusters (i.e.
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clusters madeofa single species a) are to be oonsidered, we ~

W ij W ij c:
Ot{3= Ot ()Ot{3. (2)

Furthermore, if only nearest-neighbor sites are to be considered (directly) con-

nected we have

. .

{

Wo jf ia.nd j are N.N
W'J=Ot

~ otherwise.

In what Iollowswe shall consider only conventional clusters, so that equation

(3)

(2) holds. (Clusters made of oonnected pai~ ofdifrerent species can be consid-

ered in the same fashion. See references [24]and the Teviewarticle by J. Halley

in reference Ill]). In addition we seek clustering of .one pa.rticu4r .species, de-

noted Q. The partition function is given by the configurational sums of the

OCCUpctDgcmdPottsvari.ables

Z :: L exp(-f31im{ni}) x
{ni}

X E exp
{

f3E w~j (EViVj-1) nf nj + f3HOtIJSVil -1) nf
}

. (4)
{~} iJ i

Let us elaborate on the sum over the Potts configurations {lid. Given a

'Particle COnfiguTa.tion{Tli} we distinguish two complementary sets: set e{ni}

of all sites occupied by particles of species0, and set e {nd, which is the set

of sites in the configuration {ni} not occupied by 0 particles. For every site
q

in .~{ni }we pick ttp a term E '= q in equatioll (4), therefore "theelements of
Vi::: 1

8{ni} contribute a term qLi(l-nf) for every configuration {nil. The partition

function becomes

Z= L exp( -f31lm) ZI; {ni} qE.(l-nf) .,
{~.}

(5)
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where Z.c{ni} is the partition function of the q-state Potts model defined on

the sub1a.ttice /:, consisting of those sites occupied by ~tic~ ofi>pecies a: in

the configuration {ni}. The set of vertices in this sublattice is 8{ ni}. The set

of bonds (as defined by the couplings W~j) in this sublatticel$ denoted B{ni}.

After some manipulations it canbe'Shuwn that

Z.c{ni} = L p1jl(1- Pij)ldl II [(q -1) e-f3HoNr+ 1] ,
~~B r

(6)

where

Pij = 1 - exp(-t3W~j) . (7)

Here C is a subset of 8{nj} and V its complementary (j~e., V=Bfn;J -C);

fet denotes-thenumber of bonds in C, a'1ld Idl is the number of bonds in Vj r

labels the clusters in the subset C and Nr is the number of Q particles in the

rth cluster. The sum runs over all subsets C. Notice that equation (5) reduces

to the (purely) "thermal" partition function in the limit q = 1 since

I: plcl(l- p)JdJ .e: 1
C"S{n;}

(8)

for every molecular rotrfiguration {n.}.

Equations (5), (6) and (7) yield the cluster statistics through the function

A( {WQ}, HQ) defined by

A{{Wo},Her)= Ji~ d:Z
q 1q=1

(9)

which gives

A( {Wa},Ho)= 1 - per +L« ~cl » e-f3Hat,=1
(10)
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where pOi is the concentration of species Q (pOi::: N-l Ei <:nf '>) and

1
« ... »= "" e-trnm ~ Pl,c:l(l- p ' . )141...-

( - 1)
L- L- 'J . 1J ,

q - {ni} C~8{nd

(11)

defines the statistical average of any cluster related quantity. < < n1 > > is

the average number of clusters of t particles per site. The sum in t extends to

iIIfinity for Hac> 0, however, only finite dusters contribute. Several quantities

of interest are derived from equation (10); the average number of clusters per

site is given by

« ncl »= A( {Wac},0) -1 + pac. (12)

The clust~ size distribution, i.e. theproba.hility that a particle (of species a)

belongs to a cluster of t particles is given by

b t cl
Tt ::t- «n1 » .

po
(13)

The percolation probability is therefore

,

'P=I-LPt,
1=1

(14)

where the prime restricts the summation to finite clusters. It is convenient

to define a generating function r( {Wac},HOt)through the first derivative of A

with Tespect to (3Hac

1 8A
r( {WoJ,HOt)== --;-,..-= L P1e-PHat .

p 8(3HOI 1=1
(i5)

The moments of the cluster distribution are then

Err
IPmE LIen Pt = (--l)m 8«(3HOI)mHa=O..1=1

(16)
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The mean cluster size is given by

s= 1l1/IlO' (17)

The pair connectedness, which gives the probability that two a particles lo-

cated on sites i.and j lie within the same cluster, can be defined by introducing

an inhomogeneous field at each site

a2A

I

.
g~(i,j) = {)I3H~{){jHi H:';J{ir=o

(18)

n. Mean-field Theory

In what follows we describe a mean-field treatment for the HamHtonian

defined in equation (1) in order to obtain AIl.a.pproximate generating function

for the percolation problem. The thermodynamic properties of the microemul-

sion model are assumed known in this approximation, such that only the Potts

part of the Hamiltonian (1) is of concern. It is convenient to introduce the

following "'spill""representation for the Potts variables [25]. At each site i the

Potts variable IIi assumes one of the q values IIi = 1,2,..., q. Let us definea

complex variable ,tTiwhidl take on the 'Valuest1i= l,w, w2, ...,,,,,9-1, ie.there

is a unique correspondence between the variables IIi and O'igiven by

(1i = W"i-l, (19)

where w = exp(21rijq) is 4 qth-root of unity in the complex plane. The w

therefore satisfies the equation Z9 - 1 = 0, which can be written as

(z - 1)(1 + Z +... + zq-1) = O. (20)
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It is easy to show that

htTtT'= h"". = :!.. t ii' f7,q-1c .
q k=1

In this representation the Hamiltonian (1) is written as

1

[

q-l

]

i. or or k q-k

1i = 'Hm - -r:W:ni n; 1 - q + L CTi (T;q ',J *=1

1

[

q-l

]
--HaL ni l-q+ I: uf ,

q i *=1

(21)

(22)

where we have used the fact that uk = 1 for k = 0 or k = q. The (local)

fraction of particles of species a in the [th Potts state is defined by pi If,

where

if .i!::< 6".1 > = < 6(1iWl-l> ;1 ==1,2, ..., q . (23)

Using ~quations (19) .and (21) we obt.a.in

q-l

If = q-l + q-l L < uf > wq-(I-l)k .
k=1

(24)

The quantity < Ui > is the local order parameter for the Potts states, which

is written as

< f7i >= ~ ei(Ji , (25)

where Oi indicates into which of the ava.ilable states the order para.meter at

site i has fallen. The R E [0,1] indicates the corresponding amplitude. The

Ui lies on the unitary circle, and so does uf. Therefore,

< uf >= R eik6i . (26)

Since the field Horcouples to the 1/= 1 Potts state (Le. zero phase), we may

set 6;.;;::o. The local fraction of Potts states distributed over the sites oecupied
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by 'Species Q js then

I

{

q-1l1 + (q -l)~] if 1==1
fi =

q-1(l-~) if 1=2,3,...,q.
(27)

The energy functional in this approximation becomes

1i = 1im - L: W~ pf pj (1 - q-1)(~ Rj -1)
i,j

-Ho L: pf (1 - q-1)(~ -1). (28)

The mean-field entropy is given by

s = - L:
I

L: pf Inpf + t pi iIln(Pfff)
]

,
-13#;0/. 1=1

(29)

where /3 here represents the particle species other than Q. With ff given by

equation (27), we obtain for the mean-field free energy functional

:F = :Fm- (1 - q-1)L: W~ipi pj(~Rj -1) - (1 - q-1)HoL:pi(~ -1)
~ i

+q-1T~pf{[1 + (q -1)~] lnli + (q-1)~].

+(q-1)(1 -~) In(l-~) - q lnq}, (30)

where Fm is the mean-field free energy of the microemulsion model. In the

limit q -t 1 equation (30) reduces to :Fm, whose minimization yields the

thermodynamic and structural propert~ of the model. According to the

discussion above, the clustering 'PTOPertiesare obtai~ed from the d~ivative of

(30) with respect to q at the point q = 1.

In what follows we consider a mriform (translational .invariant) Potts or-

.derpa:r.a.meter/l, keeping, however, the -position dependence on the particle
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~ties. From equations (9) and (30)weobtam

NA({Wo}, Ho) = (1- Ie)L,B~; pi pi + (1- R),BHoL pi
iJ i

+(1 - R)[ln (1 - R) - 1]L pi . (31)

Upon expansion of pi ill Fourier space,.a.round the vAluewhich minimizes the

microemulsion free energy, equaiion (31) can be written as

A{{W.}, H.) = ,8{l-R') {{p.)' AW{O)+ ]".z (~~, AW{k)S..{k)]
+(1 - R)pO[,BHo+ In(1- R) - 1], (32)

where pOis the concentration of a particles which minimizes the microemulsion

.free-energyand

>'.w(k)= .~. .
.

Wi; eik.(i-i)k 0' . (33)
iJ

Soo(k) is the mrnrtu1'e function for species a defined by

Soo(k) = < pO(k)pO(-k) > . (34)

Therefore, given a definition for connectivity between particles of a certain

species a (thTough the couplings W~;) and the structure function for any mi-

croemulsion model, we find the clustering properties of interest. For instance,

the percolation locus is found by minimization of equation (32), which gives

{

ex 2R,B W

}R = 1- exp -,BHo - 2R,Bp>'w(O)-7 Goo,
(35)

where
ddk

G~(T, {p}) = L.z (21r)d >'w(k) Soo(k) .
(36)
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(The temperGiureandcomposition dependence is explicitly shown for clarity).

As thepercoJa.tion criticality is approached (R-+ O)AitHo :; 0.,wema.yexpand

the right-hand side of equation (35), and the density threshold for species Q

is then given by the solution of

(l"r)2-nl>\1,n\per+n\ 1,n\G~(T,{p}) = o. (37)

The generating function f is obtained from equa.tions (15) and (31)

1 8A = 1 - R .
f({Wer},Her) = -per (3Her

(38)

Usingequation (35), the function r satisfies

r = exp(XT) exp(-X - (3Her), (39)

where

1
X = 2{3perAW(O)+ 2{3-G~ .

per
(40)

Equation (39) can be solved in the following way. Dift'er~ntiating both sides of

(39) with respect to {3Her,we obtain the relation r' = (Xr' -l)f. Substituting

for r in the form of eqWl.tion(15) and matching the coefficients, we obtain the

solution

f({Wer},Her)= L (t~~t-le-tXe-{3Hat.t .
(41)

Therefore, we find tha.t the cluster size distribution is given by

Pt = {tX)t-lt! e-tX. (42)

ID. Summary
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In this work we have described how a-wel1.Jtnowntedm1que todetermme

cluster 'Statistics in lattice spin systems can be used to obtain clustering prop-

erties of Hamiltonian models for microemulsions. The formalism presented

here is a microscopic one, which enables the study of the effects of the molec-

ula:r mteraction~, composition and structure upon the percolative properties

of any three-state, lattice model of microemulsiollS. Much in the same spirit

of the Coniglio, Stanley and Kleinll0] work, connectivity between particles

here does not necessarily implies that the paTticles occupy nearest-neighbor

positions and vice-versa; there is freedom of choice for the activation of bonds,

which may be chosen according to a particular clustering process one wishes

to modeL In a separate work[26] we have a.pplied a. simila.r, but less general

approach to investigate the behavioT of the water percola.tioo threshold in a

model microemulsion as the surfactant is made more hydrophobic. A sys-

tematic study of several microemulsion models that includes the quantitative

implementation of the formalism given here is currently underway.
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