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Abstract

The well-known Potts Hamiltonian formalism for the general study of
site-bond correlated percolation in lattice spin models is introduced for the
first time in the context of microscopic theories of microemulsions. The ap-
proach is sufficiently general to be used in connection with any lattice model
of microemulsions. Within a mean-field approximation, we obtain equations
for the percolation thresholds, average cluster size and cluster size distribution
for each of the molecular species of the mixture, which require only the know}-
edge of the structure functions of the model and an adopted bond activation
probability.
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I. General Formalism

Water-in-oil microemulsions can exhibit sharp variation in dielectric be-
havior, viscosity, and (most spectacularly) in electrical conductivity, upon
appropriate variation of either the droplet volume fraction, temperature, or
salinity of the microemulsion system. Such phenomena has been extensively
reported in the literature [1,2,3,4,5] and can be associated with a percolative
transition of the water globules (swollen micelles) which are dispersed in an
oil rich phase. At the percolation threshold the electrical transport regime is
dominated by the motion of charge carriers on large, (electrically) connected
clusters of water droplets.

In general the micellar Brownian motion of the water droplets, with an
attendant continuous rearrangement of the clusters, appears to smear the per-
colation transition around the threshold [6], thus affecting the value of the
critical exponent at the onset of the transition. Below the threshold the
(low-frequency) conductivity has a power-law behavior of the form [1,2,3]
o(T < T,) ~ (T, — T)~* with s = 1.2, which is larger than the static percola-
tion exponent s’ & 0.7. Above the threshold, when the system is percolating,
dynamical effects are substantially reduced and the coxllductivity grows as a
power-law o(T > T,) ~ (T — T,)* with t = 1.8, which agrees with the static
exponent for the metal-insulator problem [7]. The thresholds, on the other
hand, experience little or no effect from the dynamical correlations between
clusters and, therefore, are appropriately described by the static (frequency
independent) percolation problem([6]. Both the percolation thresholds and the

values of the critical exponents (dynamic percolation) have been successfully



determined by phenomenological theories, either analytically or via computer
simulations [3,6]. The model system in these studies consists essentially of
a one-component fluid of hard spheres, representing the water globules, in-
teracting with each other via a square-well attractive potential [8] or via a
more realistic Yukawa tail [3]. The inter-droplet interaction, which presum-
ably arises from the surfactant monolayer coating each water droplet, accounts
for the thermal phase separation as well as for the small values of the droplet
volume fractions at the percolation transition. The values of the thresholds are
also affected by other quantities, besides temperature, related to the adopted
definition of connectivity, e.g. the radius of the conductivity shell [6,8] or the
strength and range of the bond activation probability [3,9].

The aim of this work is to present an entirely different approach to the
general study of correlated site-bond percolation in microemulsions, starting
from microscopic lattice models of surfactant mixtures. In this treatment the
thermodynamic and structural properties of the system are all derived from
the microemulsion model, whereas connectedness or clustering properties such
as percolation thresholds, cluster size distribution, and many other quantities
of interest, are all obtained via a generating function defined from a suitably
chosen ¢-state Potts Hamiltonian coupled to the microemulsion model. The
formalism is identical to the one employed in the celebrated approach to the
gelation transition developed by Coniglio, Stanley and Klein [10], and subse-
quently studied by many authors [11,12,13]. In the present work the particles
are thermally correlated according to the microemulsion Hamiltonian instead
of the Ising or Potts models as in references [10] and {13]). Besides its nov-



elty in the context of microemulsions, this treatment is expected to answer
questions that are difficult to address with phenomenological theories such as
the effect of structure, composition, interparticle interactions (including the
amphiphilic strength) and salinity, among others, on the clustering properties
of microemulsions. Another important aspect of this approach is the fact that
there is freedom of choice for the bond activation probability. The strength
and range of the active bonds can be carefully chosen, for instance, to mimic
the effect of the charge hopping process between clusters, or prescribed in
such a way as to tune the percolation transition to be in synchrony with thér-
modynamic criticality [3,10]. In a recent work, Blossey and Schick [14] use
a formalism due to Murata [15] to determine the correlated site percolation
threshold lines of a two-component lattice model which displays a closed-loop
phase diagram. They find a rapid variation of the thresholds with temper-
ature below the lower critical point similar to that observed in water-in-oil
microemulsion systems [3]. Despite some similarities, their approach differs
from ours in two important aspects. First, they study a correlated site per-
colation problem where the clusters consist of particles in contact, whereas in
our approach there is freedom of choice for the bond activation probability.
The second and most important difference is the fact that Blossey and Schick
use 2 two-component lattice model which mimics the lower miscibility gap
found in microemulsions, but cannot be considered a microscopic model for
mixtures of water, oil and surfactant over a wide range of composition, tem-
perature and interparticle interaction strengths. Consequently, as pointed out

by Blossey and Schick, their approach cannot address, for instance, the effects



of amphiphilic interactions on the percolation thresholds of microemulsions.
The three molecular species are distributed over the lattice according to
the Boltzmann factors for the microemulsion Hamiltonian (sometimes referred
to as the “thermal” Hamiltonian) and, therefore are thermally correlated.
Each cluster is formed by a maximal set of particles connected by “active”
bonds with a prescribed probability p. Thus, there may be a “thermal” bond
between two particles, say nearest-neighbors, which contributes to the energy
of the system, but does not necessarily imply that the particles belong to the
same cluster, unless this bond is active. In addition to the site occupancy
variables of the “thermal” Hamiltonian, there is a Potts variable v; on every
site of the lattice assuming values »; = 1,2,...,q. One can show[13,23] that
the cluster statistics, and therefore the percolation problem, is determined by
the following dilute Potts Hamiltonian
N N
H = Hm{n} - Z:}:ﬁ Wb (b, = Dnf ) = 33 Halbua = Dnf . (1)
Here Hm{n;} is the microemulsion Hamiltonian which depends on the site
occupancy variables n?,n® and nf representing water, oil and surfactant re-
spectively. A number of such models have been proposed and studied in the
literature over several recent years [16,17,18,19,20,21,22]. The sums in @ and 3
are over these three molecular species. The 6,,‘.,,. is a Kronecker delta, which is
1 if sites ¢ and j are in the same Potts state and zero otherwise. H, are ghost
fields for species a and are conjugated variables to the v = 1 Potts state. The
quantities W;'}, are connectivity functions, the precise form of which depend

on the details of the model. For instance, if only conventional clusters (i.e.



clusters made of a single species a) are to be considered, we set
Was = Wi bap . 2)

Furthermore, if only nearest-neighbor sites are to be considered (directly) con-

nected we have

.. W, if i1 and 5 are N.N
Wy = 3)

0 otherwise.

In what follows we shall consider only conventional clusters, so that equation
(2) holds. (Clusters made of connected pairs of different species can be consid-
ered in the same fashion. See references [24] and the review article by J. Halley
in reference [11]). In addition we seek clustering of one particular species, de-
noted a. The partition function is given by the configurational sums of the

occupancy and Potts variables

2 = 3 e (-Hm{n})

x Y exp {,92 W (8, —1)nE nS + BHa 3 (601 — l)n?}. (4)

{w) i

Let us elaborate on the sum over the Potts configurations {1;}. Given a
particle configuration {n;} we distinguish two complementary sets: set ©{n;}
of all sites occupied by particles of species a, and set ©{n;}, which is the set
of sites in the configuration {n;} not occupied by a particles. For every site
in ©{n;} we pick up a term i = g in equation (4), therefore the elements of
©{n;} contribute a term qzj(l;'l“?) for every configuration {n;}. The partition
function becomes

e {Z}e"P(-ﬁHm) Zr{n;} 07" (5



where Z¢{n;} is the partition function of the g-state Potts model defined on
the sublattice £ consisting of those sites occupied by particles of species a in
the configuration {n;}. The set of vertices in this sublattice is ©{n;}. The set
of bonds (as defined by the couplings Wi7) in this sublattice is denoted B{n;}.
After some manipulations it can be shown that

Zin}= 3 p5 (L =p) T [(a =) e 4 1] (6)

where
pij = 1 —exp(—BW7) . (M

Here C is a subset of B{n;} and D its complementary (i.e., D = B{n;} —C);
jc| denotes the number of bonds in C, and |d| is the number of bonds in D; r
labels the clusters in the subset C and N, is the number of a particles in the
rth cluster. The sum runs over all subsets C. Notice that equation (5) reduces
to the (purely) “thermal” partition function in the limit ¢ = 1 since
Y PPa-p) =1 (8)
CCB{n;}

for every molecular configuration {n,}.

Equations (5), (6) and (7) yield the cluster statistics through the function
A({W,}, H,) defined by

dln 2

AWl Ho) = Jim == (9)
g=1
which gives
A({Wol Ho) =1-p°+ " << nf >> e7FHat (10)

=1



where p® is the concentration of species a (p* = N7 T; < n¥ >) and

<< >>=——— 3 m T plla—pyH-. (1)

Z(g=1) ) iy CCB{n:}

defines the statistical average of any cluster related quantity. << n¢ >> is
the average number of clusters of ¢ particles per site. The sum in ¢ extends to
infinity for H, > 0, however, only finite clusters contribute. Several quantities
of interest are derived from equation (10); the average number of clusters per
site is given by

<<n¥>>= A({W,},0) =1+ p°. (12)

The cluster size distribution, i.e. the probability that a particle (of species o)

belongs to a cluster of ¢ particles is given by
P ccndns . (13)
P t

The percolation probability is therefore

P=1-Y P, (14)
t=1

where the prime restricts the summation to finite clusters. It is convenient
to define a generating function I'({W, }, H,) through the first derivative of A

with respect to SH,

__1 064 _ ~BHat
I({We}, H,) = = OFH. Z; Pee : (15)

The moments of the cluster distribution are then

T

=Y "P = (=1
;t ( ) a(ﬂﬂa)mg_

(16)



The mean cluster size is given by

S=m/po- (7)

The pair connectedness, which gives the probability that two a particles lo-
cated on sites i and j lie within the same cluster, can be defined by introducing
an inhomogeneous field at each site

— %A
9a(57) = BT OB |y
II. Mean-field Theory

In what follows we describe a mean-field treatment for the Hamiltonian
defined in equation (1) in order to obtain an approximate generating function
for the percolation problem. The thermodynamic properties of the microemul-
sion model are assumed known in this approximation, such that only the Potts
part of the Hamiltonian (1) is of concern. It is convenient to introduce the
following “spin” representation for the Potts variables [25]. At each site ¢ the
Potts variable v; assumes one of the g values v; = 1,2,...,¢q. Let us define a
complex variable o; which take on the values o; = 1,w,w?, ...,w? 1, i.e. there

is a unique correspondence between the variables v; and o; given by

o; = w1, (19)

h

where w = exp(2xi/q) is a ¢'®-root of unity in the complex plane. The w

therefore satisfies the equation 29 — 1 = 0, which can be written as

(z=1)(Q4+z4---42"1) =0. (20)



It is easy to show that

bpor = b, =

N (21)

k=1

o | -

In this representation the Hamiltonian (1) is written as

1 o i :
H = Hm--q-z W ng ng [1—q+):afa§ "}
2

k=1

1 =
—_ azn? l-q—!-z af ; (22)

q i k=1
where we have used the fact that ¢* = 1 for k = 0 or k = ¢. The (local)
fraction of particles of species a in the I*h Potts state is defined by p¢f!,

where

fl=<ba>®< b1 >;1=1,2,....q. (23)

Using equations (19) and (21) we obtain
g=-1
fm g g Y <ok > wintD (24)
k=1
The quantity < o; > is the local order parameter for the Potts states, which
is written as
<o;>= R; e, (25)
where 6; indicates into which of the available states the order parameter at

site ¢ has fallen. The R; € [0,1] indicates the corresponding amplitude. The

o; lies on the unitary circle, and so does o¥. Therefore,
<of >= R; ¥, (26)

Since the field H, couples to the v = 1 Potts state (i.e. zero phase), we may

set 0; = 0. The local fraction of Potts states distributed over the sites occupied



by species « is then

_1 _— : . I:
T b 1+(g-1R] ifl=1 @
¢7'(1-R;) if 1228, ...4:

The energy functional in this approximation becomes

H = HAm-Y Wiptp2(1-q¢")(RiR;-1)

¥ .
~H, Y o (1-q)(R: - 1). (28)
The mean-field entropy is given by
g
§=-% [Z o Inpl+3° o7 £ (et fY)| (29)
i |B#a i=1

where 3 here represents the particle species other than . With f} given by
equation (27), we obtain for the mean-field free energy functional

F o= Fm-(-¢) L Wl pf(RB; —1)~(1-q)Ha 3 p{(R: - 1)

43

+q7'T o2 {1+ (= DRI lafl + (g~ )R]

+g-1)(1 - B) (1 - R) - g lng}, (30)

where Fpy is the mean-field free energy of the microemulsion model. In the
limit ¢ — 1 equation (30) reduces to Fm, whose minimization yields the
thermodynamic and structural properties of the model. According to the
discussion above, the clustering properties are obtained from the derivative of
(30) with respect to ¢ at the point ¢ = 1.

In what follows we consider a uniform (translational invariant) Potts or-

der parameter R, keeping, however, the position dependence on the particle
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densities. From equations (9) and (30) we obtain

NA({W.},H.) = (1—-R)Y BWZpf o+ (1 - R)BH. ) pf
g i

+(1-R)a(-R) -1]Y o (31)

Upon expansion of pf in Fourier space around the value which minimizes the

microemulsion free energy, equation (31) can be written as

A H) = 80= B 677w+ [ o a0 5000

+(1 - R)p°[BHo + In(1 — R) — 1], (32)

where p® is the concentration of a particles which minimizes the microemulsion

free energy and
Aw(k) = S W ekt (33)
0

Saalk) is the structure function for species a defined by
Saa(k) =< p%(k) p*(-k) > . (34)

Therefore, given a definition for connectivity between particles of a certain
species a (through the couplings Wi’) and the structure function for any mi-
croemulsion model, we find the clustering properties of interest. For instance,

the percolation locus is found by minimization of equation (32), which gives

R= l-eXP{-—ﬁHa—mﬁp“z\w(ﬂ) = } (35)
where
d
GEATAoY) = [, Tomye (k) Saall). (36)

11



(The temperature and composition dependence is explicitly shown for clarity).
As the percolation criticality is approached (R = 0) at H, = 0, we may expand
the right-hand side of equation (35), and the density threshold for species a

is then given by the solution of

1 1

(r°)? - m!’“ mai‘;(ﬂ {r}) = 0. (37)

The generating function I is obtained from equations (15) and (31)

1 0A
Fr({W.},Ho) = —— = 1=&. - (38
(Wa), Ho) =~ 22 39
Using equation (35), the function I' satisfies
r= exp(XF) cxp(-X = ﬁHu) ’ (39)
where
X = 265w (0) + 25%92; . (40)

Equation (39) can be solved in the following way. Differentiating both sides of
(39) with respect to SH,, we obtain the relation I' = (XT'—1)I". Substituting
for I in the form of equation (15) and matching the coefficients, we obtain the

solution

t-1
T({Wa), Ho) = 3 2N mex oot (1)
: !
Therefore, we find that the cluster size distribution is given by

(tX)? e—tX

= =g

(42)

IOI. Summary
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In this work we have described how a well-known technique to determine
cluster statistics in lattice spin systems can be used to obtain clustering prop-
erties of Hamiltonian models for microemulsions. The formalism presented
here is a microscopic one, which enables the study of the effects of the molec-
ular interactions, composition and structure upon the percolative properties
of any three-state, lattice model of microemulsions. Much in the same spirit
of the Coniglio, Stanley and Klein[10] work, connectivity between particles
here does not necessarily implies that the particles occupy nearest-neighbor
positions and vice-versa; there is freedom of choice for the activation of bonds,
which may be chosen according to a particular clustering process one wishes
to model. In a separate work[26] we have applied a similar, but less general
approach to investigate the behavior of the water percolation threshold in a
model microemulsion as the surfactant is made more hydrophobic. A sys-
tematic study of several microemulsion models that includes the quantitative

implementation of the formalism given here is currently underway.
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