A New Approach for Fault-Tolerant
Broadcasting in Two Dimensional Torus
Networks

N.W. Lo, Bradley S. Carlson and D.L. Tao

The Department of Electrical Engineering
State University of New York at Stony Brook
Stony Brook, NY 11794-2350
Fax: (516)632-8494
Phone: (516)632-8474
Internet: bcarlson@jessica.ee.sunysb.edu

Technical Report: #764

Abstract

For a multicomputer system with a large number of processors the probability of
having 10 faulty ones is very high in any two-day mission time. Existing fault-tolerant
broadcasting algorithms for two dimensional tori/meshes tend to tolerate only a few
faults. Unfortunately this level of fault tolerance cannot guarantee the success of ex-
ecutions for time-consuming computational tasks. The problem is that it is almost
impossible to come up such a simple broadcasting algorithm to achieve 100% fault
tolerance with tens of faults occurred. To achieve such a goal, in this paper, we pro-
pose simple broadcasting algorithms to tolerate 98% or more processor failures in a
reasonable mission time in a 5P x 5P torus network. A stochastic fault model for a
multicomputer system is applied to further analyse the fault distribution in a 2-D
torus network. According to the analysis a novel one-to-all fault-tolerant broadcasting
algorithm for a 2-dimensional torus network to tolerate up to 24 faults is developed.
It is shown in the experimental measurements of the new fault-tolerant broadcasting
algorithm that in a 125 x 125 torus the failure possibility of a one-to-all broadcast is
less than 2% in a two-day mission time and corroborated to the analysis of the fault
distribution. From our knowledgement we are the first one to directly address the
problem of fault tolerance for broadcasting in a interconnection network with a large
number of processor failures occurred.

Keywords: fault tolerance, adaptive wormhole routing, circuit-switched broadcast, 2-D
torus



1 Introduction

Recent circuit-switched multicomputer systems such as the Cray T3D [1], Intel Paragon [2],
nCUBE-2 [3], and iWarp [4, 5] have become a very good candidate to achieve cost-effective
high-performance computing tasks. In order to take advantage of the computation power
provided by multiple processors in a multicomputer the message-passing mechanism and
the communication overhead from the interconnection network between processors must be
addressed. Network topology, routing mechanism and flow control are the key factors to
design and implement a fast and reliable interconnection network. With their numerous
attractive features n-dimensional hypercube, multidimensional tori (wrap-around meshes)
and multidimensional meshes become the most popular interconnection networks. A lot of
routing algorithms [6, 7, 8, 9] are developed under these network topologies.

For current multicomputer systems wormhole routing [10], one of the circuit-switched
routing types, is more favorable than the other types (direct connect, virtual cut-through)
because the network latency of wormhole-routed messages is nearly distance-insensitive and
the design of router can be simplified such as reducing the buffer size or eliminating the
buffer in every processor [11, 12, 13]. However, in [14] the analysis indicates the general
transmission time for direct-connect routing [15, 16] and wormhole routing are similar to each
other. Direct-connect routing also avoid link contention and deadlock problems associated
with wormhole routing. For simplicity, in this paper direct-connect routing is adopted as
the routing scheme.

As the number of components {processors, routers and memory blocks) in a multi-
computer system increases, the system is more prone to have a component failure between
the maintenance timetables. Consequently, for large scale multicomputers system reliability
[17] becomes a very important issue. In [18] network fault tolerance has been defined as the
maximum number of elements that can fail without inducing a possible disconnection in the
network.

A one-to-all broadcasting problem is to deliver a message from a source node (proces-
sor) to all other nodes in the network. Most existing multicomputer systems do not support
broadcast operation in hardware. Therefore, specific broadcasting algorithms for software
implementation of broadcast operation in different network topologies are in demand. While
many broadcasting algorithms have been proposed [14, 19, 20, 21], the fault tolerance of
broadcast is rarely well addressed [22, 23, 24]. Most researchers devote to fault-tolerant

routing mechanisms [25]. Many schemes are developed to estiablish fault tolerance of rout-



ing including but not excluding the design of hardware router [26, 27], the usage of safty
vector [28], compressionless routing [29], virtual channel scheme [30, 31, 32]. Although it
can be done by using only fault-tolerant routing mechanisms to estiablish the fault tolerance
of broadcast operation, but in order to gain good performance of broadcast operation and
good utilization of network resources broadcasting oriented fault-tolerant algorithms are the
better choice.

For a multicomputer with a large number of processors, the probability of having
10 faulty ones is very high in any two-day mission time. However, existing fault-tolerant
broadcasting algorithms for two dimensional tori/meshes tend to tolerate only a few faults.
In real environment this is not enough. If we can have a broadcasting algorithm to tolerate
a number of faults that will occur in a given mission time, say a few days, then that will be
extremely important. The problem is that it is almost impossible to come up such a simple
algorithm to achieve 100% fault tolerance with tens of faults occurred. Hence, in this paper
we adopt a new approach to achieve such a goal. By first analyzing the fault distribution
in a 2-D torus network we use the information to develop simple broadcasting algorithms to
tolerate 98% or more faults in a reasonable mission time. To analyse the fault distribution
a stochastic fault model [33, 34, 35] for a generic multicomputer system is applied to two
dimensional tori. Only static processor failures are considered and global knowledge of fault
is assumed. The Poisson process [36] is adopted to describe the stochastic behavior of the
processor failures. For a 57 x 57 torus network the whole network can be partitioned into
multiple 5 X 5 square grids. We focus our attention on the probability of having at least [
faults in one partitioned 5 x 5 square grid out of total j processor failures in a 2-D torus.
From this advanced information a new fault-tolerant broadcasting algorithm is developed
by using divide-and-conquer scheme. The proposed algorithm adopting the same concept
shown in [22] improves the network fault tolerance from 3 to 24 node (processor) failures.
Simulation experiments are taken to show the effectiveness of the proposed fault-tolerant
broadcasting algorithm.

The remainder of this paper is presented as follows. In the next section we for-
mally formulate the broadcasting problem. The analysis of fault distribution is presented
in Section 3. Based on the fault analysis a multi-fault tolerant broadcasting algorithm for
2-dimensional torus is developed in Section 4. Section 5 presents the simulation experiments

and measurement analysis. Finally, the conclusion is given in Section 6.



2 Problem Formulation

Under the assumption that with faulty nodes occurred the interconnection network of a
mulitcomputer does not be divided into two or more isolated small networks a one-to-all
fault-tolerant broadcasting problem is to deliver a message from a fault-free source node to
all other fault-free nodes in the whole network. As the number of failed processors increases,
the success of broadcast operation becomes more and more difficult. Totally depending
on fault-tolerant routing algorithms to solve the multi-fault broadcasting problem is not an
eflicient solution. Especially when the scale of the network is very large and more faulty nodes
are likely to occur, the effectiveness of using routing algorithms to perform the broadcast
operation is a big question mark. However, it is also very difficult to develop a broadcasting
algorithm to achieve 100% fault tolerance for a network with a large number of faults.

Therefore, our goal is to develop simple and efficient broadcasting algorithms such
that during a reasonable mission time a 99% to 95% fault tolerance can be achieved with a
large number of faults occurred in the network. One way to reduce the complexity of the
problem is to apply the divide-and-conquer scheme to break down the problem size (the scale
of network) into small pieces (subnetworks). For example, a 25 x 25 torus network can be
partitioned into 25 small meshes with the size of 5 X 5 each. Now the broadcasting problem
can be divided into two phases. The problem of the first phase is to find a fault-free node
in each partitioned subnetwork and broadcast the message from the source node to these
chosen nodes successfully. The problem of the second phase is to broadcast the message
in each subnetwork from the received node (after the first phase) to all the other fault-free
nodes.

The key factors to solve the first phase problem are the combination of proper fault-
tolerant routing algorithm, router model,network topology and broadcast mechanism. De-
pending on the role and function of a network different combinations of these components are
composed. Broadcasting algorithms for the first phase should be carefully designed to meet
the actual requirement of a network. The complexity of the second phase is that if a devel-
oped broadcasting algorithm can tolerate a lot of faults in a subnetwork, then the algorithm
can be too complicate to perform efficient broadcast. That is, too many broadcasting steps
are required in a broadcast operation. On the other hand if a simple broadcasting algorithm
is developed to tolerate only a few faults, the requirement of more than 95% fault tolerance
for the whole network can be hard to achieve because there are more faults occurred in a

subnetwork than the simple algorithm can handle. To conquer the second phase problem



an analysis of fault distribution is the key to success. A mathematical analysis of fault dis-
tribution provides the observation of the limitation of fault tolerant capability in a network
and its subnetworks. From the analysis we can develop simple broadcasting algorithms to
tolerate only a few faults in a subnetwork while at the same time we still achieve 99% to 95%
fault tolerance for the whole network. The mathematical model can also reveal the proper
maintenance timetables (the mission time) for different sizes of network.

Because two dimensional torus network is a very popular network topology and ex-
isting broadcasting algorithms for 2-D torus can only tolerate a few faults, therefore, in this

paper we adopt two dimensional torus as the target network to investigate.

3 Fault Distribution in 2-D Tori

In this paper we mainly consider the problem of static (permanent) processor failure between
the regular maintenance schedules. By labeling the connected processors of the both ends of
a faulty link (physical channel) as faulty nodes the faulty link problem can be transformed
to the processor-failed problem. To address link fault problem in details more dedicated
models or theories should be considered [30].

Assume the occurrences of processor failures are independent and the probability of
two failures appearing at the same time is zero. The Poisson process [36] is adopted to
simulate the stochastic behavior of the failures as considered in [33, 34, 35]. Therefore, the
stochastic fault model is described by the mathematical formula of the probability (P{X () =
7}) of having exactly j faulty processors in a multicomputer with total & processors in the

interval [0, t].

P{X(t) = }_(kx)\xt)f

The random process X (t) denotes the total number of processor failures in a multicom-

zp(—k x A x t) (1)

puter system during the time period [0, t]. The failure rate of a processor is denoted as \.

Consequently the probability of having faults between 1 and j is defined as follows.

P < X(t) < j} = Z kx)\xt)

=1

exp(—k X A X t) (2)

In this paper 2-dimensional M x 57 x 5* torus networks are considered where 1 < M <
24 and p € Z*. In [22] a 2-dimensional 5 x 57 torus network is partitioned into multiple
identical 5 X 5 square grids. The number of faulty processors in a 5 X 5 square grid of a 2-D

torus network is denoted as the random process Z(t). We are interested in the probability
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(P{Z(t) =1]| X(t) = 5}) of having at least { faults in one partitioned 5 x 5 square grid out
of total 7 faulty processors.

Let k represents the total number of processors in a multicomputer. The total number
of partitioned 5 x 5 square grids, B, is computed as Z. From the definition of P{Z(t) = [ |
X (t) = j} two properties are derived. If j < [, then P{Z(t) =1| X(t) = j} = 0. Secondly,
S P{Z(t) =i | X(t) = j} = P{X(t) = j}. Assume P{X(t) = j} is computed from
equation 1 in which j > 1 > 0 and j,! € Z*. Define ,C, = F—TL;—WT and P, = (n—T_"— The

)t
process to compute the probability P{Z(t) = 1| X(t) = j} is shown as follows.

Process for computing probability P{Z(t) =[] X(t) = 7}(){

1. Let S = {(m1,mo,...,mu) | j=mixl+myx (I—=1)+---+m x 1, where my; # 0,
mi, ma,...,m € {0} U ZT}.

2. Set variable W = 0.

3. For each possible fault pattern (my,mo,...,m;) € S do the following probability

computation and accumulate the result value to variable W.

mg—1

n=0 (j—zj;‘l(m,x(z+1—r))-nx(1+1_i))C(l+1—i)
mi!

1., ’
BP(m1+---+mz) X (E)J X H

1=1,m;#0

4. Compute P{Z(t) = 1| X(t) =3} =W x P{X(t) =j}.

In this computation process we first decide what fault patterns are possible by solving
the equation j = my X [+ mqg x (I — 1) 4+ --- + m; x 1 where my # 0 and all variables are
positive integers (including zero). A fault pattern (mi,ms,...,m;) represents that there
are m; square grids containing (! + 1 — ¢) faults with ¢ € {1,2,...,{}. For each fault
pattern the probability of occurrence is calculated and the result value is accumulated to
the temporary variable W. Since all possible fault patterns are under the assumption that
total j faults are occurred in the network with the probability P{X(t) = j}, the probability
P{Z(t) =1| X(t) = 5} is obtained from multiplying W by P{X(t) = j}. The probability
of occurrence for a fault pattern is derived as follows. pP(m,4..+m,) denotes the possible
combinations of having (mj + - - - + m;) faulty square grids out of B partitioned square grids.
The probability for each faulty processor to be located in a 5 x 5 square grid is B~!. Because
each node failure is independently occurred, therefore, for the occurrence of j faulty nodes

the probability that each fault is located in a square grid is computed as (B~!)’. The product



Table 1: The Probability of PZ{t}

the time interval between maintenance dates

size t = 48 hours [ t = 78 hours | t = 120 hours
125 x 125 98.7% 52.2% 1.3%
125 x 75 99.8% 98.8% 66.8%
75 X 75 99.9% 99.7% 98.9%

term computes the possible combinations of assigning (I+1—73) faults into each of m; square
Y(m, x (I+1~7)), where 1 <i <L

Example 1: Assume the failure rate of a processor, A, is equal to 0.00005. The time interval

grids from the rest of unlocated faults, 7 — 373
between two maintenance dates, ¢, is 100 hours. To compute the probability of having at
least 3 faults in one partitioned 5 x 5 square grid out of total 5 faulty processors in a 1000
node multicomputer system we have Z(t) = 1 = 3, X(t) = j = 5 and B = 1220 = 40.
By applying the computation process the set S = {(1,0,2), (1,1,0)} and the probability
P{Z(t) =3 | X(t) = 5} = (s0Ps x (55)° x 382 x 240G 4 Py x (X)° x 252 x 2%2) x

(1000x0:00005x100)* ¢ ,(— 1000 x 0.00005 x 100) = 0.1%. 0

5!

In order to develop simple and efficient fault-tolerant broadcasting algorithms for 2-
D torus the probability (P{Z(t) < I | X(t) = j}) of having at most ! faulty nodes in a
partitioned 5 x 5 square grid out of total j node failures in a torus network becomes the
focus. From previous discussion we can derive P{Z(t) <1 | X(t) =j} =X, P{Z(t) =i |
X() = j} x P{X(2) = j}.

Consider A = 0.00002, then the MTTF (mean-time-to-failures) of a processor ele-
ment in a multicomputer is equal to 50,000 hours (5.7 years). Under different maintenance
timetables and the scale sizes of multicomputer systems the probabilities of having at most
2 faults in a 5 x 5 square grid out of total node failures from 1 to 24 in a 2-D torus,
PZ{t} =32, P{Z(t) < 2| X(t) = i}, are computed and displayed in Table 1.

As shown in Table 1, depending on the scale size of the multicomputer the proper
timetable for network maintenance can be decided such that simple fault-tolerant algorithms
can be developed and adopted to tolerate up to tens of processor failures between mainte-

nance dates.



4 Fault-Tolerant Broadcasting Algorithm for 2-D Tori

According to the discussion in Section 3 a broadcasting algorithm with the capability to
tolerate up to 24 node failures is developed in this section. Notice that the proposed algorithm
is based on the assumption that no more than 2 faulty processors are located in the same
partitioned 5 x 5 square grid. Therefore, the fault-tolerant broadcasting algorithm can be
simplified and easy to implement. For the sake of simplicity we mainly focus on 57 x 57
(p € Z%) torus networks in this section. The related issues for M x 57 x 57 torus networks
are discussed in Section 4.3. The communication model applied in this paper and previous
related work are discussed in Section 4.1 and Section 4.2, respectively. The proposed fault-

tolerant broadcasting algorithm is described in Section 4.3.

4.1 The Communication Model

In this paper only permanent node failure is considered and all four links (physical channels)
of a faulty node are assumed to be inoperable. Under the assumption that only one fault
occurs at any given time we can broadcast the address of the faulty node from one of its alive
neighbor nodes to all other fault-free nodes in the network by applying our fault-tolerant
broadcasting algorithm. Therefore, we can assume the addresses of faulty nodes are known
by every non-faulty node.

Let Vr represents the nodes in a 2-D torus T' and Er contains all corresponding
link edges between nodes. A 57 x 57 2-dimensional torus network T' = (Vr, Er) is defined
as Vr = {(1,7) | 0 < 4,5 <5 —1,p € Zt} and Er = {((u1,v1), (uz,v2)) | w1 = (uz £
1) mod 57 and v; = v OR uy = ug and v1 = (v2 £ 1) mod 57 V(uy,v1),(ug,v2) € Vp, p €
Z%1}. We assume the node (0,0) is in the left-bottom corner of a torus graph and the other
three corner nodes are labeled (0,57 — 1), (57 — 1,57 — 1), and (57 — 1,0).

All-port communication capability and direct-connect routing are assumed to be im-
plemented onto the interconnection network. A node can pass an incoming message from one
of its input ports to one of its output ports. Up to four messages can be switched through
a node at the same time when no two incoming messages are directed to the same output
port. As the direct-connect type of circuit-switched routing is applied, message transmission
can only proceed after the physical link path between two processors is established. By
adopting direct-connect routing we avoid the contention and deadlock problems associated

with wormhole routing.



H—O

~i}
_?
i
[
;%

s EE:

i
!
[
—j}
_%

SO

——jﬁ
'ﬁ}
,%

(a) (b)
Figure 1: (a) The 5 x 5 torus graph, and (b) broadcasting in a 5 X 5 torus graph.

4.2 Previous Related Work
4.2.1 An Optimal Broadcasting Algorithm

An optimal circuit-switched broadcasting algorithm (denoted as the PSB algorithm) for 2-
dimensional 5 X 57 torus network is presented by Peters and Syska in [14]. By embedding the
recursive tiling scheme [37, 38] the PSB algorithm can complete a broadcast in 2p broadcast-
ing steps. Consider the example of a 5 x 5 2-dimensional torus shown in Fig. 1(a) and assume
the node located at the left-bottom corner is labeled (0, 0). Two phases of the PSB algorithm
in a 5 x 5 2-dimensional torus are shown in Fig. 1(b). The black node in the center of the
graph is assumed to be the source node with label (2,2). In the first phase the source node
broadcasts the message to the four black nodes with labels (4,1),(1,0),(0,3), and (3,4)
via four disjoint paths marked with large arrows. In the second phase each black node
(u,v), including the source node (2,2), sends the message to its four immediate neighbors
(u+1,v), (u—1,v),(u,v+1), and (u,v —1). If we unwrap the 5 x 5 torus carefully, we can
get a mesh-form diagram shown in Fig. 2.

We define a level-1 cross unit as one node and its four neighbor nodes connected
together with its four physical links. A mesh-form diagram of 5 X 5 torus composed of 5
cross units (Fig. 2) is defined as a level-1 group unit (basic group unit). A level-t cross unit

contains five level-(i — 1) group units such that one level-( — 1) group unit is positioned at



Figure 2: A broadcast process on a 5 x 5 torus which is composed of 5 cross units (one basic
group unit) drawn as a mesh form.

the center with the four other level-(z — 1) group units connected along each edge in which
i€ Zt.

Example 2: To understand the recursive tiling scheme used in the PSB algorithm a 25 x 25
torus composed of five level-2 cross units (subgraphs) is drawn as a mesh form in Fig. 3. Some
details of the PSB algorithm are omitted from the four outer level-2 cross units to simplify
the diagram. During a broadcast process the center source node in the center subgraph
first sends the message to each center node of the other four subgraphs. Each subgraph is
composed of 5 basic group units. At the second step every center node of these 5 subgraphs
simultaneously sends the message to the center of the other four basic group units in its own
subgraph. Before the third broadcasting step each basic group unit in the 25 x 25 torus has
the message in its center node. After two more steps are applied in each basic group unit

(as shown in Fig. 2) the broadcast task is completed. 0

4.2.2 3-Fault Tolerant Broadcasting Algorithm

In [22], based on the PSB algorithm Lo at el. proposed fault tolerant broadcasting algorithms
for 2-dimensional 5” x 5 torus network. The proposed algorithm can tolerate at most 3 faults

with the cost of spending at most one additional broadcast step compared to the optimal



Figure 3: A broadcast process on a 25 x 25 torus drawn as a mesh form.
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PSB algorithm. Therefore, the proposed 3-fault tolerant broadcasting algorithm is optimal®
and the complexity of this algorithm is the same as the PSB algorithm, O(logs V), where N
denotes the total number of nodes in a torus network.

In a basic group unit the root node is the center node of the center cross unit. A
center node of a surrounding cross unit is called a branch node.

Definition 1: An embedded torus G C T is defined as G = (Vg, Eg) such that

1. The broadcasting center node is labeled (a,b) = (5—1’5’—1, 5—"{—1)

2. ng{(i,j)||i—a|:5m,[j—b|=5n,0§m,n§[.51;81 ,p> 2}

3. B¢ = {((u1,v1), (uz,v2)) | u1 = (uz £ 5) mod 5” and v; = v3 OR u; = up and v; =
(v2 £5) mod 57 V(uy,v1), (uz,v2) € Vi, p > 2} m]

Definition 2: A node set Vi, C V7 is defined as the nodes in Vy located on any link edge
le Eg. 0

With the PSB algorithm implemented as the default broadcasting mechanism the
basic idea of the proposed fault-tolerant algorithm is to identify a proper fault-free node
as the pseudo-source node to bypass faulty nodes during a broadcast operation. The con-
cept of embedded torus is introduced to find the proper pseudo-source node such that the
nodes in the corresponding embedded torus G(Vg, Eg) and Vi, are fault-free. In Fig. 4 an
embedded 5 x 5 torus G (all black and gray nodes) is constructed from a 5% x 5? torus net-
work T by applying the PSB algorithm on the pseudo-source node (the center node). The
find_pseudo_source_node algorithm is developed in [22] to identify the pseudo-source node.
The message is transmitted from the real source node to the pseudo-source node, and the
PSB algorithm is applied to send the message from the pseudo-source node to all of the
nodes in V. After every node in Vg receives the message, depending on the fault positions,
either the Prebranch_Broadcast PSB algorithm or the PSB algorithm is used to broadcast the
message from each node in Vg to the rest of fault-free nodes. The Prebranch_Broadcast PSB
algorithm offers three disjoint pre-determined routing paths to bypass a fault on a branch

node position of a basic group unit.

4.3 24-Fault Tolerant Broadcasting Algorithm

In this section we extend the concept of embedded torus in [22] with the observation of

fault distribution derived in Section 3 to develop a 24-fault tolerant broadcasting algorithm.

1See Theorem 4 in [39] for proof.
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Figure 4: Broadcasting in a 25 x 25 torus graph; an embedded 5 x 5 torus is observed.

From observation there are exactly 25 unique embeddings GG that can be constructed in a
2-D torus network T'. Therefore, under the assumption that every fault-free node can always
communicate with each other when less than 25 faults are occurred in the network we can
always find an embedded torus G such that all nodes in Vg are fault-free. The idea of the
fault-tolerant algorithm is to identify an embedded torus G in which all nodes in V4 are
fault-free and send the message from the original source node to one of the nodes in Vg as
the pseudo-source node. Then apply the PSB algorithm to broadcast the message from the
pseudo-source node to the other nodes in Viz. Since multiple faults are occurred, for the
PSB algorithm fault-tolerant routing is applied to replace the dimensional ordering routing
used in [14]. Finally every node in Vi as the center node of a 5 X 5 square grid broadcasts
the message to the rest of fault-free nodes in its corresponding square grid. Notice that
we assume no more than 2 faults are occurred in a partitioned 5 x 5 square grid. It is
shown from the analysis in Table 1 under proper scheduled maintenance our assumption is
reasonable. To simplify the broadcast problem synchronous broadcast is assumed in this
paper. Consider Fig. 3 as an example, until every center node of the four surrounding level-2
cross units receives the message from the center source node of the center level-2 cross unit
no further broadcasting action will start alone with any node already received the message.

Because a M x 57 x 5P torus graph is symmetric, it can be partitioned into multiple

identical 5 x 5 square grids as the one shown in Fig. 4. We define a 5 x 5 virtual square
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Figure 5: The 4 black nodes are belong to the embedded torus G; the mapping range of the
5 x 5 mapping square grid is indicated by dashed lines.

grid as the mapping square grid shown in Fig. 5. All square grids partitioned in a 2-D torus
can be superimposed on the mapping square grid. We denote two link edges passed through
the left and bottom sides of the mapping square grid as the left and bottom boundaries of a
mapped square grid, respectively. In a partitioned square grid the left and bottom boundary
offsets of a node (u,v) are defined as follows.
Definition 3: A left boundary offset of a node (u,v), LB(u,v), is the distance between the
node (u,v) and the left boundary of the 5 x 5 square grid which contains the node (u,v).
Definition 4: A bottom boundary offset of a node (u,v), BB(u,v), is the distance between
the node (u,v) and the bottom boundary of the 5 x 5 square grid which contains the node
(u,v).

Assume the original source node is labeled (z,y). To compute boundary offsets of a

node a simple algorithm is derived as follows.

o A left boundary offset of a node (u,v) can be computed as (v — z) mod 5 if u — z > 0;

otherwise, the value is equal to 5 — (z — u) mod 5.

¢ A bottom boundary offset of a node (u, v) can be computed as (v—y) mod 5if v—y > 0;

otherwise, the value is equal to 5 — (y — v) mod 5.

Let the set F = { the positions of all faulty nodes }. Define the final X and Y-
axis offsets between the originator and the selected pseudo-source node as Z,ffset and Yos fset

where 0 < Zoffset, Yosfset < 4. Now we present the simple_find algorithm to identify the
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pseudo-source node.

simple_find algorithm(){
if (3LB(u,v) == BB(u,v) == 0, where (u,v) € F) { /[*if FNVg #0 */
For (Zoffset = 05 Toffset < 45 Toffset = Togsset +1) {
For (Yofsset = 05Yosfset < 45 Yofsset = Yosfset + 1) {
if (A (LB(u,v) == zoffset AND BB(u,v) == yossset) V(u,v) € F)
goto FOUND;

}
FOUND:

set the pseudo-source node {z',y") = (& + Toffset, Y + Yosfset);
} /* the end of if-then-else statement */

Because multiple faults are considered, the nodes in Vr located on any link edge
| € Eg can be faulty. In order to bypass faults blocked on the routing path when the
pseudo-source node broadcasts the message to the other nodes in V;; fault-tolerant routing is
required. Depending on the implementation cost, the size of network, network performance
requirement and network reliability issues, different fault-tolerant routing algorithms can
be adopted [28, 29, 30, 31, 32]. The fault-tolerant routing algorithm used in this paper is
discussed in Section 5.

In order to accomplish the broadcast task we apply the divide-and-conquer concept
to virtually partition a 2-D torus T into multiple 5 x 5 square grids with each node in Vg
as the center node of a square grid. Every center node in a square grid is responsible for
broadcasting the message to the rest of fault-free nodes in its square grid. As no more than
2 faults are considered in a square grid, if we use the simplest store-and-forward routing to
do the local broadcast, in the worst case 7 broadcasting steps are required to accomplish
the task. Fig. 6 illustrates the worst situation. To reduce the broadcasting steps in a square
grid the charasteristics of circuit-switched routing is applied to develop the 5 x 5 square grid
broadcasting algorithm. Under fault-free environment the proposed algorithm only requires
three broadcasting steps to complete the broadcast task in a 5 X 5 square grid compared to
four broadcasting steps required by the store-and-forward scheme. We define the 16 nodes on

the borders of a 5 x 5 square grid as the external square. The internal square of a square grid
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Figure 6: Broadcasting in faulty square grids with store-and-forward routing; the number
in a node denotes in which broadcasting step the node receives the message and symbols S
and F indicate the source nodes and the faulty nodes, respectively.
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Figure 7: Broadcasting in a fault-free square grid with the center node as the source node;
two sets of broadcast paths for the first broadcasting step are indicated by dashed and dotted
arrow lines and the rest broadcasting steps are denoted by solid arrow lines.

is composed of the 8 nodes surrounding the center node. The 5 x 5 square grid broadcasting

algorithm is presented in the following.

5 x 5 Square Grid Broadcasting Algorithm(){

1. Send the message from the center source node (z,y) to the four corner nodes of the
internal square through routing paths shown in Fig. 7.

2. Each corner node of the internal square broadcasts the message to its four neighbors.

3. After receiving the message each node broadcasts it to the neighbors except the
directions from which the message is received.

4. Repeat Step 3 until all nodes in the 5 x 5 square grid receive the message.
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Notice that in Fig. 7 the number in a node represents in which broadcasting step the
node receives the message. If a fault-free node receives duplicate messages, it just discards
them.

By observing the broadcasting sequence of the 5x 5 square grid broadcasting algorithm
in Fig. 7 it is shown that if two possible faults both are positioned in the external square, no
modification for the square grid broadcasting algorithm is necessary to tolerate these faults.
Because there are at least two different links for a node to receive a message from other
nodes in the same square grid. The only exception is the two adjacent nodes of a corner
node in the external square of a square grid become faulty as shown in Fig. 6. Therefore,
the fault-free corner node has to receive the message from nodes in adjacent square grids.
The last step of the 2-fault tolerant grid broadcasting algorithm proposed in the following
handles the problem by broadcasting the received message from fault-free corner nodes of
the external square in every square grid to the adjacent nodes of the two neighbor square
grids. Since we assume all fault-free nodes are connected together through fault-free links, a
fault-free corner node of the external square in a square grid always has at least one fault-free
link to reach a fault-free adjacent node in the same square grid or a neighbor one. However,
particular routing paths to bypass faults and accomplish the broadcast in three broadcasting
steps have to be established provided that there are some faulty nodes in the internal square.

To simplify the following discussion all fault-tolerant routing paths in Figs. 8 — 13
are drawn with dashed and dotted arrow lines to indicate the first and second fault-tolerant
broadcasting steps. All regular routings follow the proposed 5 x 5 square grid broadcasting
algorithm. General fault patterns are proposed to illustrate possible fault distributions and
the corresponding routing solutions for broadcasting. Any possible fault distribution can be
mapped into one of the general fault patterns by rotating the 5 x 5 virtual square grid.

In the case of only one fault occurred in the internal square two general fault patterns
are presented in Fig. 8. In Fig. 8(a) the southwestern corner node of the external square
receives the message from the center source node S during the first broadcasting step instead
of the faulty default node F' in the internal square by passing the message through one of
the two dashed arrow paths. The other fault pattern is described in Fig. 8(b) with the faulty
node F adjacent to the south of the source node S. In this case the source node has to send
the message to the specific fault-free nodes shown in Fig. 8(b) during the first and second
broadcasting steps. Under the assumption that only one fault is in the internal square we

can learn that the same fault patterns can be applied while another node in the external
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Figure 8: Broadcasting with one fault occurred in the internal square of a square grid; two
general fault patterns are displayed in (a) and (b) with the first and second broadcasting
steps indicated by the dashed and dotted arrow lines, respectively.

square becomes faulty. Fig. 9(a) and (b) provide new fault-tolerant routing paths to handle
the exception cases of the two general fault patterns in Fig. 8(a) and (b), respectively. For
two faults located in the internal square eight general fault patterns are derived. According
to the distance between two faults in the internal square the eight general fault patterns are
partitioned into four categories displayed in Figs. 10 — 13. By sending the message from
the source node S to proper fault-free node positions such as the corners of the internal or
external squares and the center of each edge of the external square only three broadcasting
steps are required to complete the broadcast task in a square grid with two faults in the
internal square. The proposed 2-fault tolerant grid broadcasting algorithm is addressed as

follows.

2-Fault Tolerant Grid Broadcasting Algorithm(){

1. If no faults are located in the internal square, then apply the 5 x 5 square grid
broadcasting algorithm and goto Step 4.

2. If one fault is located in the internal square, apply the broadcasting sequence of the
matched fault pattern in Fig. 8 or 9, then goto Step 4.

3. If two faults are located in the internal square, apply the broadcasting sequence of
the matched fault pattern in Fig. 10, 11, 12 or 13, then goto Step 4.

4, Each fault-free corner node of external square broadcasts the received message to the

adjacent nodes of the two neighbor square grids .
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Figure 9: Two special fault patterns in broadcasting with one fault occurred in the internal
square and the other occurred in the external square; (a) the special case of Fig. 8(a), and
(b) the special case of Fig. 8(b).
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Figure 10: Broadcasting with two faults occurred in the internal square of a square grid; two
general fault patterns are displayed in (a) and (b) with two faults adjacent to each other.
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Figure 11: Broadcasting with two faults occurred in the internal square of a square grid; two
general fault patterns are displayed in (a) and (b) with one fault-free node located between
two faulty nodes in the internal square.
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Figure 12: Broadcasting with two faults occurred in the internal square of a square grid; two
general fault patterns are displayed in (a) and (b) with two fault-free nodes located between
two faulty nodes in the internal square.
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Figure 13: Broadcasting with two faults occurred in the internal square of a square grid;
two general fault patterns are displayed in (a) and (b) with three fault-free nodes located
between two faulty nodes in the internal square.

Theorem 1 In the presence of r (0 < r < 2) faulty nodes four steps are required by the
2-Fault Tolerant Grid Broadcasting Algorithm to perform a one-to-all broadcast in a 5 X 5

virtual square grid of a circuit-switched M x 57 x 5P torus network.

Proof. From previous discussion it is shown that by applying the 2-fault tolerant grid
broadcasting algorithm only three broadcasting steps are required for a broadcast operation
to tolerate up to two faulty nodes in a square grid. However, to overcome a similar fault
distribution shown in Fig. 6 one more broadcasting step is necessary to insure the success
of broadcasting in every square grid. Therefore, four broadcasting steps are required for the
proposed algorithm to accomplish a broadcast task. O

Finally the 24-fault tolerant broadcasting algorithm for a 2-D torus T is described as

follows.

24-Fault Tolerant Broadcasting Algorithm(){

1. Construct the embedded torus graph G from the original source node (z,y).

2 Apply the simple_find algorithm.

3. Apply the PSB algorithm to broadcast the message to each node in V.

4 For every node received the message apply the 2-fault tolerant grid broadcasting al-

gorithm and stop.

}

We can easily modify the proposed algorithm to enlarge its adoptivity range from

57 x 5P tori to M x 57 x 57 tori where 1 < M < 24. By partitioning the M x 5” x 5 network
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Figure 14: The first (dashed arrow lines) and second (dotted arrow lines) broadcasting steps
in a 75 X 75 torus network with the pseudo-source node S in the center position.
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Figure 15: The first (dashed arrow lines) and second (dotted arrow lines) broadcasting steps
in a 125 x 75 torus network with the pseudo-source node S in the center position.

into M 57 x 57 subnetworks the selected pseudo-source node first broadcasts the message to
the center nodes of other M — 1 subnetworks. After every subnetwork received the message,
apply the PSB algorithm for each 57 x 57 subnetwork to broadcast the message to each
node in V. Then the Step 4 of the proposed fault-tolerant algorithm is executed as the last
broadcasting phase. Many broadcasting algorithms can be developed and adopted for the
broadcast task between subnetworks. In Figs. 14 and 15 a 75 X 75 (9 x 5% x 5?) torus and a
125 x 75 (15 x 5% x 5?) torus are partitioned into 9 and 15 5% X 5% subtori, respectively. By
applying simple broadcasting algorithms in both cases two broadcasting steps are required
for both networks to accomplish the broadcast from the center source node to every 25 x 25

subtorus.
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Table 2: The Successful Broadcast Ratio
the time interval between maintenance dates

size t = 48 hours | t = 78 hours | t = 120 hours
125 x 125 98.0% 44.2% 0.7%
125 x 75 99.8% 97.9% 59.2%
75 % 75 99.9% 99.7% 98.3%

5 Experiment Analysis

To examine our fault analysis in Section 3 and the proposed fault-tolerant broadcasting
algorithm in Section 4.3 simulation experiments are taken for validation and evaluation.
The number of faulty nodes and the position of each faulty node are generated indirectly
from two random number generators [40]? with different seed numbers. An intuitive routing
algorithm is applied to bypass faults. The fault-tolerant routing algorithm implemented
for simulation experiments is dimensional oriented. When there is no faulty node located
on the routing path, the proposed algorithm functions as the typical dimensional routing
algorithm. Once a fault is encountered during the routing phase, the algorithm tries to route
the message around the fault and goes back to the same dimension and direction it intends
to route before meeting the fault. Because backtracking routing is not implemented and the
algorithm is made as simple as possible, routing failures caused by particular fault patterns
or the contention of physical channels are possible.

In this paper three scale sizes of 2-D tori, 125 x 125, 125 x 75 and 75 x 75 are
simulated under three different maintenance timetables — 48, 78 and 120 hours. 50,000 hours
are assumed as the MTTF value of a processor element in a network. Each experiment
is executed for 50,000 iteration times. The experimental measurements of the successful
broadcast ratio, the ratio of more than 24 faults occurred, the ratio of routing failure, the
ratio of more than 2 faults occurred in a 5 x 5 grid, the average broadcasting steps and the
average faults occurred are displayed in Tables 2 — 7, respectively.

By comparing Table 1 with Table 2 it is shown that the experimental measurements
match the analysis of fault distribution in Section 3. The results shown in Table 2 indicate
the failure ratio of broadcasting in a faulty 2-D torus is able to be held down under 2%

with proper scheduled maintenance timetable and simple fault-tolerant routing/broadcasting

2We apply the ran1() procedure in page 280.

22



Table 3: The Ratio of More Than 24 Faults Qccurred

the time interval between maintenance dates

size = 48 hours | t = 78 hours | t = 120 hours
125 x 125 1.79% 55.56% 99.29%
125 x 75 0.00% 1.47% 40.11%
75 x 75 0.00% 0.00% 0.66%

Table 4: The Ratio of Routing Failure

the time interval between maintenance dates

size t = 48 hours | t = 78 hours | t = 120 hours
125 x 125 0.07% 0.09% 0.00%
125 x 75 0.08% 0.18% 0.17%
75 x 75 0.02% 0.04% 0.10%

Table 5: The Ratio of More Than 2 Faults Occurred in a § X 5 Grid

the time interval between maintenance dates

size t = 48 hours | t = 78 hours | t = 120 hours
125 x 125 0.14% 0.15% 0.01%
125 x 75 0.12% 0.45% 0.52%
75 x 75 0.08% 0.26% 0.94%

Table 6: The Average Broadcasting Steps

the time interval between maintenance dates

size t = 48 hours | t = 78 hours | t = 120 hours
125 x 125 9.36 9.68 9.74
125 x 75 8.90 9.27 9.57
75 x 75 8.59 8.84 9.15

Table 7: The Average Faulty Nodes Occurred

the time interval between maintenance dates

size t = 48 hours | t = 78 hours | t = 120 hours
125 x 125 15.98 25.38 38.47
125 x 75 9.97 15.61 23.49
75 X 75 6.39 9.78 14.48
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algorithms implemented. Therefore, the analysis of the fault distribution for 2-D tori is valid
and the proposed 24-fault tolerant broadcasting algorithm is simple and eflicient enough to
improve the network fault tolerance.

The consequential broadcast failures during simulation experiments are categorized
into three different types listed in Tables 3, 4 and 5. To estimate the proposed algorithm
conservatively any simulating iteration generates more than 24 faults is viewed as a broadcast
failure. Table 3 displays the failure ratios of more than 24 faults occurred in all experiments.
The percentage of routing failures in all experiments are illustrated in Table 4. Because
the proposed 2-fault tolerant grid broadcasting algorithm can only handle at most 2 faults
ocurred in a 5 X 5 square grid, after virtually partitioning the whole experiment network into
multiple square grids in each simulating iteration the broadcast operation is failed if one of the
square grids contains more than 2 faults. The corresponding failure ratios in all experiments
are displayed in Table 5. To those who interested in 100% fault tolerant broadcasting, the
information from these three tables shows that it is possible to have 100% fault tolerance
in a normal mission time by introducing more complicate routing/broadcasting algorithms
and/or spending more time steps to perform a broadcast operation.

Under fault-free environment only 6 broadcasting steps are required for each of the
three experimented tori. Table 6 shows that under faulty condition 9 or 10 broadcasting steps
are required to complete a one-to-all broadcast task in these 2-D torus networks. The first
reason is because at the most of times one additional step is required to send the message from
the originator to the selected pseudo-source node. The proposed 2-fault tolerant grid broad-
casting algorithm? also requires two more steps to broadcast the message in a 5 X 5 square
grid compared to the optimal PSB algorithm. The third, since synchronization technique
is adopted in the implementation of broadcasting algorithm, it is possible for a broadcast
task to require some extra broadcasting steps if some faults cause not enough outgoing links
to use for broadcast from a source node during one broadcasting step. From Table 7 we
confirm that the larger size of the network and the longer period between two maintenance
time-points the more faults occur in an interconnection network. Hence, more complicate
and powerful fault-tolerant routing/broadcasting algorithms are required to maintain the

networks running under more serious faulty situation.

3Refer to Theorem 1
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6 Conclusion

In this paper a new approach to tolerate multiple faults for the broadcast operation in
two dimensional torus networks is introduced. From our knowledgement we are the first
one to directly address the heavy multiple-fault problem for fault-tolerant broadcasting in
interconnection networks. In order to tolerate a large number of faults in a 2-D torus network
a stochastic fault model is adopted to analyse the fault distribution. From the analysis of
fault distribution a new fault-tolerant broadcasting algorithm is proposed to improve the
network fault tolerance up to 24 node failures. Simulation experiments are proceeded to
evaluate the correctness of the analysis and the effectiveness of the proposed algorithm. It
is shown in the experimental results that the broadcast failure ratio is less than 2% for all
three different sizes of experimented networks in a two-day mission time. The match between
the analysis of the fault distribution and the experimental measurements corroborate the
validation of the proposed process for computing the probability P{Z(t) =1| X(t) = j}.
Because we only consider M x 5P x 57 tori with static node failures, further investigation
for other types of networks and different shapes of n-dimensional tori will be interesting
topics. Other research directions include the model analysis of channel (link) failure, the
corresponding algorithms developed to tolerate multiple link faults and the network fault

tolerance of dynamic faults.
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