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ABSTRACT -------- 

A theoretical investigation is made of the behavior of an axisymrnetri- 

c a l  turbulent swirling natural convection plume in an  otherwise motionless 

ambient fluid. With the introduction of the a s  sumption of similar axial and 

swirling velocity profiles and similar buoyancy profile, and the a s sumption 

of lateral entrainment of ambient fluid, the order of the governing differential 

equations is reduced by one after the initial integration following the Karman 

integral method. The behavior of the swirling plume i s  found to depend solely 

on two physical parameters associated with the source characteristics, the 

source Froude number and the source swirling velocity parameter. A series 

solution developed in the vicinity of the source of the swirling plume is  ob- 

tained for any values of these two physical parameters. Numerical solutions 

for  extended range of axial distance f rom the source of the swirling plume and 

for  wide ranges of selected representative values of these two physical param- 

e t e r s  a r e  obtained with the use of a digital electronic computer. The behavior 

of the swirling plume is found to approach that of a non-swirling jet, a swirl- 

ing jet, o r  a non-swirling plume when these two physical parameters a r e  a s -  

signed value s approaching those designating each of the aforementioned 

simpler,  boundary situations. 



INTRODUCTION ----------- 

A swirling natural convection plume embodies the very interesting 

combination of the motion of a swirling jet and the motion of a natural con- 

vection plume, each of which represents a very complex problem by itself. 

The situation is  further complicated by the fact that under most circum- 

stances the flow field becomes turbulent. Consequently, the problem has 

never  been attempted with much success. 

F o r  the simpler problem of the motion of a turbulent natural convec- 

tion plume, most of the previous successful theoretical works employ the 

method of the lateral  entrainment assumption on the ambient otherwise sta-  

t ionary a i r  f i rs t  introduced by Taylor (1 945) [I!].. The assumption states 

that  the time-mean velocity of entrained surrounding a i r  a t  a certain level 

i s  proportional to a certain characteristic time-mean velocity of the turbu- 

l en t  plume a t  the same level. 

Morton, Taylor and Turner (1956) [2] investigated the simple two- 

dimensional case of the plume from an idealized mathematical line source 

and  the simple axisymmetrical case of the plume from an  idealized mathe- 

mat ica l  point source of infinitesimal physical size, infinite buo.yancy inten- 

s i t y  and zero  mass  and momentum fluxes. Their results check very well 

I with the experimental findings of Rouse, Yih and Humphreys (1 952) [3]  for  r 
p lumes above a very small gas flame and a line of very small  gas flames 

designed to simulate the idealized point and line sources. 

I Morton (1959) [4,5] investigated the axisymmetrical case  of the plume 

i f r o m  a n  axisymmetrical source of finite mass ,  momentum and buoyancy fluxes. 

t 
His results  depend on the solution for  the case of plume from a fictitious point 

sou rce  of finite buoyancy and momentum fluxes but zero mass  flux a t  a lower 
1 
I 

1 level .  Furthermore, in his analysis, no description has been made about the 

i physical s ize of the source and its possible influence on the behavior of the 

I plume. 

I Lee  and Emmons (1 961) [6] investigated theoretically the two-dimensional 

I c a s e  of the plume from a finite-size s t r ip  source of finite mass ,  momentum and 



3 
buoyancy fluxes. Their results brought out the significance of a source Froude 

number F.  A quadrature solution was obtained for each of two separate ranges 

of the Froude number, F < 1 or F > 1, Inrrt5iehe~of these cases the finite-size 

s t r ip  source can be accurately represented by an equivalent mathematical line 

source a t  a lower level. Only the special case, F = 1, can be so represented 

and its solutions, with a shift of reference coordinates, check with the line 

source solutions obtained by Morton, Taylor and Turner (1 956) [z]. 

Lee and Emmons (1 961) [6] also investigated experimentally the behavior 

of the plume of hot gases above a diffusion flame of liquid fuel burned in a long 

finite-size channel burner. Their measurements check closely with the results 

of their theoretical investigation of the two-dimensional case of the plume from 

a finite-size source of finite mass, momentum and buoyancy. 

For  the simpler problem of the motion of a turbulent swirling jet, on 

the other hand, most previous attempts simply extended the solutions obtained 

f o r  the case of a laminar swirling jet to the case of a turbulent swirling jet by 

the rather unjustified argument of the constancy of an apparent kinematic 

viscosity. . ... 

Loitsyanskii (1953) [7] studied the axisyrnmetrical laminar swirling jet 

with both the axial and radial pressure variations taken into consideration. He 

obtained series solutions for the velocity components in ascending powers of 

the inverse of the axial distance from a virtual point source for the swirling 

jet. The coefficient of each term of each of the power series is found to be a 

function of a sole dimensionless similarity variable which involves both the 

axial  and the radial distances. The first terms of these series represent the 

solutions of velocity components of a laminar jet without swirl. The author 

extended his analysis to the case of an axisyrnmetrical turbulent swirling jet 

by the use of the Prandtl's mixing length and momentum transfer theorems. 

He pointed out that if the kinematic viscosity of the laminar case could be re-  

placed by a constant apparent kinematic viscosity of the turbulent case, the 

two cases would become identical and, therefore, the solutions for the laminar 

swirling jet could be used for the turbulent swirling jet. His argument on the 

constancy of the apparent kinematic viscosity is based entirely on the a s  sump - 
tion that the product of the maximum axial velocity and a characteristic radius 
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of the swirling jet rernains constant a t  al l  axial distances, This could be true 

if only the f i rs t  terms be retained in the ser ies  solutions for the velocity field, 

In other words, the assumed constancy of the apparent kinematic viscosity can 
t 

be justified only for case of an axisymmetricaP turbulent jet with no swirl which 

contradicts with the very physical model s f  an  axisymrnetricaP turbulent jet 

with swir l  under investigation. 
B 

~ o r t l e r  (1954) [8] studied the axisyrnrnetricaP laminar jet with very weak 

swirl.  He completely ignored the pressure variations in the flow field and, as  

a consequence, the momentum equation governing the axial velocity field was 

s e t  independent of the swirling velocity field. His solution for the axial velocity ! f ield for a laminar jet with weak swirl is  naturally identical with that for a lami- 

n a r  jet with no swirl a t  all  and the extent of validity of this solution i s  evidently 

questionable. His solution for the swirling velocity field is given by a series of 
I 
! eigenfunctions. Each of the eigenfunctions is a function of the axial distance and 

a dimensionless similarity variable which involves both the axial and the radial 

distances. He also extended his solutions for an axisymmetrical laminar jet 

I with very weak swirl to the case of an axisymmetricaP turbulent jet with very 

i weak swirl  by the same argument of the constancy of an apparent kinematic v i s -  

cosity. This extension seems well justified since the analysis of the main flow 

I is just that of an axisyrnmetrical jet, laminar in one case and turbulent in the 

I other, with no swirl. However, the inherited questionable extent of validity 

( of the solutions remains unaltered, 

Steiger and Bloom (1960) [9] applied the Karman integral method to the 

axisymmetrical laminar swirling jet problem, Non-similar solutions, in 

closed form, for incompressible and compressible flow were derived by assum- 

ing specif-ic functional forms for the velocity distributions . In particular, these 

solutions depend on the assumption of the non-vanishing radial gradient of the 

swirling velocity along the axis of the swirling jet. No where in their paper have 

they made any justification for such an assumption. They have not made any 

c l a im  of being able to extend their solutions for the laminar case to cover the 

turbulent case by assuming the constancy of the apparent kinematic viscosityo 
. 

It should be noted that the apparent kinematic viscosity could not be made 



constant because of the functional forms of their solutions, 

The only experimental work on axf symmetrical swirling jet existing 

in the literature was reported by Rose (1962) [J.o] who studied a swirling round 

turbulent jet of a i r  generated by flow issuing from m rotating pipe into a reser-  

voir of motionless a i r .  He used a constant-temperature hot-wire anemometer 

to measure the velocity field of the swirling jet extending f rom the pipe dis - 
charge out to a distance of fifteen pipe diameters. Prom his measurements, 

it can be observed that very nearly similar Gaussian profires exist for the axial 

velocity a t  a l l  measured axial stations f rom one and one half diameters on. 

F r o m  the same measurements, i t  can also be observed that the distribution of 

the swirling velocity a t  a l l  measured axial stations assumes the same similar 

profile which i s  related to the corresponding similar profile for the axial 

velocity distribution a t  the same axial station through a characteristic radius 

of the swirling jet. He also specifically reported the decays of the maximum 

axial and the maximum swirling velocities and the effect of swirl on jet spray 

and found that they apparently did not compare satisfactorily, over the range 

of axial distance covered, with some of the simple conclusions drawn from the 

afore  -mentioned existing theoretical solutions, 

More recently, Lee (1965) [I  11 investigated the case of an axisymmetri- 

cal  turbulent swirling jet is  suing from a circular source into a semi-infinite 

otherwise motionless ambient fluid, He succeeded in obtaining a simple closed 

fo rm solution by introducing the assumptions of similar axial and swirling 

velocity profiles and lateral  entrainment of ambient fluid into the integrated 

governing equations. Results for the decays of the axial and swirling velocities 

and the spray of the jet agree closely with the experimental findings on the 

swirling round turbulent jet of air  reported by Rose (1962)  [110l0 

In view of the success in obtaining a satisfactory solution for turbulent 

natural convection plumes by the introduction of the la tera l  entrainment as  sump- 

tion and for an axisymmetrical turbulent swirling jet by the same lateral  

entrainment a s  sumption respectively, i t  i s ,  therefore, only logical to attempt 

the solution of the combined complex problem of a swirling natural convection 

plume by the introduction of the afore-mentioned lateral  entrainment as  sumption. 



ANAL Y SIS ------- 

Let  us assume that the flow field be fully turbulent and a s  a consequence 
s 

the molecular effects can be considered negligible in comparison with the turbu- 

lent effects and that the plume covers a very narrow region in the direction of 

its axis of symmetry and therefore the usual boundary layer approximations can 

1 be made. Let us also assume that the local density variations a r e  everywhere 

small in comparison with some reference density in the flow field. Even though 

a source of heated fluid is  causing the natural convection, i t  is  the buoyancy 

rather than the thermal properties of the flow which is  fundamental to the phenome- 

non. Therefore, although the buoyancy force due to density difference is  suf- 

ficiently great to contribute to vertical acceleration, the corresponding variation 

in the mass density of the fluid undergoing acceleration is  sufficiently small, in 

comparison with the density itself, to be neglected in the governing continuity and 

energy equations and the inertia terms of the governing momentum equations, 

If we let u, v, and w be the components in the x-(axial), r-(radial),  

and 0-(tangential) directions respectively of the time -mean velocity of the 

fluid at a point A inside the plume flow field as shown in the definition sketch 

of Figure 1, the governing equations for the axisymmetrical swirling plume a re  

then a s  follows: 

Continuity Equation: 

a a -- (ru) t -- (rv) = 0 ax a r  

x-direction Boundary -Layer Momentum Equation: 

a 2 3 ( r u v ) = - - -  EL - - - ( r ; ~ q = p ~ & ~  i3 -- ( ru  ) t -- ax a r ax a r  
1 P 1  

r -dir ection Boundary-Layer Momentum Equation: 
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I 

8 -direction Boundary-Layer Momentum Equation: 

a 2 B 2 a 2--- 
-- (r uw) t -- (r vw) = - -- (r v'wF ) ax 8 r a r  

Boundary-Layer Energy Equation: 

a a a ---- -- (ru AT) t -- (rvAT) = - a r -- (rvd AT? ) ax a r  

where p = density of the undisturbed ambient fluid 
1 

i p = local time-mean pressure 

AY = gAp = g(p - p )  = local buoyancy 

p = local time-mean density 

I --- --- - p1utv9 , -plvlwl = Reynold's s t resses  

---- - p Cp v' AT' = eddy heat transfer 
1 

u' = fluctuation velocity in the x-direction 

v' = fluctuation velocity in the r-direction 

I w1 = fluctuation velocity in the &direction 

AT = T - T = local time-mean temperature increment 
1 

T = local time-mean temperature 

T = temperature of the undisturbed ambient fluid 1 

ATt = fluctuation temperature increment 

1 Cp = specific heat a t  constant pressure  

I If we further assume that the local temperature increment i s  small  a s  compared 

to some reference temperature, say T and that the local pressure  change is  
1' 

small  enough not to cause any significant change of the thermodynamic proper- 

i ties of the fluid but large enough to influence the dynamic behavior of the fluid, 

the equation of state of an  ideal gas reduces to the following: 



and the boundary-layer energy equation, Equation (5), reduces to 

Let  us assume the following similar profiles for the axial and swirl- 

ing velocities and the lbcal buoyancy at a l l  axial stations: 

2 2 
U(X, r) = U(X) exp (- r /b ) (7)  

2 2 2  ! i 
Ay(x, r )  = Ay(x) exp (-I- / A  b 1 ( 9 )  

where b = b(x) is  the value of r a t  which the magnitude of the axial velocity 

i s  l/e of that of the maximum axial velocity, u(x), along the axis and 

I f(r/b) is  the profile distribution of the swirling velocity, w(x, r), which 

! assumes the maximum value w(x) a t  the maximum of f(r/b) which has 

the magnitude of unity. The functional form of f(r/b) i s  to be determined 

experimentally. Ay(x) = Ay(x, o) is the time7mean buoyancy along the plume 

i axis. The axial velocity profile is characterized by a length scale b(x) 

while the local buoyancy profile is of the same shape but is  characterized by 

a slightly different length scale X b(x) where X is an universal constant. 

i With the swirling velocity profile of Equation (8) introduced, Equation 

I (3)  can be readily integrated from the plume axis, r = 0, to the edge of the 

I plume, r = r to give 
i e' 2 

p(x, r )  = p1 - P 1W (x) 1 (r/b) 

1 where 

1 p1 = pressure of the undisturbed ambient fluid 
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Since f(r /b)  usually decays rapidly toward the edge of the plume, the upper 

limit of integration of Equation (11) can be lifted from the edge of the plume, 

r e  to co without introducing much e r ro r .  Therefore, Equation (1 1)  can 

be replaced by the following expression: 

Integrate Equation (2) from 0 to oo with respect to r, with Equations 

(7), (9)  and (12) introduced., The radial velocity v(x, r) and the Reynold's 

s t ress  vanish a t  r = 0 due to symmetry and Reynold's s t ress  vanish a t  r = oo 

in the ambient fluid. The resulting equation takes the form: 

where 

and 

The value of the swirling velocity profile constant k depends solely on the 

shape of the swirling velocity profile f(r/b). For  instance, for the swirling 

velocity profile of the swirling turbulent round jet of a i r ,  obtained by Rose 

(1962) [lo], a value of 0.208 for k was evaluated. 

I Integrate Equation (4) f rom 0 to co with respect to r ,  with Equa- 

l tions (7) and (8) introduced. The radial and swirling velocities, v(x, r)  and 

w(x, r) ,  and the Reynold's s t ress  vanish a t  r = 0 due to  syrnmetry and w(x, r )  

and the Reynold's s t r e s s  vanish a t  r = ao in the ambient fluid. The resulting 

equation takes the form: 

d 3 -- (uwb ) = 0 
dx 
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Integrate Equation (1) from 0 to oo with respect to r, with Equation 

(7) and the condition v(x, 0) = 0 introduced, we have 

9 

which, when multiplied by the constant factor (Vrrp ) on both sides, states that 
1 

the increase of the mass  flux in the axial direction is supplied by the mass en- 

trainment from the ambient fluid in the radial direction a t  the edge of the plume. 

In order to attempt to get a solution for +e problem, some additional 

information about this entrainment mass flux must be introduced a t  this point. 

Taylor (1945) [ l ]  studied the turbulent natural convection plume released from 

an instant point heat source. He succeeded in obtaining similarity solutions 

by the introduction of the assumption of uniform axial velocity and buoyancy 

profiles across the plume and an entrainment assumption based on a dimensional 

argument. His entrainment a s  sumption relates the horizontal entrainment 

velocity a t  the edge of the plume, [- v 1, to the axial velocity within the 
- edge 

plume at  the same height, u , in the form 

. . - 
[-v ] = &si 

edge 

where a is  the entrainment coefficient and i s  a constant for the case under 

study. This entrainment assumption was modified by Morton, Taylor and 

Turner (1956) [2] to take the form 

for the case of an axisyrnmetrical non-swirling plume released from a main- 

tained point buoyancy source, with similar Gaus sian axial velocity and buoyancy 

profiles assumed, such a s  those expressed by Equation (7)  and Equation (9) 

for k = 1 respectively. In Equation (18), u again is the entrainment 

coefficient and is  also a constant for this case  under study but a different 

constant from the one introduced in Equation (17). Fo r  the present problem 

of an axisymmetrical turbulent swirling plume, the entrainment assumption 

of Equation (18) still seems well justified as it can be reasoned from Equation (1 6) 
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that the radial entrainment velocity is solely responsible for making up the 

change of the axial mass  flux and the swirling velocity does not come into the 

picture of the gross continuity consideration over the cross  section of the 

plume. By the introduction of the entrainment assumption of Equation (1 8). 

Equation (1 6) becomes 

d -- 2 
dx 

(ub ) = 2abu 

Integrate Equation (6) from 0 to oo with respect to r ,  with Equa- 

tions (7) and (9)  introduced. The radial velocity v(x, r) and the eddy heat 

transfer vanish a t  r = 0 due to symmetry, and the local buoyancy and the 

eddy heat transfer vanish a t  r = oo in the ambient fluid. The resulting 

equation takes the form: 

Now, the governing equations for the axisymmetrical turbulent 

swirling plume problem a r e  summarized a s  follows: 

d 2 -- (ub ) = 2abu 
dx 

d 3 -- (uwb ) = 0 
dx 

d 2 -- (u Ayb ) = 0 dx 

- 
The boundary conditions can be assumed to be: 

which state physically that a swirling source with the velocity and buoyancy 1 profiles specified by the similar distribution of Equations (7 ) .  (8), and (9). and 
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characteristics u o, wo, Aye, andb i s a s s u m e d t o e x i s t a t t h e  starting 
0' 

level of x = 0 of the plume. 

Let us introduce the following transformations to eliminate the constant 

coefficients from the governing equations: 

where 

is the source Froude number, 

and 

is the source swirling velocity parameter which has the form of the reciprocal 

of a source Rossby number. The source Froude number F describes the 

nature of the source. The extreme value of F = 0 indicate a pure buoyancy 

source while the extreme value of F = a, indicate a pure momentum source. 

Therefore, small values of F always associate with sources of a restrained 

nature and, on the other hand, large values of F always a'ssociate with sources 

of an impelled nature. The source swirling velocity parameter G describes 

the relative amount of swirling of the fluid at  the source. For cases of 

turbulent plumes with very large swirl where, say, w > u , the Gaussian axial 
0 0 

velocity and buoyancy profiles probably would no longer prevail a t  a l l  axial 



stations a s  assumed throughout the analysis. Therefore, with a value of k, 

say, i n  the neighborhood of 0 . 2  a s  evaluated f rom the existing experimental 

results on a turbulent swirling jet, we could fairly safely say that the present 

analytical formulation would be valid for cases  with G < 1 or, with some un- 

certainty, up to G = 1 which, however, already corresponds to fair ly large 

swirl. 

With these transformations, Equations (22), the governing equations, 

Equations (19), (1 3) ,  (15), and (20) become 

d 2 -- (UB ) = UB 
dX 

d 2 -- (UPB ) = 0 
dX 

and the corresponding boundary conditions, Equations (21), become 

Equations (25) and (26) can be immediately integrated to give 

1 and 

5 
UWB = 1 



2 
UPB = 1 

respectively. 
1 

With W and P eliminated by the use of Equations (28) and (29) respectively, 

Equation (24 )  can be written a s  

Introducing the additional transformations 

into Equations (23) and (30) respectively, we have 

and the corresponding boundary conditions, Equations (27), become 
I 

I 
( Equation (33) can be simplified with the use of Equation (32) to take the form 

I 
I 

First ,  power se r ies  solution developed around thee origin X = 0 a r e  attempted 

1 f o r  both M and N. Let  us assume the following ser ies  solutions: 



Substituting Equations (36) into Equation (32), we have 

The boundary conditions of Equations (34) require that 

Substituting the ser ies  of N and M, Equations (36), into Equation (35) and 

equating the coefficients of the successive t e rms  of powers of X to zero, 

we have af ter  some manipulation 

. . . . . . . 
Id 

However, since the power ser ies  solutions for N and M have been 

developed around the origin X = 0, they will be valid for sufficiently small  

values of X. These power series solutions will then only give a description 

of the behavior of the axisyrnrnetrical turbulent swirling plume up to an axial 

distance not too far  f rom the source. Fo r  more  general description of the 



behavior of the plume in the flow field extending f rom the level of the source, 

X = 0, to any unrestricted axial station along the X-axis, numerical schemes 
I 

on Equations (32) and (35) with boundary conditions, Equations (34), have been 

attempted and computations have been performed on a digital electronic com- 

puter. The computor used is  an IBM 141 0 digital comput:!r and the program 

i s  expressed in terms of the Fortran machine language. The nurnber of pairs  

of the initial values of M and N used in the computation i s  seventy-seven 

since there a r e  seven selected values of F and eleven selected values of G 

employed. The selected values of F a r e  0. 001, 0.01, 0.1, 1, 10, 100, and 

1000. The selectedvalues of G a r e  0.001: 0.005, 0.01, 0.025, 0.05, 0.075, 

0.1, 0.25,  0.5, 0.75, and 1. The results for the dimensionless maximum 

axial velocity, U, and the dimensionles s reciprocal of maximum buoyancy, 1 /P, 

for  different values of the source swirling velocity parameter,  G, but the same 

value of the source Froude number, ?, a r e  plotted against the dimensionless 

axial  distance above the source, X, in Figures 2-1 through 2-7. The correspond- 

ing resul ts  for the dimensionless maximum swirling velocity, W, and the 

dimensionless characteristic plume radius, B, a r e  plotted in Figures 2 -8 

through 2-14. 



CONCLUSION --------- 

It has been found that the behavior of an axisymmetrical turbulent 

swirling natural convection plume is  determined solely by two physical 

parameters associated with the source characteristics, namely, the source 

Froude number F and the source swirling velocity parameter G. Over 

wide ranges of values of F and G , solutions for the problem have been 

found for  such quantities a s  the dimensionless maximum axial velocity U, 

the dimensionless recipr.oca1 of the maximum local buoyancy 1 / ~  , and the 

dimensionless characteristic radius B of the swirling plume, each a s  a 

function of the dimensionless axial distance above the source X. 

The general behavior of a swirling plume, as  far  a s  such quantities 

as  U, 1 / ~  , and B a r e  concerned, seems to be similar in a qualitative 

way to  that of a non-swirling plume except for some quantitative modifica- 

tions caused by the amount of swirling a s  characterized by the source swirl- 

ing velocity parameter G. For  small values of the source Froude number F, 

U will f i rs t  increase to a maximum and then will s tart  to decrease, I/P will 

increase slowly, and B will f i rs t  decrease to a minimum and then will s tar t  

to increase. The appearance of the swirling plume will show a bottle neck 

a t  the axis1 station where B has a minimum. An increase of the value of G 

will tend to make the initial increase of U faster,  the occurrence of the 

minimum of B sooner, but will not have much significant effect on the be- 

havior of 1 / ~ .  Fo r  'large values of the source Froude number I?, U will 

decrease f i rs t  rather quickly and then slowly, 1 / ~  and B both will increase 

almost linearly a t  a rather steep slope. An increase of the value of G will 

tend to make the initial decrease of U faster ,  the slope of the increase of 

I/P less  steep, and the magnitude of B smaller but increasing a t  more  or  

less the original slope. 

The dimensionless maximum swirling velocity W i? a swirling plume 

behaves in a qualitative way very mucy like the dimensionless maximum axial 

velocity U. Fo r  small values of the source Froude number F, W will 
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I first increase to a maximum and then will start to decrease. An increase 

of the value of G will tend to make the initial increase of W faster. For 

large values of the source Froude number F, W will decrease first  rather 

quickly and then slowly. An increase of the value of G will tend to make 

the initial decrease of W faster, 

Finally, it can be said that the behavior of the swirling plume will 

approach that of a non-swirling jet, a swirling jet, or a non-swirling plume 
t when the proper values of the two parameters, F and G , a re  assigned. 

. , For very large values of F and very small values of G, the behavior of U 

and B approaches that of a non-.swirling jet. For very large values of F ,  

I the behavior of U, B, and W approaches that of a swirling jet. And, for 

very small values of G, the behavior of U, B, and 1 / ~  approaches that 

I of a non-swirling plume. 

i 
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FIGURE I. DEFINITION SKETCH 
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DIMENSIONLESS RECIPROCAL OF MAXIMUM BUOYANCY , I /P  



DIMENSIONLESS AXIAL DISTANCE ABOVE SOURCE X 

FIGURE 2-2. RESULTS OF MAXIMUM AXIAL VELOCITY 
AND MAXIMUM BUOYANCY ( F = 0.01 ) 
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FIGURE 2-3, RESULTS OF MAXIMUM AXIAL VEUbClTY 
AND MAXIMUM BUOYANCY ( F 0, I ) 
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FIGURE 2-4. RESULTS OF MAXIMUM AXIAL VELOCITY 
AND MAXIMUM BUOYANCY ( F a  I )  
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FIGURE 2-3, RESULTS OF MAXIMUM AXIAL VELOCITY 
AND MAXIMUM BUOYANCY ( F m  10) 
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FIGURE 2-6, RESULTS OF MAXIMUM AXIAL VELOCITY 
AND MAXIMUM BUOYANCY (f?100) 
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FIGURE 2 RESULTS OF MAXIMUM AXIAL VELOCITY 
AND MAXIMUM BUOYANCY ( F *  1000) 
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FIGURE 3-1, RESULTS OF MAXIMUM SWIRLING VELDCITY AND 
CHARAC7ERISTlC PLUME RADIUS ( F m  0.00 1 ) 
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1 FIGURE 3-2. RESULTS OF MAXIMUM SWIRLING VELOCITY 
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AND CHARACT ERlSTlC PLUME RADIUS ( Fa 0.01) 
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FIGURE 3-3. RESULTS OF MAXIMUM SWIRLING VELOCITY AND 
CHARACTERISTIC PLUME RADIUS ( F 0.1 
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FIGURE 3-4, RESULTS OF MAXIMUM SWIRLING VELC)CI~  AND 
CHARACTERISTIC PLUME RAD [US ( F rn 1 ) 
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FIGURE 3-7, RESULTS OF MAXIMUM SWIRLING VELOCITY AND 

I 
CHARACTERISTIC PLUME RADl US ( F * 1 00 0 ) 


