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Abstract

Channel holding times and user mobility are important topics in the study of wireless cellular communications. We
present an approach to modeling user mobility and session time which enables the calculation of teletraffic performance
characteristics and a characterization of holding time which agrees with published reports. The model allows both
the dwell time and unencumbered session time to have general distributions. A derivation of the channel holding

time distribution is given. We then show how the model’s parameters can be chosen to fit empirical data including

observations of channel holding time.

I. INTRODUCTION

Future wireless communication systems will be called upon to deliver a variety of services (voice, data, video)
to a variety of users (pedestrians, vehicles, computer terminals). The interaction of mixed users and mixed

The research reported in this paper was supported in part by the U.S. National Science Foundation under Grant No. NCR-
9415530 and in part by BMDO/IST under Grant No. N0001495-11217 administered by the U.S. Office of Naval Research
Additional research support from Hughes Network Systems is gratefully acknowledged.



it

services within the same system is the focus of this paper. We propose an analytical model, based on multi-
dimensional birth-death (MDBD) processes (1] for the computation of system performance characteristics.

Recent work has focused on developing analytical models to compute performance measures for wireless
systems with various features: Multiple calls on a single platform [2], multiple platform types (3], platforms
with highly variable mobilities [4], and mixed services and platform types [5]. We extend this body of work for
systems with mixed services and mixed platforms types existing in the same system to include very general
classes of unencumbered session times and dwell times. In addition we present a calculation of channel holding
time characteristics that is consistent with the MDBD characterization. The unencumbered session time is
defined as the amount of time that a user “intends” to remain active when his/her call is initiated [3]. This
is equivalent to the holding time in traditional wireline teletraffic theory, wherein premature call termination
and active calls vacating channels are not issues. The dwell time for a mobile user is the duration of time a
user spends proximate to a base station so that a two-way link of acceptable quality can be maintained. The
definition of dwell time includes all propagation effects such as path loss, fading, multipath and shadowing.

Current trends in cellular/personal communication systems contemplate increasing system capacity and
offering services such as data, video and electronic mail in addition to conventional voice service. One method
of increasing system capacity is to use micro-cells or pico-cells to provide coverage to the region. Small
cell systems, tend to have more irregular shapes and cell sizes are more variable throughout the coverage
area. Early work [6], [7] used negative exponential models for dwell times. Generalizations based on sums
of exponential variates were used subsequently in [3]. The large degree of variability in the size and shape
of micro-cells suggest that a more general model for the dwell time is needed. In addition, service providers
are offering many more services to customers. These include, but are not limited to: fax, video, electronic
mail, and data. While the negative exponential distribution is commonly used to model the duration of voice
telephone calls, this model may not be appropriate for other cellular services. Therefore, we also consider a
broad model for unencumbered session times in this paper. An overview of other common teletraffic modeling
techniques used in cellular communications is contained in (8] and the references therein.

We characterize unencumbered session time and dwell time as sums of hyperexponential variables. Unen-



cumbered session time and dwell time are each modeled as having a special probability density function (pdf)
which we call a SOHYP (Sum Of HYPerexponentials). The SOHYP pdf can be used to approximate the
behavior of any positive random variable [4], [9]. Its use allows one to consider a broad class of pdf’s while
retaining the Markovian properties that are required by the MDBD framework. The basic model developed
here applies to connection oriented systems. These include those which use circuit switching, virtual circuit
switching, as well as systems which employ admission control.

We define the channel holding time as the amount of time a call holds a channel in a cell. The holding
time is not the same as the unencumbered session time since the platform supporting a call may leave the
cell - and the channel used by the call in that cell will be relinquished. We also emphasize that the phrase
“leaving a cell” is interpreted broadly. That is, it corresponds to the expiration of the platform’s dwell time in
the cell. Owing to propagation effects, even a stationary platform can have a finite dwell time. Modeling both
the session and dwell time as SOHYP random variables leads to an analytically tractable characterization of
the channel holding time.

We derive an expression for the channel holding time distribution in terms of the unencumbered session
and dwell time (SOHYP) parameters and system parameters. The overall result is an analytical model that
can predict system performance for a large class of unencumbered session time and dwell time distributions.
Relevant performance measures include: holding time, blocking probability, hand-off failure probability, forced
termination probability, hand-off activity factor and carried traffic [6]. The model is used to investigate the

relationship between session and dwell time distribution on the channel holding time.

II. MODEL DESCRIPTION

We consider a geographical region covered by cells and traversed by G types of platforms which generally
have different mobility characteristics, i.e., distinct dwell time pdfs.. The dwell time for each platform type,
Tp(g), is assumed to be SOHYP distributed. Platform types are indexed by g = 1,2,...,G. We also assume
that there are W types of cs.lls_ that the system can handle. Call types are distinguished by their unencumbered

session time characteristics. Generally, the unencumbered session time of each distinct call type, To(w). is



distributed according to a distinct SOHYP pdf. The call types are indexed by w = 1,2,...,W. At any
time a mobile platform can support one of the W call types. The unencumbered session time and dwell time
distributions are described in detail in the following section.

For convenience, in the current paper it is assumed that all call types require the same resources for service.
Different resource requirements for different call types are considered in [5], however, general unencumbered
session time and dwell time distributions were not considered. The generalization (to different resource
requirements) considered in [5] can be easily applied to the model put forth in this paper. The state variable
characterization is essentially the same as described here, but the state space must be restricted by the resource
constraints. Thus no increase in the dimensionality will result.

Each cell has C' channels assigned to it and can therefore support at most C calls simultaneously. A cutoff
priority scheme is used to give hand-off calls priority over new calls. For this purpose, Cj channels in each
cell are reserved for calls that arrive to the cell as hand-offs. Individual channels are not reserved, just the
number. The overall effect is that new calls that arise in a cell will be blocked if more than C — Cy, channels
are in use, while hand-off calls will be served if fewer than C channels are in use. Channel quotas for call
types and platform types can also be enforced. At each cell no more than J(w,g) channels can be occupied
by w-type calls on g-type platforms.

The following system parameters are needed in the analysis of the system
e A(w,g) is the arrival rate of w-type calls on g-type platforms.

o v(g,0) is the number of g-type platforms present in the cell
o The total rate at which w-type calls arrive on g-type platforms can be expressed as A, (w, g) = A(w, g)-v(g,0)

In the state variable description that follows we assume an “infinite population model” for which v(g,0) >>

C. This is usually the case. A finite population model, which is essentially similar, can be constructed but

the dimension of the state space is increased.
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11I. DWELL TIME AND UNENCUMBERED SESSION TIME DISTRIBUTIONS

The dwell time random variable for a platform of type g, Tp(g), is modeled as the sum of Np(g) statistically
independent hyperexponentially distributed random variables denoted Tp(g,¢), wherei = 1,2, ..., Np(g). Each
Tp{g,1) constitutes one phase of Th(g). So Tp(g) has Np(g) phases.

Consider now one phase of Tp(g), for example, Tp(g,?). The pdf of the random variable Tp(g,i) is a
weighted sum of negative exponential functions having parameter pp(g,i,k) and has the following form

known as the hyperexponential density

MD(Q:":)

fTD(g,i)(t) = Z aD(gaivk)ND(g7i’k) exp(_#D(g’iak)t) (1)
k=1

Where the ap(g,i,k)’s add to unity, kM=Dl(g’i) ap(g,i,k) = 1. We see from (1) that the index & runs from 1
to Mp(g,t). Each negative exponential function in (1) is referred as a stage of the density and in general we
have Mp(g,1) stages for each Tp(g,:). We say that Tp(g,?) is a Mp(g,i) — stage hyperexponential random

variable.

As stated before the dwell time for a g-type platform is a sum of Np(g) independent hyperexponential

variates.
Np(g)

Tp(g) = 2—:1 Tn(g,1) (2)

We can make use of the concepts of phases and stages in order to conceptualize platform movement. Each

random variable, Tp(g,1), is considered a phase of Tp(g) and each phase can have any number of stages

indexed by k = 1,2,..., Mp(g,%). Mp(g,1) is the number of stages in the i** phase for a g-type platform. A

platform can be thought of as completing a series of phases as it traverses a cell. For a g-type platform we

have a total of Np(g) phases. The length of time spent in each phase is a hyperexponential random variable

(Tp(g,1)) consisting of Mp(g, ) stages. Furthermore, we can interpret the ap(g,:,k) in (1) as the probability

that a g-type platform “chooses” stage k when it enters phase i. When a g-type platform enters a cell it begins

its dwell time in the first phase (i = 1) where it chooses a stage from the Mp(g, 1) that are available for the



first phase. The choice of stage k is made according to the probability ap(g, 1, k). After the completion of its
first phase of dwell time the platform enters the second phase (i = 2), where it “chooses” a stage k from the
Mp(g,2) stages available in the second phase. The choice is made according to the ap(g,2,k) probabilities.
This process continues until the platform completes its final phase of dwell time, (i = Np(g)). Completion of
the final phase corresponds to the platform exiting the current cell (moving out of communication range of
the base station) and entering a neighboring cell.

To obtain an expression for the pdf of Tp(g) we make use of Laplace Transforms. The Laplace Transform

of the hyperexponential pdf in (1) is denoted as Jo 0d) (&) and is given by

Mp (gyl)

* _ aD(g’ivk):uD(gviak)
Fowa®) = 2 L T re ®

Since Tp(g) is a sum of Np(g) independent hyperexponential random variables the Laplace Transform of its

density is the product of the component transforms, that is

Np(g) 9) Mp(g:1)

ap(g, %, k)up(g,i, k)
fTD(g)(g H fTD(g 1,) 1=III kz_:l Lo g,’L,IC) +£ (4)

Equation (4) can be inverted to find the density of Th(g), however, if we add the restriction that all the

pplg,%, k) are distinct then (4) has a simple partial fraction decomposition given by

. Np(g) Mp(g.i) A ik
GRS M o 6

=1 k=1
where the Ap(g,t,k)s are the coefficients of the partial fraction decomposition and are given by

Np(g) Mp(9.5)

ap(g,J,)eplg,7,1)
A g,l,k =ap g,?,,k,LL g7Z,k
p(g:4,k) ( P H ,; 1p(9,3,0) — pp(g, i, k)

J#z

We identify (5) as a sum of negative exponential transforms and easily invert it to find the density of the

dwell time which is given below
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Np(g) Mp(g.9) B
fTD(g) Z E Ap(g,i,k) - e~Hp(g.i,k)t ™)
=1

The cumulative distribution function (cdf) for Tp(g), denoted by Fr, ) (t), is found by integrating (7)

Np(g) Mp(g,i) Ap(g,5, k)
F t)y=1- ap(g,i,k) e Hplgik) where ap(g,i, k) = £D0\9, %) 2 8
re® ( Zl 2=: i @LR = ik ®)

We note that the above derivation of the density assumes that the pp(g,1,k)s are all distinct. That is, no
stage of any phase is identical to any other stage of any other phase. This is equivalent to requiring that the
Laplace Transform of the density, given in (4) does not have a repeated pole. Mathematically this is expressed

as,

)U'D(gﬂ/,k) 36 #D(Q,J,l) for ¢ 75.7 (9)

This ensures that the Ap(g,t, k)s, given in (6), remain finite. A similar approach (using Laplace Transforms
and partial fraction decomposition) can be used to find the functional form of the SOHYP pdf and cdf when
a up(g,1, k) parameter is repeated. We emphasize that the approach and formulation are valid even if (9) is
not satisfied. It is only the specific functional form of (7) that would require generalization. It is not difficult
to do this generalization but it is algebraically cumbersome to write the general formula.

The unencumbered session time for a w-type call is also modeled as a SOHYP random variable. That
is the unencumbered session time random variable, Ts(w), is a sum of Ng(w) hyperexponential random
variables. To differentiéxte between unencumbered session time and dwell time parameters, we denote session
time parameters as ag(w,p,q) and pg(w,p,q) where p = 1,2,..., Ng(w) is the number of phases of session
time and ¢ = 1,2,..., Mgs(w,p) is the number of stages for the p'* stage. A similar interpretation of the
SOHYP distribution as it applies to unencumbered session time can be made. In this case, a call of type w
is considered to complete a sequence of phases and stages before its completion. The parameter ag(w,p,q)

has a similar interpretation. It is the probability of a w-type call “choosing” stage ¢ when it enters phase p.



Following the same approach given for the dwell time, the pdf of Ts(w) is

- Ns(w) Ms(w,p)

frw® =Y Y As(w,p,q) e #stopat (10)

r=1

where
Ng(w) Ms(w,j)
as(w J,l)#s(w 71
As(w,p,q) = as(w,p,q)pus(w,p,q
( ) ( s 31—11 lz; ps(w, 7, 1) — pg(w,p, q)
Jj#p

The corresponding cdf is

Ns{w) Ms(w,p) As(w )
Frgw =1- ag(w,p, e_l‘S(vav‘I)t where ag(w,p,q) = s\w,p,q 19
e ( 2: E stwpa wed) =g

Again, equations (10) - (12) assume that the transform of the pdf does not have a repeated pole. For reference

we state the counterpart of (9) for the unencumbered session time

/J'S(w’p’q) 7('- /Lg(w,j,l) for p #] (13)

Figure 1 shows an example of a SOHYP pdf with two phases, the first is a negative exponential phase and
the second is a two stage hyperexponential. The value 2 in the figure is the squared coefficient of variation.
This is defined as the ratio variance of a random variable to the square of its mean. As we see the SOHYP
pdf can have coefficients of variation which are larger‘than unity. Properties of the SOHYP random variables
are discussed in [4].

In addition, we would like to note that the model has special cases. Both the negative exponential distri-
bution and the sum of negative exponentials distribution can be obtained by considering special cases of the
SOHYP distribution. A SOHYP random variable with a single phase consisting of a single stage is a negative
exponential distributed random variable. A SOHYP random variable with multiple phases where each phase
consists of a single stage is'the sum of negative exponentials discussed in [3]. Furthermore, if all the phases are

identical then we have an Erlang distribution. The distributions mentioned above have squared coefficients



of variation which are less than or equal to unity. So we see that use of the SOHYP modeling approach is

broadly applicable.

IV. STATE DESCRIPTION

The state of a single cell is a sequence of integers. We define the state variable, vypggik, {w = 1,..., W;
p=1,...,Ne(w);g=1,...,Ms(w,p);9g=1,...,G;i=1,...,Np(g); k =1,..., Mp(g,i)} to be the number
of w type calls in phase p and stage g of unencumbered session time that are active on g type platforms
in phase i and stage k of dwell time. The length of the sequence of integers, that specify the state, is the
dimension of the state space. This dimension depends on the number of call types, W, the number of platform
types, G, and the number of phases and stages required to describe each SOHYP distribution. The state of a
cell can be written in the form of an array. Each position in the array represents a unique set of unencumbered
session time parameters and dwell time parameters. Consider the array shown below, if the value of the first
element in the first row is 3, v111111 = 3, this corresponds to 3 type 1 calls in phase 1 stage 1 of session time
on board type 1 platforms in phase 1 stage 1 of dwell time. Changes in horizontal and vertical positions in

the array correspond to different platform mobility parameters and session parameters respectively.

V111111 * V111gN p(9)M p(9.N p(9)) " V111GNp(G)M (G,N ()
V112111 - V112N p(g)M (9, Np(g)) =" V112GNp(G)M p(G,Np(G))
V1iMs(1,1)111 * " V11Ms(1,1)gN ()M (g, N p(g)) """ V11Ms(1,1)GN p(G)M p(G,N p(G))
VINs(1)Ms(1,Ns(1))111 **° V1Ns(1)Ms(1,Ns(1))gN p(9)M p(9.N p(9)) “ " ”1Ns(1)Ms(LN;(l))GND(G)MD(G,ND(G))
VwNs(w)Ms(w,Ns(w))111 ***  V1Ng(w)Ms(w,Ns(w))gNp(9)Mp(9,Np(9)) "' YwNs(w)Ms(w,Ns(w))GNp(G)Mp(G,Np(G))

"W Ns(W)Ms(W,Ns(W))111 * * - VW Ns(W)Ms(W,Ns(W))gN p(9)M p(9,N p(9)) = YW Ns(W)Ms(W,Ns(W))GN p(G)M p(G.Np(G))
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The set of permissible states corresponds to all values of the array which satisfy all resource constraints
[3]. It is convenient to order the states using the index s, s = 0,1,...,Smax- The state variables v,pq4:x can
be expressed as function of the state. The representation, v(s,w,p,q, g,%,k) is the number of w-type calls in
phase p stage g of session time on board g-type platforms in phase ¢ stage k of dwell time when the cell is in
state s. With this state variable description a number of characteristics can be determined for each state s.

The number of channels in use by w-type calls on board g-type platforms is

NS(w) Ms(va) ND(g) MD(gli)

Jj(s,w,g) Z Z Z Z v(s,w,p,q,q,%,k) (14)
p=

i=1 k=1

The number of channels in use by w-type calls is then

i(s,w) = Z]swg) (15)

and the total number of channels in use when the cell is in state s is

w
j(s) =Y j(s,w). (16)
w=1

A permissible state is any sequence of integers which satisfies the system constraints. That is j(s) < C and
j(s,w,9) < J(w,g) forw=1,2,..., Wand g =1,2,...,G.

We note that a thorough formulation requires the identification of the system state, which is the con-
catenation of all the cell states in the region of coverage. Because of hand-off, the individual cell state
transitions are coupled to one another. So a rigorous analysis requires the consideration of all possible
system states. This approach, however, is not feasible because of the overwhelming dimensions and compu-
tational complexity involved. The approach put forth in [2] {3] [10] is used. Specifically, a single cell is isolated
and its interaction with neighboring cells is represented with averaged hand-off arrival rates that are related
to averaged hand-off departure rates. (For homogenous systems these rates must be equal. Nonhomogenous

systems can be analyzed similarly [2] [3]). Formulation of the flow balance equations results in a system of
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nonlinear equations to be solved for the cell state probabilities. Even with this simplification the number of
states needed to describe a single cell can be formidable. An example with one call type and one platform

be expressed as function of the state. The representation, v(s,w,p,q, g,%,k) is the number of w-type calls in

Tablel : Number of cell states needed

C 4 6 8 10 12

number of states || 714 5004 24309 92377 293929

W =1,Ng(1) = 2, Ms(1,1) = 2, Ms(1,2) = 1
G =1,Np(1) =2, Mp(1,1) = 2, Mp(1,2) =1

The size of the state space grows quickly while the numbér of channels increases. Since we are usually
dealing with personal communication systems, which use micro-cells or pico-cells, the number of channels
per cell is normally low. However, for certain model parameters the number of states required can still be
prohibitive.. Such situations can be handled by computing results for a system with fewer channels per cell
and extrapolating results for the larger sized state space. This technique is described in [3]. It was shown that
by keeping the offered load per channel constant performance characteristics for systems with a large number

of channels could be extrapolated from resuits computed for smaller systems.

V. DRIVING PROCESSES AND STATE TRANSITIONS

For the system under consideration there are six driving processes that can be identified. These are: A)
generation of new calls, B) completion of calls, C) arrival of hand-offs, D) departure of hand-offs, E) transition
between session time phases, F) transition between dwell time phases. Since we consider multiple platform
and call types, all of these processes are multidimensional. In any state, the new call arrival and hand-off
arrival processes Poisson point processes. Markovian assumptions are made. These in addition to the SOHYP
characterization of the state space allow the problem to be cast in the multidimensional birth-death framework
3], [10]

The solution for the cell state probabilities and the related performance measures follows the approach given

in [3]. The identification of predecessor states and the corresponding state probability transition flows follows.
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This leads to the flow balance equations, a set of nonlinear simultaneous equations which are then solved
iteratively(2] [3] {10]. Details are given in [13]. The results of the solution yield the following: 1) Equilibrium
state probabilities, P(s); 2) Average hand-off call arrival rate (to a cell) of w-type calls on board g-type
platforms, Ap(w, g); 3) Average fraction of Ax(w, g) that are in phase p stage q of unencumbered session time.

Which is denoted ®(w,p,q,g).

VI. CHANNEL HOLDING TIME

Channel holding time is defined as the amount of time that a call occupies a channel in a particular cell.
This depends on several factors. A channel may be used by any of the-various types of calls each having
its own distinct session time distribution. In addition, a call may be on board any of the Qarious platform
types with each type having certain mobility characteristics as specified by a distinct dwell time distribution.
Consider a call ( of type w on board a platform of type g) which has just begun service in a cell. That is the
call could have arrived as a new call or as a hand-off call. Calls which are new calls have an unencumbered
session time phase index p = 1. Those which are hand-off calls have a dwell time phase index ¢ = 1. Of
all such calls, some will complete in the current cell. Others will be on board platforms which leave the cell
before the call is completed. We will be interested in the overall channel holding time distribution (regardless
of whether the call completes in the cell), as well as in the conditional channel holding time distribution (for

those calls which complete in the current cell).

A. Owverall Channel Holding Time Distribution

There is a distinct holding time distribution for each call type on board each platform type. For the system
under consideration, we can identify W -G holding time distributions. That is each w-type call (w = 1,2,..W)
on board a g-type platform (g = 1,2, ..., G) gives rise to a distinct holding time distribution. We denote the
holding time of a w-type call on board a g-type platform as H(w,g). The holding time H(w,g) depends on
the session time of the particular call type, Ts(w), the dwell time of the platform, Tp(g) and the system
performance.

In each cell, calls can be categorized as: 1) calls that arrive due to hand-offs from neighboring cells or 2)
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new calls, which originate within the cell. We define Hy(w, g) as the holding time of a w-type hand-off calls
on g-type platforms and we denote H,(w,g) as the holding time of a w-type new call on a g-type platform.
Throughout the remainder of this section we will assume the Laplace Transforms of the dwell time and session
time pdfs not do not have repeated poles. That is, equations (9) and (13) hold. For the development that
follows, it is also helpful to keep in mind the physical interpretation of SOHYP distributed random variables
as they apply to unencumbered session time and dwell time. Specifically, a new call arising in a cell will always
begin in phase 1 of unencumbered session time but can be on board a platform in any phase-stage of dwell
time. A hand-off call entering a cell will always begin in phase 1 of dwell time but can be in any phase-stage

of unencumbered session time.

A.1 New call holding time

A new call may begin service during any phase and stage of its platform’s dwell time. It will remain active
in the cell until the remaining dwell time expires or the call is completed (the unencumbered session time
expires). For a g-type platform in phase i stage k we define Rp(g,i,k) as the remaining dwell time of the
platform. A g-type platform in phase ¢ stage k£ must complete its current phase and stage and the Np(g) —i+1

remaining phases before exiting the cell. So, Rp(g,1, k) can be expressed as a sum of random variables

Np(g)
RD(g’i,k) = TD(g,’L,k) + Z TD(J) (17)
j=i+1

Tp(g,i,k) in (17) is a negative exponential random variable associated with the platform’s k** stage of phase

i. That is the pdf of Tp(g,?, k) is

Frpteik)(t) = pp(g,i, k) - e #p(@:4k) (13)

The components Tp(j), where j = 4,7+ 1,..., Np(g), are the remaining hyperexponential phases of the dwell
time. So we see that Rp(g,4,k) as defined in (17) is also a SOHYP distributed random variable whose first

phase (Tp(g,%,k)) is n.e.d. Therefore the pdf, fr,(g,)(t). can be written as a sum of negative exponential



functions as in (7). Computing the convolution of the component pdfs in (17) we obtain

- . N, Mp{g,j .
f* ) (g) — ,UD(Q,’L,IC) ﬁg) DZ(QJ) lu'D(g’J’l)
Roloik) uolg, 6k +& 20, i ko(9:0,0) +¢

This can be factored as

. Bg1 k , ND g) MD(g J) Bgﬂrk ],l
Froainl® = orpag X Y ol

(19)

(20)

The B%’i'k( j§,1) are the coefficients of the partial fraction expansion of equation (19). The superscripts g,i, k

are used to explicitly show that the coefficients are functions of the starting phase and stage.

starting phase i stage k, Rp(g,t, k) has a distinct pdf. We can invert (20) to obtain

. . Np(9) Mp(g.j}) .
Frp(eik(®) = BE*(, k)em#o@ik) 1 N~ > B% (5, he~ro(@.5D)
J=t+l =1

This can be written in a more compact form, which is similar to (7) and (10), by the following

Np(g) Mp(g.9)

Fro@iw® =3 Y BEF(L) - eroleddt

=1 kif j=i
J = {11f1>1‘

where
kifj=1

/ N —
4569 = {5t >

So for each

(21)

(23)

With the pdf of the remaining dwell time computed, we now define H,(w, g,%,k) as the holding time of a

w-type new call which begins service on board a g-type platform in phase 7 stage k of dwell time. Since the

call will either complete in the cell or leave the cell after Rp(g,1, k) expires, we have

H,(w,g,i,k) = min(Ts(w), Rp(g,1,k))

(24



Since Ts(w) and Rp(g,1, k) are independent random variables, we have {11]

FHa(w,gik) () = Frg)(t) (1 - FRD(g,i,k)(t)) + fRp(g,ik)(t) (1 - FTs(w)(t)) (25)

In (25),Fprp(g.ik)(t), is the cdf of Rp(g,i,k) and is easily obtained from (22).
The probability that a g-type platform is in phase i stage k is denoted by p,,(g,%,k). This is given by

aD(g7i, k)/ﬂD(g7i,k)

Pn(g,1, k) = TD(Q)

(26)

The holding time pdf for a new w-type call on board a g-type platform, fg, (w,g)(t), is therefore given by

Np(g) Mp(g.%)
an(w,g) Z Z Pn g,Z,k an(w,g,l k:)( ) (27)
i=]1 k=1

A.2 Hand-off call holding time

The analysis of holding time for a hand-off call follows similar arguments. A hand-off call of any unencum-
bered session type, say w, may enter a cell in any phase p stage ¢ of session time. It will hold its channel until
its remaining unencumbered session time expires or until it completes its full dwell time, Tp(g). We define
Rgs(w,p,q) as the remaining unencumbered session time of a w-type call given that it is currently in phase p

stage q. Rs(w,p,q) is again a SOHYP random variable whose first phase is n.e.d.

Ng{w)

Rs(w,p,q) =Ts(w,p,q) + Y Ts(j (28)
J=p+1

Its pdf is derived in the manner of (22) we give the following result

Ns(w) M 1])

fRs(w,p,q) Z Z Bw P, Q(], HE e Hs(9:5Dt (29)
I=P ={11137



16
where

: ifj=p
[I — ql ;
4303 = {a gy 65 > o

We now have Hj(w,p,q,g), the holding time of w-type hand-off calls in phase p stage g on board g-type
platforms. A call that arrives at a cell as a hand-off will either complete, when its remaining unencumbered

session time expires, or will leave the cell when its dwell time expires. Therefore, Hy,(w, p,q, g) is given by

Hy(w,p,q,9) = min(Rs(w,p, ), Tn(g)) (31)

Using the independence of Rg(w,p,q) and Tp(g) the pdf of Hy(w,p,q,g) is

frinwpan® = frswaa® (1 = Fro@®) + frow®) (1 = Frswea ) (32)

The fraction of w-type hand-off calls that arrive in phase p stage ¢ on board g-type platforms is ®(w,p,q,g).
Note that this is the same fraction that appears in the iterative solution for the state probabilities discussed

previously. So we can now write the pdf of Hy(w, g) as

Ns(w) M$<w:p)
th(w,g)(t) = Z Z @(w,p,q,g) : th(w,p,q,g)(t) (33)
p=1 g=1

A.3 Total holding time and observations

With both hand-off and new call holding time specified we can develop an expression for the pdf of H(w, g),
the channel holding time of a w-type call on board a g-type platform. New calls of type w on board g-type
platforms arrive with rate A,(w, g), such a call will be served with probability 1 — Pg(w, g). Where Pg(w, g)
is the blocking probability of a new w-type call which arises on a g-type platform. The computation of the
blocking probability is discussed in the following section on performance measures. Hand-off calls of type w
on board g type platforms arrive with rate Ap(w, g). Such a call will be served with probability 1 — Py (w. g).

(Py(w, g)is the hand-off failure probability for a w-type call on a g-type platform). It computation is also
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discussed in the following section. The total call demand impinging on a cell the sum of the arrival rate of
new and band-off calls, An(w, g){1 — Pg(w,g)] + An(w,9)[1 — Pg(w,g)]. The pdf of H(w,g) is a mixture of

the new and hand-off components expressed as follows

3 An(w,g)[1 = Pg(w,g)] _ :
fawe)(t) = Ao L= Pa(w. o) - Mx (0. 9) [ = Patw.9)] FHo(w,9)(t) (34)
Ap(w,9)[1 = Py(w,g)]

T An(w. 9)[L = Ps(w, 9)] + An(w,9)[1 — Prl(w,g)] SHA(we) ()

Equation (34 )is the overall holding time pdf of w-type calls on board g-type platforms. The terms before the
component pdfs are simply the fraction on calls that are present in the cell due to the arrival Qf new calls and
hand-off calls respectively.

We emphasize that the channel holding time distribution depends on the session time SOHYP parameters,
the dwell time SOHYP parameters and the system performance measures. The system performance measures
are also a function of the session and dwell time parameters and the system characteristics (number of
channels C, cutoff priority Cp, etc.). These dependencies are captured in (34) and the iterative solution
to the state probabilities. We see from (34) that in general the computation of the channel holding time
distribution requires the computation of other system performance measures such as blocking and hand-off

failure probabilities and the hand-off arrival rates.

B. Channel holding time distribution for calls which complete

A call completing in its current cell corresponds to a given set of conditions. For example, if a w-type call
enters the cell as a hand-off call on board a g-type platform and the unencumbered session time is currently
in phase p stage g then the event {Rs(w,p,q) < Tp(g)} will cause the call to complete in the current cell.
That is, for hand-off calls, the remaining unencumbered session time, Rg(w, p, q), is less than the dwell time
Tp(g). Let us also define, Bx(w,p, q, g), as the event that an active w-type hand-off call in phase p stage q of

unencumbered session time on board a g-type platform completes. Mathematically this is

Br(w,p,q,9) = {Rs(w.p.q) < Tp(g)} (35)
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The corresponding event for new w-type calls on board g-type platforms in phase i stage k is denoted as
8ny(w,g,1,k) and is given by

BN(wv g,’L,k) = {TS(w) < RD(g’Z’k)} (36)

Again we note that there are two types of calls: hand-off calls and new calls. We will derive the conditional
distribution, Fy, (t|84(w,p,q,9)). A w—type hand-off call on board a g-type platform which arrives in phase
p stage q completes if its remaining session time, Rg(w,p,q), is less than its dwell time Tp(g). From the

definition of Hp(w,p,q.9) and the condition {Rg(w,p,q) < Tp(g)}we have

FHh(w,p,q,g)(t|BH(w,p, q, g)) = Pr{Hh(w7p, q7g) < tlﬁH(vaa q, g)}
= Pr{min(RS(W,P, q)vTD(g)) < tIBH(vaa q, 9)}
= Pr{Rs(w,p,q) <t|Bu(w,p,q,9)}

Frg(wpq)(tlRs(w,p,q,9) < Tp(g)) (37)

So we conclude that the conditional distribution of completing w-type hand-off calls arriving in phase p
stage q on board g-type platforms is equivalent to the conditional distribution of the remaining session time

given that it is less than the dwell time. This conditional cdf is given by

t roo
FHh(w,p,q,g) (t|BH(’lU,p, q, g)) = /0 /.; fRs(w,p,q) (fl)fTD(g) (E2)d£2d£1 (38)

The event that a w-type hand-off call on board g-type platform completes is expressed as Bp(w,g) =

U;,Vﬁl(w) 3{__51(1””’ ) B8r(w,p,q,9). The conditional channel holding time distribution for a w-type hand-off call

(which is in service in the cell) on board g-type platforms is then given by

Ns(w) Ms(w,p)
FHh(w,g)(t|BH(w7g)) = Z Z (I)(w»p~ Qag) ) FHh(’w,p,q,g)(tIBH(va,q)g)) (’59)
* =1 gq=1 .

A similar analysis is required for the conditional distribution of a new call which completes in the cell. Tl
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overall conditional holding time is the combination of the new and hand-off components as in (34). The details
of the calculation are given in [13].

VII. OTHER SYSTEM PERFORMANCE MEASURES
The approach outlined above was used to calculate equilibrium state probabilities. From these, various
performance measures can be determined.
A. Blocking probability

The blocking probability of a new w-type call from a g-type platform is the average fraction of new w-type
call attempts from g-type platforms which are denied access to a channel. Blocking of a new w-type call
attempting to gain a channel from a g-type platform occurs if there are no channels available to serve the call

or if the system’s channel quotas are already full. We define the following disjoint sets

By = {s:C-Cr<j(s)<C} (40)

B; = {S ](S) <C—Ch,j(3’w’g) = J(w7g)} (41)
Then the blocking probability for w-type calls on board g-type platforms can be written as

Pp(w,g)= > P(s)+ Y P(s) (42)

s€Bg SEBy

B. Hand-off failure probability

The hand-off failure probability for w-type calls being served on g-type platforms is defined as the average
fraction of hand-off attempts that are denied a channel. A hand-off attempt of a w-type call on board a g-type
platform will fail if no channels are a available in the target cell (recall that hand-off attempts have access to

all C channels) or if the cell’s channel quota is already full. We have the following disjoint sets

Hy = {s:j(s)=C} (13



Hy = {s:j(s) <Cj(s,w,9) = J(w,9)}

The hand-off failure probability for w-type calls served on g-type platforms is

Py(w,g)= ) P(s)+ ) P(s) (44)

s€Hyp s€EH

C. Carried traffic

The carried traffic per cell for each call and platform type is the average number of channels occupied by

the calls from the given platform type. The carried traffic for w-type calls on board g-type platforms is

Smax
A(w,g) = j(s,w,g) - P(s) (45)
=0
the total carried traffic is given by
W G
A=) > Alw,g) (46)
w=1g=1

D. Forced termination probability

The forced termination probability, Ppr(w, g), is defined as the probability that a w-type call on board a
g-type platform, which is initially admitted into the system, is subsequently interrupted due to a hand-off
failure during its lifetime. For convenience the following discussion will consider that the dwell time and
unencumbered session time pdfs can be written in the form of (7) and (10) respectively. A new w-type call
can begin service during any phase ¢ stage k of its originating platform’s dwell time. In order for the call to
generate a hand-off attempt, its session time must be greater than the platform’s remaining dwell time. So
for new a w-type call on board a g-type platform in phase i stage ¥ we define U(w, 9,1, k) as the probability

that the call will require a hand-off

U(wvg»ivk) = Pr{RD(g1'L7k)STS(w)} (47>

oo €,
= /0 A FRo(g,i.k) (€1) Frs(w) (€2)dE1 A8,
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Np(g) Mp(9,7) Ng(w) Ms(w

-1-3 Y % Z As(w,p, ) B (4, 1)
= L = [kp(9,3,0) + ps(w,p,9)]pp(9,5,1)

1if j>1

The probability that a new w-type call on board a g-type platform requires a hand-off is given by

Np(g) Mp(g)

Z Z Pn(9,5,K)U(w, g,1,k) (48)

where p,,(g,1,k) is given by (26). A hand-off call enters its target cell in the supporting platform’s first phase
of dwell time. It will be in an arbitrary phase p stage q of its unencumbered session time, so for a hand-off
call which enters its target cell in phase p stage ¢ to generate a hand-off attempt the remaining unencumbered
session time must be greater than the dwell time. It is assumed that as a platform moves from cell to cell
the probability of a hand-off failure, Py (w, g), is independent of previous hand-off successes for the same call.
This is reasonable because ordinarily there well be many system state transitions occurring between successive
hand-off attempts of a single cell. We have the probability that a w-type hand-off call in phase p stage ¢ of

session time on board a g-type platform requires another hand-off is

V(w,p,q,9) = Pr{Tp(g) < Rc(w,p,q)} (49)
Ns(w) Mg(w,p) Np(g) Mp(g,

=1-> > X Zz) Bw’p’q(f’l)aD(g,z,k
J=t = {qlfJ—P i=1 k=1 /J‘D g,z k)+iu5(w ]’l)

1if j>p

The probability that a w-type hand-off call will require another hand-off is

Ns(w) Ms(w,p)
Viw,g)= > Y &wpq9)V(wpqyg) (50)
p=1  g¢=1

Where ®(w,p, g, g) is the fraction of hand-offs of w-type calls that arrive in phase p stage g of session time on

board g-type platforms.
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The probability that the call is forced to terminate on its jth hand-off attempt is

The forced termination probability of w-type calls on g-type platforms is
o0
Per(w,g) =) Y;(w,g) (52)
j=1

This can be expressed in closed form as

U(wa g) : PH(w,g)
1 _w(wag)

PFT(w)g) = , where ¢(’wa9) = V(w’g) ’ (1 - PH(w,g)) (53)

E. Hand-off activity factor

The hand-off activity factor, n(w, g), is defined as the expected number of hand-off attempts for nonblocked
w-type calls on board g-type platforms. Let §(w,g) be the probability that a w-type call on a g-type platform

which requires a hand-off will not require another hand-off. Then
(w,g) = Pa(w,9) +[1 — Pr(w,9)] - [1 - V(w,g)] (54)

We can write an expression for ,I'(w,g,7), which is the probability that a w-type call on board a g-type

platform requires exactly j hand-offs before ending (either by completion or forced termination).

The hand-off activity factor is

n(w,g) => j - T(w,g,j) (56)
j=1



This can be expressed in closed form as

__Uwyg)

VIII. DISCUSSION OF RESULTS
A. Case study: Observed log-normal holding times

A study of a channel holding times for a cellular telephone system in Canada is reported in [12], where it
is suggested that the observed holding times can be modeled using a log-normal distribution. We will show
that a cellular system with SOHYP distributed dwell times, as described in section 2, produces a similar call
holding time distribution. The log-normal result reported in [12] is actually the holding time distribution
of calls that complete in the cell of interest. The authors state that they discarded some of the data they
collected in order to smooth the resulting histogram. The cellular system they studied handled hand-off
requests at discrete time points. They report seeing a large number of channel releases after 7 seconds, 17
seconds, 27 seconds,etc.. They attribute this to the call requiring a hand-off and waiting for the system to
exchange signaling information between base stations. By discarding these data points the holding time of
calls that released their channel because of hand-off were not considered. We assume that the remaining
observed holding times are for those calls that complete in the cell. This corresponds to the development of
conditional channel holding time given in section VII, B. In summary, we interpret the results reported in
[12] as follows: For an active call, the conditional distribution of channel holding time given that the call
completes in its current cell is approximately log-normal. Let 8 denote the event that an active call completes

in its current cell. The mathematical essence of [12] is

Fr(t|8) ~ fi(t) = (1/(”\/‘2;) o~(int—p) (5%)
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Equation (58) is the log-normal pdf with parameters ¢ and 3. The corresponding cdf can be expressed in

terms of the standard normal distribution, G(z) = 715; s e=¢"/2d¢ [11]. That is,

Fu(t) =G ( (59)

o

Int —ﬂ)

We propose that a system in which the unencumbered session and dwell time distributions are SOHYP leads
to a channel holding time distribution that is in agreement with (59). The procedure shown in figure 2 can be
used to fit our calculated holding time distribution to observed holding time data. The derived holding time
pdf given in (34) is holding of all calls whether they complete in the cell or exit the cell. To compare with
(59) we need the conditional density that a call completes.

We can now fit the conditional channel holding time distribution of completing calls, Fy(t|8) to the log-
normal cdf given in [12]. Ideally, Fg(¢|8) should be fit to data. Since we do not have access to the raw data
used in [12] we take a different approach. We find the parameters of Fy(t|8) that minimize the mean square

error between the log-normal cdf and Fy(t|8). We define the mean square error, E, as
o 2
E= [ (Fult) - Fu(t9)’ - fult)d (60)

We assume that the cellular system is homogenous with each base station having: C = 10 channels, no cut-
off priority Cj, = 0, new call origination rate A = 2.75¢ — 4 and the number of noncommunicating platforms
is v(1,0) = 100. One platform type is assumed to be present and a single call type is assumed present
G = 1,W = 1. For calculation purposes we use a two phase SOHYP for the , Np(1) = 2, where the first
phase has one stage, Mp(1,1) = 1, and the second phase has two stages, Mp(1,2) = 2. This allows four
parameters, 1p(1,1,1),ap(1,2,1), up(1,2,1), up(1,2,2), to be used for fitting to the log-normal holding time.
The log-normal parameters (3,0) are reported in [12]. For a small cell size located in downtown Vancouver
the authors report 8 = 3.37 and o = 1.25. We have assumed that the average dwell time is equal to thirty

seconds, Tp(1) = 30.0. This corresponds to automobiles traveling through cells with radius of a mile or less.
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To hold the mean dwell time constant we set the up(1,1,1) parameter to

/’LD(lvl’l) = <TD(1) -

aD(L 27 1) _ aD(l, 2a 2))
ND(172a1) ,U,D(].,Q,Z)

(61)
Tp(1)=30

The authors of [12] do not mention unencumbered session time or anything about the total duration of calls in
the system. We assume the unencumbered session time, T5(1), is n.e.d. and we allow the parameter pg(1,1,1)
to be adjusted to the log-normal distribution.

Using the above assumptions, equation (60) can be minimized with respect to the parameters: u(1,1,1),
ap(1,2,1),1p(1,2,1), up(1,2,2). The problem of minimizing (60) is a multidimensional optimization. We
modified and used the “Downbhill Simplex Method” described in {14] to perform the minimization. To represent
the system for the parameters G =1, W = 1, Np(1) = 2, Mp(1,1) = 1, Mp(1,2) = 2, three state variables
and a total of 286 states were required. The fitting procedure was carried out on a SparcUltra 2 Workstation
and results for figure 3 were obtained in approximately 10 hours. Table 2 gives the calculated dwell time

parameters, hand-off arrival rate, unencumbered session time parameter and blocking and forced termination

probabilities.

Table 2: System Performance and Fitted SOHYP Parameters

Parameter /J/D(l, 171) aD(]-’ 2’1) ,U'D(172a1) /J‘D(l’2v2) #5(1’171) Ah(lal) PB(lvl) PFT(171)

Value 7.863 4.379%x1071  1.458x1072 8.665 7.351x1073  0.1221 3.211x1072 1.831x1072

Figure 3 is a plot the log-normal cdf with the above parameters and ours based on SOHYP dwell times
with parameters shown in Table 2. The parameters shown in Table 2 give a mean square error, as defined
in (60), of 5.13E-04 between log-normal and our holding time distribution. We see that we have relatively
good agreement with the observed cdf. In addition we are able to compute teletraffic performance measures
during the fitting process. A smaller mean square error could be achieved by increasing the number of phases
and stages of the‘ SOHYP dwell time pdf. This would give us more parameters to adjust. The unencumbered
session time does not have to be restricted to the negative exponential distribution but could have a more
general SOHYP distribution as well. This also allows for the introduction of more parameters into the model.

We emphasize that the fit is to the log-normal cdf and not to the original data which is not available to us.
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The curves shown in figure 3 are meant to suggest that SOHYP dwell and session times lead to reasonable
channel holding time distributions. SOHYP based model of holding time has advantages since it allows the
use of the MDBD framework for computation of system performance and the introduction of many parameters

that can be used to fit to data.

B. SOHYP unencumbered session times, negative exponential dwell times

Figures 4 through 6 show the performance measures for a cellular system in which session times are SOHYP
distributed. We consider a system with 20 channels (C = 20), a single call type and single platform type. The
number of noncommunicating platforms per cell was taken as v(1,0) = 400 and the dwell time was assumed
to be exponential with mean Tp(1) = 200. The unencumbered session time was considered to be SOHYP
with a mean of Ts(1) = 100 and we varied the squared coefficient of variation, k%(1) from 0.8 to 4.0. C), was
also varied from 0 to 4. Three state variables and 1771 states are required to represent this system. No quota
constraints were considered for the system. The results are plotted for increasing new call arrival rate, A(1,1).

We see from figure 4 that the blocking probability is extremely insensitive to the variance of the session time.
Forced termination probabilities decrease slightly as the coefficient of variation increases. This is expected
since shorter unencumbered session times can be expected and call complete more rapidly. The change is very
slight and forced termination probability can be considered to be insensitive to the coefficient of variation. We
also see in the figure the trade-off between blocking and forced termination probabilities. As C}, is increased
hand-offs are protected at the expense of new call blocking.

Figure 5 shows carried traffic for the system. It was found that carried traffic is insensitive to session time
coefficient of variation. A more interesting result is shown in figure 6. Here we see that the hand-off activity is
dependent on the coefficient of variation. For large the hand-off activity decreases. This is because the pdf is
spread out about its mean and shorter session times are more likely as x%(1) increases. The effect of reserving
channels for hand-off can be seen when demand is high. For C} = 0 hand-off activity decreases with demand

since calls requiring hand-offs are more likely to be terminated.



C. SOHYP unencumbered session times, SOHYP dwell times

Calculations were also performed for the case in which both the unencumbered session time and the dwell
time randomn variables were SOHYP distributed. That is, W = 1, Ng(1) = 2, Ms(1,1) = 1, Mg(1,2) = 2,
G =1, Np(1) =2, Mp(1,1) = 1, Mp(1,2) = 2. The mean unencumbered session time was set at, Ts(1) = 100
seconds while the mean dwell time was Tp(1) = 200 seconds. We kept the squared coefficient of variation of
unencumbered session time equal to that of dwell time and varied k% (1) = k(1) = 1,2,3,4. We considered
cells with 10 channels (C = 10) and varied Cy = 0,1. The number of noncomunicating platforms was taken to
be v(1,0) = 200. For this parameter set 9 state variables and a total of 92378 states are required. The system
performance was computed for increasing call arrival rate A(1,1). Results are plotted in figures 7 through 9.
Each set of results took approximately 7 hours to compute.

We see the effect of simultaneously increasing the coefficient of variation of both the unencumbered session
and the dwell time form the figures. As seen in figure 7, coefficient of variation has little effect on blocking
probability but as both the unencumbered session time and dwell time variation increase the forced termination
probability decreases slightly. Figure 8 is a plot of the carried traffic. We see that carried traffic is insensitive
to the changes in coefficient of variation. From figure 9 we see that increasing the coefficients of variation
causes the expected number of hand-off attempts to decrease. Generally, the changes in the performance
measures are slight as the coefficients of variation change. This may be a fortuitous observation. We can
model both the unencumbered session time and dwell time as negative exponential random variables. Using
negative exponential variates eases computation but, computed performance characteristics will be slightly

inaccurate. Depending on the situation this inaccuracy may be acceptable.

IX. CONCLUSION

The MDBD framework has been extended to allow the consideration of a broad class of unencumbered
session time and dwell time distributions. This is accomplished by representing the session time and dwell
time as SOHYP distributed random variables and using an appropriate state variable description. The

overall method enables the computation of theoretical performance characteristics for cellular communication
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systems in which mixed call types and mixed platform types are simultaneously present. Another important
issue in cellular communications is the distribution of channel holding time. We have developed the equations
which define the channel holding time distribution and show its dependence on the session and dwell time
parameters, as well as the system performance characteristics. So the framework can also be used to compute

the distribution of channel holding time in a cell.

The SOHYP distribution allows a large number of parameters that can be adjusted to fit empirical data.

An approach to fitting the parameters to channel holding time data has been discussed.
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APPENDIX
I. STATE PROBABILITY EQUATIONS AND SOLUTION

To determine the flow balance equations, we first identify the predecessor states for an arbitrary state s. In
most cases the state s and it predecessor differ in a single state variable (dwell time and session time phase
transitions each require that two state variables to change). We focus on the state variables that change when

the cell enters state s from its predecessor. All other state variables are identical for the two states.

A. New call arrivals

A new w-type call that originates on a g-type platform must begin service in the first phase of session time.
It can, however, arrive on a platform while it is in any phase ¢ stage k (i = 1,2,..., Np(g9); k = 1,2, ..., Mp(g,7)).
A transition into state s from state x, due to an arrival of a w-type call in phase 1, stage ¢ on board a g-type
platform in phase ¢ stage k will cause the state variable v(zn,w,1,q,g,%,k) to be increased by one. Recall
that a new call will be served if the number of channels in use is less than C — Cj. So a permissible state x,, is

a predecessor of state s if j(z,) < C — Crand j(zn,w,9) < J(zn,w,g) and the state variables are related by

v(zn,w,1,q,9,%, k) = v(s,w,1,q,9,%,k) = 1 (62)

Let Ap(w,1,q,9,%,k) be the average arrival rate of w-type calls in phase 1 stage q on board g-type platforms
in phase ¢ stage k. Of those new calls that arise on g-type platforms, the fraction of calls that arise during

phase ¢ stage k of dwell time is

aD(gvi? k)//‘l'D(g’ia k)
Th(g)

Pn(9,1,k) = (63)

Therefore

An(w7 1’ q, gai$ k) = pn(gaiv k) : An(wvg) * aS(’lU, 1,‘1) (64)
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We write the flow into state s from x,, as

711(3’ .’En) = An(wa 17q,9,i, k) (65)

B. Call completions

A w-type call will complete when its final unencumbered session time phase, Ng(w), expires. Like new
calls, a call completion can occur during any phase and stage of dwell time. Thus a transition into state s
from state . due to a completion of a w-type call in phase Ng(w) stage g on board a g-type platform in phase
i stage k causes the state variable v(z.,w, Ns(w),q,9,%, k) to be decreased by one. So a permissible state z.

is a predecessor of state s if the following holds

v(x, w, Ns(w),q,9,%,k) = v(s,w, Ns(w),q,9,i,k) + 1 (66)

The flow into s from z. is

70(‘9') xC) = /J‘S(w, NS(w)v q) v (a:c,w, NS(w)7 49,1, k) (67)

C. Unencumbered Session time phase transitions

When a w-type call in phase p — 1 stage ¢ ,g = 1,2,..., Ms(w,p — 1),completes its current phase and stage
it enters phase p where it chooses stage ¢,¢’ = 1,2, ..., Mg(w,p), of its session time. Stage ¢’ is chosen with
probability as(w,p,q’). This is a session time phase transition. Note that if p — 1 = Ng(w) the call is
already in its final phase and after the completion of this phase the call will terminate. So session time phase
transitions occur only if 1 < p < Ng(w). Recall that a w-type call can be on board any g-type platform in
phase i stage k of dwell time. A permissible state x4 is a predecessor of state s for w-type calls in phase p

stage ¢’ if

v(Tpe,w,p— 1,¢,9,8,k) = v(s.w,p.q,9,i,k)+1 (63)



32
U(‘wa,W,P,q’agﬂ:,k) = U(Saw)paq,,g’ivk)_l

Equation (68) simply states that the number of w-type calls in phase p — 1 stage ¢ when the cell is in state
Ty is one more than when the cell is in state s. In addition, the number of w-type calls in phase p stage ¢/

when the cell is in state x4 is one less than when the cell is in state s. The flow into state s from x4 is

7¢C(S,$¢c) = /va(’lU,p - ]-aq) : v(x(ﬁC?w’p - 1»q,9,i,k) ' aS(va,q,) (69)

D. Hand-off arrivals

Arriving g-type platforms enter a cell in their first phase of dwell time but only those with icalls in progress
generate hand-off attempts. These (communicating) platforms can arrive with any w-type call in progress,
and the call may be in any phase p stage q (p = 1,2, ..., Ns(w); ¢ = 1,2,..., Mg(w,p)) of session time. A
transition into state s from state z; due to an arrival of a w-type call in phase p-stage g on board a g-type
platform in phase 1 stage k will cause the state variable v(zs,w,p,q,9,1,k) to be increased by one. Recall
that calls arriving as hand-off have access to all C' channels and will be serviced if the number of channel in
use is less than C. Channel quotas still apply. So a permissible state xj, is a predecessor of state s if j(z,) < C

and j(zn,w,g) < J(zn,w,g) and the state variables are related
v(Th, w,p,4,9,1,k) = v(s,w,p,q,9,1,k) — 1 (70)

Let Ap(w, g) be the average hand-off arrival rate of w-type calls on board g-type platforms, and let ®(w, p, q, g)
be the fraction of w-type hand-offs that arrive on g-type platforms in phase p stage g of session time. These
parameters are assumed to be known for now. Their values will be subsequently calculated as part of an

iterative solution algorithm. We can write the flow into state s from state z, as

Yh(8,Zn) = Ap(w,g) - ®(w.p,q,9) - ap(g,1,k) (71)
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E. Hand-off departures
A hand-off departure occurs when a platform completes its final phase. A g-type platform may have any
w-type call on board. The call can be in any phase and stage of its session time. Thus a permissible state x4

is a predecessor of state s for a hand-off departure of a w-type call in phase p stage g of session time on board

a g-type platform in phase Np(g) stage k of dwell time if the state variables are related by

v(z4,w,p,q,9, ND(9), k) = v(s,w,p,q,9, Np(9),k) + 1 (72)

The corresponding flow is

’7d(5’zd) = ,uD(g7ND(g)7k) : v(-’Bd,w,p,q,g,ND(g),k) (73)

F. Dwell time phase transitions

Dwell time phase transition are similar to session time phase transitions. When a g-type call in phase i — 1
stage k ,k =1,2,..., Mp(g,i — 1), completes its current phase and stage it enters the next phase 7 where it
chooses stage k', k' = 1,2, ..., Mp(g,1), of its dwell time. Stage ¥’ is chosen with probability ap(g,?,k’). Again
note that dwell time phase transitions occur as long as 1 < ¢ < Np(h). Recall that a g-type platform may
carry any w-type call in phase p stage ¢ of dwell time. A permissible state .x¢d is a predecessor of state s for

g-type calls in phase i stage k if

v(Tyd,w,p,q,9,8 — 1,k) = v(s,w,p,q,9,i—1,k)+1 (74)

v(Zgd, 0, p,q, 9,5, k') = v(s,w,p,q,9,%,k)—1

The flow into state s from x4q is

7¢d(sa¢¢d) = /J'D(gaz - lak) ’ U(:%dw w.p,q,9,l — 17k) ' aC(g)iak,) (751
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G. Flow balance equations

The total flow into state s fram any permissible state x can be expressed as the sum of the component

flows due to each driving process.

Q(S)m) = ’Yn(svr) + 70(37:1:) + ’7¢C(va) + 'Yh(svx) + ’Yd(svx) +7¢d(sam) where s :/é T (76)

The flow out of state s is denoted as Q(s, s) and is taken to be negative. This is found by

Smax
Q(s,8) = - > Q(k,s) (77)
k=0
k#s
The flow balance equations may be written using (76) and (77). These are a set of spmax + 1 simultaneous

equations for the unknown state probabilities P(s). They are of the following form

Smax

> QG 5P =0 i=0,1,2,...,8max — 1
=0

Smax

Y PU)=1 (78)
=0
The solution of (78) gives the equilibrium state probabilities, P(s) (s =0,1,2,... Smax)-

H. Determination of hand-off arrival parameters

The hand-off arrival parameters (An(w,g) and ®(w,p,q,g)) can be computed using the iterative method
described in 3] [4]. The method relates the average hand-off departure rates to the average hand-off arrival
rates. Specifically, let Ap(w,p,q,g) denote the average hand-off departure rate (from a cell) of w-type calls

in phase p stage g of session time on board g-type platforms. A,(w,p,q,g) can be computed by

Smax MD(ngD(g))

An(w,p,q,9) =Y. Y. v(s,w,p,q,9,Np(9),k) - up(g, Np(g), k) - P(s) (79)
s=0 k=1
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The average departure rate of w-type calls on board g-type platforms is

- Ns(w) Iﬂs(w,p)

Ah(w')g): Z Z Ah(w’p7q’g) (80)

p=1 g=1

We denote ®'(w,p,q,g) as the fraction of departures that occur while the call is in phase p stage ¢ this is
given by

@' (w,p,q,9) = Ba(w,p,q,9)/An(w,9) (81)

The above equations are used to find the hand-off arrival parameters. Note that a hand-off departure of a
w-type call in phase p stage g of session time on board E’t g-type platform corresponds to a hand-off arrival
of a w-type call in phase p stage ¢ on board a g-type platform in some other cell. For the system to be
in statistical equilibrium the hand-off departure rates must equal the hand-off arrival rates (we assume the

system is homogeneous). That is

®(w,p,q,9) = ¥ (w,p,q,9) (82)
An(w,g) = An(w, g) (83)

Equations (82), (83) and (78) allow the use of the iterative algorithm described in [3] [4] to solve for the

state probabilities, P(s), and the hand-off arrival parameters, ®(w, p,q,g9) and Ax(w, g).

II. DETAILED DEVELOPMENT OF CHANNEL HOLDING TIME DISTRIBUTION FOR COMPLETED CALLS

We derive the conditional channel holding time distribution of calls that complete in the current cell. This
requires the computation of two distributions, one for calls that arise from hand-off requests and one for calls
that arise from new call requests. We first consider the holding time of w-type hand-off calls in phase p stage

g of unencumbered session time arriving on board g-type platforms. We repeated the defining equation below

Fr, (wpa.q) tBa(w,p,q,9)) = Pr{Hp(w,p,q,9) < tIBr(w,p,q,9)}

= Pr{min(Rs(w,p,q),Tp(g)) < tIBH(W,PaQyQ)}
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= Pr{Rs(w,p,q) < tBu(w,p,q,9)}

- = FRs(w,p,q)(thS(w,pa q’g) < TD(g)) (84)

Writing out the corresponding integral we have

Fisupan#(0.0.9.0) = [ [ frstuna € 1o €)dades (85)

Carrying out the integration we have the following

t
Fi, (wpag tIBa(w,p,q,9)) = /0 (1—FTD(g)(§2)) FRs(wp,q)(§2)dE2

,‘,ND(Q) Mp(g,i) Ns(w) S(wvj)

= / Z Z > Z ap(g,i, k)BeP(j,)e" otk +uswiblé ge,
0 =1 i=p |= { q ng i=p
if j>p

ND(g) MD (g,’l) Ns(w) Ms('w,]) a,D(g, 1:, k)Bg,p,q(j, l)

B ; kz-: Zp = {%:, _, [#D(9:5,k) + ps(w, 5,1

1if j>p

; [1 - e*[uo(g,i,k)+us(w,j,l)]t]

(86)

Recall that the fraction of w-type hand-off calls that arrive in phase p stage ¢ of unencumbered session time
on board g-type platforms is given by ®(w, p,q, g). We can now express the conditional distribution of w-type

hand-off calls on board g-type platforms that complete in their current cell, Fy, (4 ¢)(t|8x(w, g)). This is given

by
Ns(w) Ms(w,p)
FHh(w,g) (tlﬁﬂ(wv g)) = E Z (I)(w»pa qvg) : FHh(w,p,q.g) (t|BH(w’p1 q, g)) (87)
r=1 g¢=1

The conditional distribution of completing new calls follows a similar argument. New calls of type w can
initiate service on any g-type platform while the platform is in phase ¢ stage k of dwell time. The call will
complete in its first cell if its unencumbered session time, Ts(w), is less than the platform’s remaining dwell

time, Rp(g,1,k). The definition of the conditional channel holding time for new w-type calls initiating service
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on g-type platforms in phase i stage k of dwell time is

FHn(w,g,i,k)(t'BN(wv gaia k)) = Pr{Hn(wag7ia k) S tlBN(wa gai) k)}
= Pr{min(TS(w)') RD(g,'L,k')) < tlﬁN(wagv'L,k)}
= Pr{Ts(w) < tiBn(w,g,1,k)}

= FTs(w)(tlTS(w) < RD(g’ia k, )) (88)

This can be computed by solving the following integral

FHn(w,g,z k)(t|BN(w 971 k / / fTs(w) gl)fRD (9,3, k)(§2)d€2d€1 (89)

Carrying out the above integration we get the following result

Np(g) Mp(94) Ns(w) Ms(w,p)

B (g,5,1)As(w,p,q) y
F - ,‘i,k (t BN w, g’i, k — D 2J) - L) 1 —_ e_[l“D(ngv )+l“5(w1pvq)]t
Halw,g.0k) | ( )) ; 1= {;1_, pz_.: ; ﬂD(g)Jal)[ﬂ’D(g,]’l) +/"’S(wap7q)] [

1if j>i

(90)
Recall that the probability that a g-type platform in phase i stage k of dwell time is p,(g,%,k). So the

conditional channel holding time distribution of new w-type calls on board g-type platforms is

Np(g) Mp(g,i)
Frnwa) BN (w,9) = D > pu(9,5 k) Fer, (w,g,ie) BN (w, 9,1, k) (91)
=1 k=1

To obtain the overall distribution of completing calls, Fy(y ¢)(¢|B), we make use of (34)

An(w,g)(1 — Pp(w,9)]
An(wag)[l - PB(wvg)] + Ah(wag)[l - PH(’w,g
Ah(wag)[l - PH(w¢g)J
An(w,9)[1 — Pp(w, g)] + An(w, g)[1 — Pa(w,g)

FH(w,g) (tIB) = )] : FHn(W,g) (tIB)

T+ Fingu)(U9) (92)



Figure 1: SOHYP pdfs with same mean (=1) and different
coefficients of variation. SOHYP random variables with two phases.
First phase is a negative exponential variate. Second phase is a
hyperexponential variate with two stages.
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Figure 2: Procedure to fit channel holding time distribution to observed data
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