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Correction to CEAS Report No. 727 ¢+ 220

‘Traffic Performance and Mobility Modeling of Cellular Communications with
Mixed Platforms and Highly Variable Mobilities,” by Philip V. Orlik and Stephen S.
Rappaport

We wish to correct an error that appears in Section 7. It was correctly stated in
Section 6 that handoff departures occur only when platforms complete the final phase (of
dwell time). Thus the average handoff departure rate, A,(g,?), as defined just above
equation (42), has meaning only when i=N(g). Equations (42) and (43) are therefore
incorrect. They should be replaced with the following discussion.

Let A,(g,k) be the average handoff departure rate of g-type platforms in stage k
(not phase). This is given by
s .
A, (8. k) = 3 V(s.8.0,0011p(8,1,K)p(s) #2)
=0 i=N(g)
The average handoff departure rate of g-type platforms is then found by
. M@gN(E»
A(g)= 4,(g,k) (43)

k=]

These were errors in explanation and did not affect any of the numerical results that we
presented. We regret any inconvenience this may have caused.

Philip V. Orlik
Stephen S. Rappaport

6/23/98
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Abstract: In modeling teletraffic performance of mobile cellular networks some characteristic
mobilities are assumed to be known. It is useful if these assumptions impose few restrictions and
lead to analytically tractable models. Previous work has made use of the concept of dwell time —
a random variable that describes the amount of time a platform remains in a cell, sector or
microcell. The dwell time was characterized as a negative exponential variate or the sum of
:negative exponential variates. With a suitable state characterization this allows use of the
memoryless property of negative exponential variates with the result that the problem of
computing traffic performance characteristics can be cast in the framework of multi-dimensional
birth-death processes. However, these assumptions restrict the dwell time coefficient of variation
to be less than or equal to one. So if some mobile platform classes have mobility characteristics
that are highly variable (dwell time standard deviation greater than the mean) the previous models
may not be adequate. We present a new probability density function where the coefficient of
variation can be larger than one but which nevertheless lends itself to analytical modeling using
memoryless properties and multi-dimensional birth-death processes. This extends the previous
framework to a broader class of mobilities. The approach allows computation of major teletraffic
performance characteristics for cellular communications in which mobility issues are important.
Multiple platform types and cut-off priority for hand-offs are considered. Computational issues
are discussed and some theoretical performance measures are obtained to demonstrate the method

and compare with previous work.
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1. Introduction
Development of analytically tractable models to compute performance characteristics of
mobile wireless networks has been the thrust of recent work [1-3]. The most general models are
based on multidimensional birth-death processes. An essential feature is the characterization of
platform mobility by a dwell time random variable. The dwell time of a platform is a random
variable that gives the amount of time that a platform can maintain a satisfactory communication
link with a given network gateway. A platform’s dwell time depends on many factors including
speed, path, transmitting power, signal propagation and interference.
The coefficient of variation (denoted here by ) of a random variable is defined as the ratio

of its standard deviation to its mean. This paper extends earlier work [2] to include a class of
:'dwell probability density functions (p.d.f.’s) with coefficients of variation greater than one.
Previous work modeled the platform dwell time as the sum of statistically independent negative
exponential random variables. This approach results in a dwell time r.v. with x < 1. In the case of
macrocellular systems, cell sizes are relatively large compared with shape and size variations. A
dwell time variate with a coefﬁcient of variation one or less seems to be a reasonable model for
platform mobility. For microcellular systems, however, a dwell time variate with x<1 has less
intuitive appeal. Microcellular systems have small cells which lead to smaller mean dwell times
for platforms traversing the system (at the same speeds). Also since the transmitting power is
reduced obstacles such as buildings, trees, etc., will have a greater effect on cell size and shape.
The result is that cells in a microcellular system tend to be less regular in shape and more variable
throughout the coverage area. This large variation in cell size and shape coupled with the shorter

mean dwell suggest that dwell time variates may have coefficients of variation that are greater

than one.



The motivation here is to develop a more complete framework in which theoretical
performance measures can be calculated for a wide range of coefficients of variation. Then an
appropriate p.d.f. for the dwell time can be chosen from a family of models, and its paraméters
can be adjusted to fit empirical data. For example, if data shows that dwell times are concentrated
around a mean value, then a p.d.f. with x < 1 would be a suitable choice for a dwell time model.
On the other hand, if dwell times are found to widely dispersed, then a more realistic p.d.f. with x
>1 could be used as a dwell time model.

In the present paper we model the dwell time as a sum of statistically independent random
variables, each distributed according to a hyperexponential p.d.f. The framework to compute
traffic performance measures for a cellular system with platforms having such mobility

“characteristics is developed. Theoretical traffic performance characteristics are calculated for
various values of x (less than, equal, greater than unity). Results are compared. The discussion is
presented for systems that have mixed platform types. That is, platforms having different mobility
characteristics are present in the system at the same time.

The approach presented here focuses on the modeling of dwell time. The same approach
and our new p.d.f. can also be modified to model channel holding times in a cell. Recall that
holding time in a cell is the minimum of the remaining session duration and cell dwell time [2], [3].
Recent empirical studies [4] suggest that channel holding times within a cell have a log-normal
distribution ( when averaged over mobilities). The parameters of our p.d.f. can be chosen to fit a
log-normal p.d.f. or any other similarly shaped p.d.f.. Work in deriving the relationship between
platform dwell time and channel holding times is underway.

2. Model Description



The system description given here is similar to that of reference [2]. We consider a large
geographical region covered by cells. Mobile platforms traverse the region and can each support
a maximum of one call. We assume that in each cell there is one gateway with C channels
assigned to it. A cut-off priority scheme is used so that C, channels in each cell are reserved for
hand-off calls. Specific channels are not reserved, just a fixed number. That is, new calls that
arise is a cell will not be served if there are fewer than C,, idle channels.

We allow» for multiple platform fypes, which are indexed by g =1,2,...,G. Each platform
type has distinct mobility characteristics. These are characterized by the statistical properties of
the dwell time of a platform of the given type. The dwell time of a platform of type g is a random
variable denoted by Tp(g). Ateach gateway there may also be quotas assigned so that no more
Ethan J(g) channels can be occupied by calls on g-type platforms at the same time. In the present
paper it is assumed that the system is homogeneous and that hand-off detection and initiation is
perfect. Therefore, all valid hand-off needs are detected and no unnecessary hand-off initiations
are generated. Relaxation of these assumptions can be accommodated within the same
framework [2].

3. Probability distributiéns for dwell times
3.1 Sum of negative exponentials

The first distribution we discuss results from summing independent negative exponential
random variables. This was used to characterize dwell time in [2]. The random variable Tp(g) is
the sum of N(g) statistically independent random variables denoted Tp(g, i), (i = 1,2,3,....N(g)) in

which Tp(g,i) has a negative exponential p.d.f. with mean T, (g.i) = 1/up(g, i) and variance

VAR[TD(g,i)]=1/[uD(g,i)]2. We define N(g) as the number of dwell time phases for a platform of

type g [2]. The mean and variance of Tp(g) can be wnitten as



N(s)_ N(g) 1 1
To(g)= z:,Tp(g,i)= Z}m (D
and
N(g)
VAR[To(®)] = Y 1/[u, (8,01 )
i=1

The squared coefficient of variation (&) is given by

N(g)

PRI
@ [To(@) = mp (&) _ T 3)
[T, ()} N
2.1/ 1p(8:0)
i=1
Expanding the denominator in equation (3) we can obtain
N(g) )
PR UITNER)
ITo(g)l= <1 4)

N(g)

> /11, (g, i)} +other terms

i=1

Since all the terms on the right side of (4) are positive we have the result that [Tp(g)] must be
less than or equal to one. This result holds for any dwell time variate that is constructed using a
sum of statistically independent negative exponentially distributed (n.e.d.) variates.

This formulation of the dwell time leads to an analytically tractable model. Although
strictly, the individual dwell time components, Tn(g,i) do not have any direct physical meaning,
conceptually, one can suppose that a platform of type g enters a cell and completes N(g) phases
of dwell time. Completion of the last dwell time phase corresponds to leaving the cell (the

completion of dwell time){2]. If all N(g) phases of dwell time are identically distributed, that is



uo(g.i)=pp for i = 1,2,...,.N(g), we have the special case of the Erlang distribution. The squared
coefficient of variation reduces to ¥*[Tn(g)]l=1/N(g)[2].
Figure 1 is a plot of the Erlang distribution for N(g)=1,2,3,4 and TD (g)=1. The reader

will note that when the number of phases is one (N(g)=1), the Erlang distribution reduces to the
n.e.d. with x =1. Increasing N(g) causes K to decrease. The respective squared coefficient of
variations are & = 1,1/2,1/3,1/4. The figure shows that as the number of phases (N(g)) increases
the p.d.f. becomes more concentrated around its mean. Reference 2 gives a state characterization
and a method to compute performance measures.

3.2 Hyperexponential

The hyperexponential p.d.f. is a weighted sum of exponential functions. The p.d.f. has the

‘form

M
fr () = Y0uk) 1, (k) exp(-i, (k) 1) (5)

k=l
where

Yok =1 (6)

k=1

Equation (5) represents an M stage hyperexponential p.d.f., where k=1 ,2,...,M.' One can suppose
that the p.d.f. (§) is that of a random variable generated in the following way. Choose a negative
exponential random variable from a set of M possibilities. The probability of choosing the k™
n.e.d. random variable is given by the parameter o(k) (k=1,2,...,M). The value of the random
variable Tp is then a realization of the chosen n.e.d. random variable.

The mean of the hyperexponential is

— & oak) :
T. =
b Z: U, (k) ™



The variance, G°uyp, of the M stage hyperexponential is given by
o, =| 3 20 |y 8)
e 2
= [ (0]
We can write the squared coefficient of variation as
¥ ok) = \2
2|y ——"=|-(T,)
_ i _ {2 [uo<k>]’] ’
() ()

The sum in equation (9) can be thought of as the expectation of Xz, (E[X?]), where X is a

9

discrete random variable X which takes on values { 1/up(1),1/12(2),...,1/up(K),..., 1/pp(M)} with

respective probability of occurrence oi(k). Since the variance of any random variable is non-
‘negative we have E[X?]2 E[X]}>. We note that E[X] is identical to (TD) in equation (7). The

substitutions yield

v (k) | =y £ a® ]y
K2=2'l§[uo(k)2:|—(TD) >2[§$] (1) _2(@) -(T)
@) i )’ @)

Thus the coefficient of variation for a hyperexponential r.v. is greater or equal to one.

=1 (10)

A state characterization can be given which allows multidimensional birth-death processes
to be used to determine the state probabilities for a system with platform dwell times distributed
according to the M stage hyperexponential p.d.f. One can conceptualize a platform that traverses
the system. Each time the platform enters a new cell it chooses a stage from the M stages
available for its dwell time in the new cell. The k¥ stage is chosen with probability ai(k). Upon
completion of this stage the platform will enter another cell where it will again choose a new

stage. It is important for the reader to notice the difference between the terms phases and stages.



If we set M equal to 2 the result is a two stage hyperexponential p.d.f. The variance of

the 2 stage exponential can be expressed as

: 2a(1)—a2(1) + 200(2) - %(2) _ 20(1)-a(2)
o m? 1@ () (2)

(11)

With an appropriate choice of a(1), o(2), up(1), and up(2) the coefficient of variation for the
hyperexponential p.d.f. can be set at any value greater than one. Figure 2. is a plot of several
hyperexponential functions for k’=1,2,3,4 and mean equal 1. However, the hyperexponential’s
behavior near zero is intuitively unsatisfying for a dwell time model. This is because the
probability density function is nonzero at the origin and may have too much of its weight below its
mean. This has the effect of giving extremely short dwell times a high probability of occurrence.
_In addition, this low weighting near the origin will increase as k increases. Extremely short dwell

times are possible in microcellular systems but not to the extent that the hyperexponential favors

them.

3.3 SOHYP

We seek a dwell time p.d.f., fr ,,(#), which has the following properties; x >1,
f1,((0) =0, and which allows analytically tractable models to be constructed within the

multidimensional birth-death process framework. For this purpose, consider a sum of statistically
independent hyperexponential variates. The resulting p.d.f. we call the SOHYP (Sum Of
HYPerexponentials). With the appropriate choice of parameters the corresponding random
variable distributed on this p.d.f can have a coefficient of variation greater than one.

The dwell time for a g-type platform is a random variable Tp(g). Tp(g) is defined to be the
sum of N(g) statistically independent hyperexponentially distributed random variables denoted

Tp(g,i) where i=1,2,...,N(g). We again will make use of the concept of phases. Each random



variable, Tp(g,i), is considered a phase of Tp(g) and each phase can have any number of stages
indexed by k=1,2,...,.M(g,i). M(g,i) is the number of stages for a g-type platform in the i"" phase.
From equation (5) we can find the mean of Tp(g).

N N(g)M(g.i) (X(g,i,k)
T,(g)= — = (12)
»(8) :gl ; uu(g’l,k)

The variance, VAR[Tp(g)], is the sum of the variances of Tp(g,i)

N(g)

VAR[T(2)l= D, 0 2 (850) (13)

i=1

Conceptually one can suppose that a g-tybe platform traversing a cell completes a
sequence of phases. When the platform enters a cell, it begins phase 1 of its dwell time. It
chooses a dwell time stage for this phase from the M(g,1) stages available for phase 1. The
‘particular stage k is chosen with probability o(g,1,k). When the first phase is completed, the
platform enters the second phase. It chooses a new dwell time stage from the M(g,2) stages
available for the second phase. The choice of stage k is made with probability 0(g,2,k). The
choice of stage is independent from one phase to the next. This process continues until the
platform enters its final phase, i=N(g). Completion of this last phase represents the platform
exiting the cell (moving out of communication range of the base station).

This approach to dwell time modeling (using a sum of statistically independent random

variables) has the desirable effect of forcing the p.d.f. of the dwell time variate ( fr, (1)) to zero
at origin. In fact for an N(g) phase SOHYP p.d.f., with N(g) >1 we have f; . (0)=0. In

addition, for N(g) > 2 the first N(g)-2 derivatives are zero at the origin. To show this we make
use of the Laplace Transform and its Initial Value Theorem [S). Tp(g) has been defined to be a

sum of statistically independent hyperexponentially distnbuted random variables (Tp(g,i)). From



probability theory we know that the p.d.f., f; ., (#) , is the convolution of the component p.d.f.s
Fr (e () 6]. That is

fTu(g)(t) = fTD(x.l) ()* fT,,(g.z) (t)*"'*fr,,(g.N(g))(t) (14)

Taking the Laplace Transform of equation (14), with s as the transform variable, we

obtain L; ., (s) which has the following form

N(gIM(g.D) a(g,i,k) ‘U (g,i,k)
=1 k=l s+W,(8,i,k)

LTD(K)(S) = (15)

We note that in general L, ., (s)is a rational polynomial function of s which has the form
L; ., ()=N(s)/D(s) where N(s) and D(s) are the numerator and denominator respectively. From

equation (15) we see that the degree of N(s) is 0 and the degree of D(s) is N(g). Therefore,

’ L; ,,(s) is a strictly proper rational function (that is the degree of the denominator is strictly

greater than that of the numerator).

A useful property of the Laplace Transform states that for positive time functions (f(£)=0.
for t<0) the transform of the j/* derivative of f(z) is §L(s), where L(s) is the transform of fo (5]
That is the transform of the j* derivative of f(f) is simply the transform of () multiplied by .
Then for f; ,(¢) we have

)
D Sty () = fzf,,’&) () s’ Ly ,(s) (16)

We can now write a general expression for the Laplace Transform of the j** derivative of

fTD(g)(t) as

LYo (8)=5"Ly () (5) (i7)

10



The Initial Value Theorem [5] for the Laplace Transform states that the value of f(0) is given by

the limit as s tends to infinity of sL(s). Applying the Initial Value Theorem to (17) we have
FRa@="0 s L= L () (18)

Recall that L; ,(s)is a strictly proper rational polynomial function with numerator of degree 0

and denominator of degree N(g). The limit in equation (18) will tend to zero as long as

s™ Ly, (8)is strictly proper. This is true for j<N(g)-2. Therefore, the first N(g)-2 derivatives

of fr (1) are zero at the origin. For a N(g) phase SOHYP p.d.f. this is expressed by the

following
fr(0=0 (19)
‘and
)
o) fre@©@=0 forj=0,12,...,N(g)-2 (20)

Figure 3 is a plot of several SOHYP p.d.f.s for N(g) = 1,2,3,4, which demonstrates this behavior.

Each of the curves was generated by convolving N(g) identical hyperexponential functions.
Analytical expressions for the variance and other moments of an N(g) phase SOHYP

random variable can become extremely complex. However, the moment generating function

(Psouyr(s)) is easily obtained and it is given below

TR a(g.i, k) Py (8irk)
(D §) = L) D by
St B

21)

The SOHYP’s moments can be obtained from the above.
For the numerical calculations presented in this paper we have used a special two phase

SOHYP (N(g)=2) although the formulation is more general. The first phase consists of a single

11



stage (M(g,1)=1) and the second phase a two stage hyperexponential (M(g,2)=2). Thus for
numerical purposes, we consider the dwell time of a platform to be a random variable which is
the sum of an negative exponential variate and a 2-stage hyperexponential variate. The functional
form of this special case of the p.d.f. can be found by taking the convolution of a negative

exponential function with a hyperexponential function. The result is shown below

=] XE2D e LD uy(e.2D) +a(g,2,2>-uo(g,1,1)-uv(g,z,z)}_u,,(g,m,,+
Tot®) Hp(8.2.) -y (gL Hp(8,2.2) - Up(g.LD) 22)
(82D Mo(g LD Pp (82D | s , a(g,z,z)-u,,<g,1,1>~u,,(g,z,z)}_u,,(g,z,z,,
Hp(gLD — Ky (g.2.1) Hp(8,LD) —p,(8,2,2)

This allows four parameters that can be adjusted to fit empirical data that may be available for
each platform type g. The parameters are pp(g,1,1),01(g,2,1),p(g,2,1), and pp(g,2,2). The
-reader should note that 0(g,2,2) is not among the list of parameters since it is determined by
equation (6), 0i(g,2,2) =1- 0(g,2,1). Figure 4 is a plot of this p.d.f. for ’=1,2,3,4 and a mean of
one. Here we see that all the p.d.f.s in this family go through the origin. To the eye the shape
appears similar to the Erlang-2 p.d.f. but it is much heavier on the tail. Moreover, it has a
coefficient of variation that can be greater than unity in contrast to the Erlang-2 which is less than
unity. SOHYP p.d.f.s with more than two phases stay even closer to the origin as the abscissa
increases from zero. Since a SOHYP p.d.f. with N phases (N2>2) will go through the origin, as
will its first N-2 derivatives. This behavior is similar to that of the Erlang p.d.f. with N phases.

4. Statement of example problem: Single call, hand-offs, cut-off priority, mixed platform types,
SOHYP mobility characteristics.

The system has G types of mobile platforms, indexed by g=1,2,...,G. Each platform can
support at most one call at a time. Platform mobilities are characterized by random variables

To(g) ,(g=1,2,...G), each having a SOHYP distribution but with generally different parameters.

12



The number of noncommunicating g-type platforms in any cell is denoted by v(g,0). It is
assumed that v(g,0) is much larger than the total number of calls that a cell can accommodate. In
other words an infinite population model is assumed.

The new call origination rate for a non-communicating platform g-type platform is
denoted A(g). The total new call origination rate for g-type calls is denoted by A (g) and is
expressed as A (g) = A(g)v(g,0).

Channel limit: Each gateway (or cell) can accommodate C calls.

Platform quotas: Each gateway can accommodate J(g) g-type calls simultaneously, where
J(g)<C.

Cut-off priority: At each gateway C, channels are reserved for hand-off calls. New calls will be
blocked if the number of channels in use is greater than C-C,, while hand-off attempts will fail
only if the number of channels in use is equal to C.

The holding time of a g-type call is a n.e.d. random variable 7(g) with mean
T()=1/p(g).

The problem is to calculate performance measures including blocking probability, hand-off
failure probability, forced termination probability and hand-off activity. The analysis is similar to
that used in references [1] and [2]. The differences are in the definition of the state variables and
in the equations that specify the state probability transition flows. What follows is the
development of the state characterization, transition rate, and the probability flow balance
equation that determine the state probabilities.

5. State Description
The state variables for the system are given by v, { g= 1,2,...,G, i=1,2,....N(g),

k=1,2,...,M(g,i)} which represent the number of platforms of type g that are in phase i and stage k.

13



We consider a single cell. The state of a cell is a sequence of non-negative integers. The

sequence is conveniently written as G n-tuples as follows

Vin Viz *°° Vuawmeny Via Vizz " Viamarzy)e 0 Vivaon iz T VineoMoa
Vo Vaiz **° Vamzap Vo Yoz 0" Vaamz2pe s Vanean Yamz *°° Vamamaney

(23)
V eNgiM(g Ng)

Vo V2 Veamegly Ve Ve " Veampgzy "0 Venman Veman
Veu Yoz " YaimGiy Vou Yen *°° Vewma:zy "0 Vamen Yamarz **° Vememene)
It is convenient to order the states using the index s=0,1,2,..5ms. The state variables can then be
expressed as functions of s,g,i, and k. That is v(s,g,i,k) represents the number of g-type platforms
in phase i and stage k when the cell is in state s.

When a cell is in state s, a number of characteristics can be determined. The number of

channels in use by g-type platforms is

N(gIM(g.i)

j(s.8) = Y, Y Ws,8,ik) 24)

i=l k=1

The total number of channels in use when the cell is in state s is found by

G
j(s) = Y j(s,8) (25)

g=1
A sequence of integers is a permissible state if all constraints are satisfied. For this framework the
channel limit (C) requires j(s) <C, and platform quotas (J(g)) require j(s,g)<J(g) for g=1,2,...,G.
6. Driving processes and state transitions

For this model five driving processes can be identified. They are: {n} the generation of
new calls; {c} the completion of calls; {4} the arrival of communicating platforms at the cell of
interest; {d} the departure of communicating calls from the cell of interest; and {¢} the transition
between dwell time phases. Since the model considers muluple platform types the above

processes are all multidimensional.

14



In order to use a multidimensional birth-death formulation, Markovian assumptions about
the driving processes are involved. The new call arrival process is assumed to follow a Poisson
point process with state dependent means. Call session time has been assumed to be n.e.d.
distributed, so the call completion process has the required memoryless property. The dwell time,
however, has the SOHYP p.d.f., which itself does not have the memoryless property. However,
by using the state description outlined in the previous section the dwell time is decomposed into
its phases and stages. Each of these is n.e.d., so the memoryless property can be used [7]. The
hand-off arrival process for each platform type is determined by the corresponding departure
process. In considering the overall system states [1], [2] these are (system) state dependent
Poisson processes. In focusing on an individual cell, however, each is represented as a Poisson
process having a parameter determined by the decoupling assumption of {h} and {d} as described

| in [1], [2]. In comparison with dwell times that are n.e.d, the cost of this more appropriate model
requires an increase in the size (dimension and number of states) of the state space and generall
longer computation times.

It remains to specify all of the state transitions. For every state, the possible predecessor
states must be identified. A predecessor state is any state which could have immediately given
rise to the current state under each of the driving processes described above. Also, the state
probability transition flows must be found. Then the flow balance equations can be determined

and the state probabilities can be calculated [1,2,7].

In the paragraphs that follow three dummy indices z;,z,, 2nd z; are used for convenienc: .
follows: z;=1,2,3,...,G; 22=1,2,3...,N(21);25=1,2,3,...,M(z,,22). Recall that G is the number of
platform types, N(z;) is the number of phases of dwell time for a platform of type z;, and M(z, .

1s the number of possible stages for a platform of type z, in phase z,. In addition, when we discu--

15



a state s it is implied that we are considering the actual sequence of integers indexed by s not the
index itself.
6.1. New Call Arrivals
A transition into state s from state x, due to a new call arrival on a g-type platform in
phase i stage k will cause the state variable v(x,,g,i,k) to be increased by 1. Also a new call can
only be served if the total number of channels in use is less than C-C;. Therefore, a permissible
state x, is a predecessor of state s for new call arrivals on g-type platforms if j(x,) < C-Cy, j(xa) <
J(g) and the state variables are related by
V(Xn,g,0,k) = v(s,8,1,k)-1
V(Xn,21,22,23) = V(8,21,2223) 21 %8 (26)
V(Xn,21,22,23) = W(8,21,2223) 2o #1
V(Xn,21,22,23) = V($,21,2223) 23 #k
‘The probability that a new call will arrive at a g-type platform while the platform is in phase i and

stage k is given by

(8,0, k) 15 (8.1, K)
T,(g)

P, (8 5k) = k=1,2,....M(g.i) @7

The new call arrival rate for calls on g-type platforms in phase i and stage k of dwell time can be

expressed as

A,(8.i,k) = p,(g,i,k) - A,(8). (28)
Finally the transition rate into state s from state x, due to new call arrivals is

Ya(sx,) = A, (85k) (29)
6.2. Call Completion

A transition into state s due to a call completion on a g-type platform in stage k of phase i

when the cell is in state x, causes the state variable v(x,.g.i.k) to be decreased by 1. Therefore, a
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permissible state x. is a predecessor of state s for call completion on g-type platforms in stage  of
phase i if the state variables related by

V(x.,8,0,k) = v(s,g,i,k)+1

v(xC’zl,z27Z3) = V(S,Zl,Zz,Za) 21 # g (30)

V(x,21,22,23) = V(8,21,22.23) 22 #1

V(Xe,21,22,33) = V(8,21,2223) 73 #k
The corresponding transition rate is given by

Ye(5.%) = W) * V(Xc8,Ek) 3D
6.3. Hand-off Arrivals

When a g-type platform enters a cell from a neighboring cell, it will enter in its first phase
of dwell time. Therefore a transition into state s from state x, due to a hand-off arrival on a g-
type platform will cause the state variable v(x,g,1,k) to be incremented by 1. Since hand-off calls
‘have access to all C channels in the target cell, a permissible state x; is a predecessor of state s for
hand-off arrivals on g-type platforms in phase i and stage k if j(x,)< C, j(x»)<J(g), and the state
variables are related by

v(xn.g,1,k) = v(s,g,1,k)-1

V(Xn,21,22,23) = V($,21,2223) 2 #8 (32)

V(X4,21,22,23) = V($,21,2223) 22 #i

V(Xn,21,22,23) = W(8,21,22.23) 23 #k
When the platform enters the target cell, it begins its first phase and chooses a stage k
(k=1,2,...,M(g,1)) with probability o(g,1,k). Let A, be the overall average hand-off arrival rate
and F, be the fraction of hand-off arrivals that occur on g-type platforms. The rate of hand-off

arrivals of g-type platforms in phase 1 and stage k is given by

Ah(g’k) = a(g,l,k) * Ah : Fg (33)
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in which ou(g, 1,k) is defined in equation (5). For now, the parameters A and F, are assumed to be
known, but they are actually functions of the state probabilities. Their values are determined in
the iterative solution described later. The transition flow in given by

Yu(s.xn) = An(g.k) (34)
6.4. Hand-off Departures

A hand-off departure of a g-type platform occurs when the platform completes its final
phase (i=N(g)) of dwell time. Therefore, a transition into state s due to a hand-off departure of a
g-type platform in stage k of its last (i=N(g)) phase when the cell is in state x4, will cause the state
variable v(x4,g,N(g),.k) to be decreased by 1. Thus a permissible state x, is a predecessor state of s

for hand-off departures of g-type platforms in stage k of phase N(g) if the state variables are

related by
V(xd,g,N(g) 9k) = V(s’g,N(g) ’k)‘ 1
v(xd9Zl 122923) = V(S,Z} 722,23) 0 # g (35)
W(X4,21,22,23) = V(8,21,22,23) 22 #N(g)
W(X4,21,22,23) = W(8,21,2223) 3 #k

The corresponding transition flow is given by

Ya($.xa) = Hp(g,N(8).k) * v(x4,8,N(8).k) (36)

6.5. Dwell time phase transitions

A transition into state s from state x, occurs when a platform, which is in phase i
(1<i<N(g)) and stage k, qompletes its current dwell time phase (i.e., stage k of phase i is
completed). After completing phase i the platform begins phase i+1 where it chooses stage &
(€=1,2,....M(g,i+1) with probability o(g,i+1,E). Therefore, the transition from phase i stage & to
phase i+1 stage & causes two state variables to change simultaneously. The state variable

V(x4,8,i,k) will be decreased by 1 and the state variable v(x,,g,i+1,E) will be increased by 1. We
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limit the discussion of phase transitions to 1<i<N(g) since a completion of phase N(g)
corresponds to a hand-off departure and has all ready been considered. Thus a permissible state
xy is a predecessor state of s for dwell time phase transitions of g-type platforms from phase i and

stage k to phase i + 1 stage § if the state variables are related by

V(x4.8,i+1,k) = v(s,g,i+1,6)-1

V(X8 i k) = v(s,8,0,5)+1 (37
W(X9,21,22,23) = V(8,21,2223) U #§

W(X9,21,22,23) = V(8,21,2223) 22 #1, i+l

V(X0:21,22,23) = W($,21,2223) 22 2k, &

The corresponding transition flow from state, x, to state, s is given by

Yo (5,x9) =0L(g,i +1,E) - Wy (8,0, k) - v(x,, 8.0, k) (38)
7. Flow balance equations

The total transition flow into a state s from any permissible state x is the sum of the
component flows due to the driving processes. This is expressed by the following

g(8,x) = Ya(8:X) + Ye($,%) + Yu(5.X) + Ya(5.X) + Yo(5.%) (39)
where g(s,x) is the total flow into state s from state x and s#x. Flow into a state is assigned a

positive value and flow out of a state is assigned negative values. The total flow out of state s is

therefore written as

4(5.5) = - 3 q(n.s) (40)
n=0

When the system is in statistical equilibrium, the total flow into a state is equal to the total flow

out of the state. The balance equations can be expressed as
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0,1,2,...5,, —1

Saipin =0 i

j=0

zp(j)

j=0

(41)

The above are a set of snq -1 simultaneous equations which can be solved for the unknown state
probabilities p(j).

Previously we assumed the parameters A, (the average hand-off arrival rate) and F; (the
fraction of hand-offs that are g-type) where given. These are actually functions of the driving
processes and must be determined from the processes themselves. The iterative approach
described in [2] is used. We denote Ax(g,i) as the average hand-off départure rate of g-type

platforms in phase i. This is given by

Soay M(2.0)
MED= 3, S8R B p(@ik) p(s) “2)

s=0k=1l

The average hand-off departure rate of g-type platforms is then found by

Neg)

A®) = D, A,(8:0) 43)

i=wl

and the total average departure rate is
G
Av=3 A,(8) (44)
g=l

The fraction of hand-off departures that occur on g-type platforms is denoted F, and are given

by

g=12..G6 (43)

20



A hand-off departure of a g-type platform from a cell causes a hand-off arrival of the same type in
another cell. Then, for a homogeneous system in equilibrium, the average hand-off departure and
arrival rates and the fraction of g-type arrivals and departures must be equal.

This is expressed in the following

F=F
and (46)
A, = A,

8. Computational procedure
As stated earlier the quantities F,, As, and A, which appear in the determination of the
transition flows [¢(i,j)s] in the flow balance equations depend on the unknown state probabilities
p(s) (5=0,1,2,...5max). Consequently, the flow balance equations are actually a set of simultaneous
non-linear equation. A solution for the state probabilities p(s) and, A, and A, can be obtained
using an iterative approach[2]. For completeness of the present discussioﬁ, a brief outline of the
solution procedure follows.
We define two function Q,(A;) and Q,(Ap). Q, is a vector function which takes A, as its

argument and returns all the state probabilities p(s); fractions of g-type hand-off departures F, ;

and the overall average hand-off departure rate A;. Q- is a scalar function of A,. For a given A,
the function calls Q,(Ax) and returns the difference A, -Aj.

The function Q) is implemented in the following steps.

Step 1: Given A, begin with guesses or previous values for F,. Solve the flow balance
equations for the state probabilities. We used a modified Gauss-Seidel algorithm to solve for the

state probabilities, other methods for solving systems of linear equations can be used.
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Step 2: Using the solution [p(s)], determine the new fractions of g-type platform

departures F, and compare with the previous values. If the relative error in any of the state

probabilities p(s) or fractions F, exceeds some value (10™* for accuracy of three significant figures)
repeat step I using the latest values for Fy. Otherwise for the given A, and solution p(s),
determine the hand-off departure rate A, according to the formulas in the previous section.

Return the latest values.

The final solution is obtained by finding the root of Q> = A,-A,=0. For this purpose we
used a bisection algorithm. When the root of Q; is found, the average hand-off arrival and
departure rates will be equal as required for a homogeneous system.

9. Performance measures

Once the state transition flows and state probabilities are found, various performance

measures which are functions of the state probabilities can be calculated.
9.1. Carried traffic
The carried traffic per cell for each platform type is the average number of channels

occupied by the calls from the given platform type. The carried traffic for g-type platforms is

Ad)=Y, j(s.8)- P(s) @7)

s=0

The total carried traffic for all platform types, i.e., the total carried traffic per cell is

G
A=Y A(g) (48)

g=1
9.2. Blocking probability
The blocking probability for a new call on a ¢-type piatform is defined as the average

fraction of new calls that arrive on a g-type platforms. but are denied access to a channel. A new
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call on a g-type platform will be blocked if: 1.) there are no channels available to serve the call or
2.) the number of g-type calls in progress is at the quota level J(g). We define the following
disjoint sets of states

By = {s: C-G,< j(s) < C}

B = {s: j(s) < C-Cy, j(s.8) = J(8) } (49

where g = 1,2,...,G. The blocking probability for a g-type call is then given by

Pe(g)= Y, p(s) + Y, p(s) (50)

se By seB,;

9.3. Hand-off failure probability

The hand-off failure probability for g-type calls is defined as the average fraction of g-type
hand-off attempts that are denied a channel. Hand-off attempts have access to all C channels in a
':cell, but may still be subject to channel quota constraints (J(g)). Therefore, we have the following
disjoint sets of states, for which hand-off attempts will fail.

Hp = {s: j(s) = C}

Hg = {s:j(s) < C, j(5.8) = J(2)} (51

The hand-off failure probability for a g-type hand-off can be written as

Pu(g)= Y, p(s) + Y, p(s) (52)

s e Hy s€H,

9.4. Forced termination Probability

Forced termination probability for a g-type platform is denoted as Prr(g). It is defined as
the probability that a g-type call that is not blocked is interrupted due to a hand-off failure during
its lifetime. A communicating g-type platform in phase i (i=1,2,..,N(g)) must complete its
remaining dwell time phases to require a hand-off. There are N(g)-i+1 remaining when a platform

is in phase i. Recall that all phases are hyperexponentially distributed and phase i has k
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(k=1,2,....M(g,i)) stages. A platform selects a stage k for its i" phase from the M(g,i) stages
available with probability ai(g,i k). Let m(glk) be the conditional probability that a commimicating
platform in phase i completes the current phase before its call is completed, given that it is in stage

k.

a(gal’k) : “’D (gvl,k)
uD(g’i’k) + “'(g)

Ti(glk) = (53)

We now define m,(g) to be the probability that a communicating g-type platform completes phase
i of dwell time before its call is completed. That is the platform completes its current stage of

phase i.

K 'i)a(gri’k)'up(g’iyk)
i=t Mp(gik)+u(g)

mi(g) = (54)

: In order for a call being served on a g-type platform in phase i to generate a hand-off attempt
N(g)-i+1 dwell time phases must be completed before the call completes. The probability that

such a call will require a hand-off is

NGg)
b(g.i) = ﬁnn(g) (55)

Note that right side of equation (55) is a product because each phase is independent of the others.

When a new call begins service on a g-type platform it may arrive during any phase of the
platform’s dwell time. The fraction of new calls that arrive on g-type platforms in phase i is given
by

M(g.i)

T"E(g,i) i ma(g,if) K (8.ik)
T,(g8) T,(9)

Pn(8:0) = (56)

24



We can now write the probability that a new call on a g-type platform requires a hand-off. This is

given by

Ng)
b(g) = 2, P.(8) b(gi) (57

iw]

A call that is successfully handed off enters its target cell in the first phase of dwell time. Thus,

the probability that a call on board a g-type platform, that has been handed off requires another

hand-off is b(g,1).

The probability that a call is forced to terminate on its &* hand-off attempt is the
probability of k-1 successful hand-offs followed by a hand-off failure on the k" attempt. This is

given by
Y(g.k) =b(g)  Pu(g) - {blg,1) - [1-Pu(@)]}" | (58)
The over all forced termination probability is

Prr(g) = ;Y(g,k) (59)

We recognize the above as a geometric series and write the sum closed form as

b(g)- ! 4 (8)
P — —————————— — .
Fr(g) = -¥(g)] where ¥(g) =b(g,))-[1- P,(g)] (60)
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9.5. Hand-off activity factor

The hand-off activity factor, 1(g), is defined to be the expected number of hand-off
attempts for nonblocked calls on g-type platforms. The derivation of the expression for 1\(g) and
the expression itself are identical to that given in [2]. The result is shown below

b(g)

&)= w(g)

(61)

Where b(g) is defined in (57) and ¥(g) is defined in (60).
10. Discussion of results

Numerical results were generated using the method described here. Figure 5 is a plot of

| blocking probability and forced termination probability versus mean dwell time. The system
considered has a single platform type, G=1, with two phases, N(1)=2. The first phase is n.e.d. and
the second phase hyperexponential with two stages (M(1,1)=1, and M(1,2)=2). The mean
unencumbered session time is assumed to be 100 seconds and the new call arrival rate per
platform(A,) is constant at 2.75E-04 calls/sec (approximately one call per hour per platform).
Cells have 20 channels each (C=20) and the number of platforms in each cell was set at 400
(v(1,0)=400). No channel quotas are considered the effect of reserving channels for hand-offs is

shown (C,=0,2,4). The ﬁgure shows the effect of mean dwell time and variance.

We see that as the coefficient of variation increases the forced termination probability increases
slightly for each C,. This is expected since a large coefficient of variation, x, corresponds to a
large spread of dwell times around the mean, making it more likely that some calls require several

hand-offs. Also shown in the figure is the decrease in forced termination as the dwell time
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increases. This is because calls on a platform with a large mean dwell time relative to the mean
session time will require fewer hand-offs. The blocking probability is insensitive to both mean

dwell time and coefficient of variation.

Figure 6 is again a plot of blocking and forced termination probabilities, however, for this
figure the platform dwell time is distributed according to the Erlang p.d.f. The result shown in
figure 5 were obtained using the method in reference 2. The parameters of the system are
identical to those in figure 5., except that the number of phases varies from 1 to 4 (N(g)=1,2,3,4)
which yields squared coefficients of variations ¥¥=1,1/2,1/3,1/4. For this system the blocking
probability is found to be insensitive to mean dwell time and variance. The forced termination
probabilities increase as the coefficient of variation increases. It is seen from figures 4 and 5 that
use of negative exponential variates for dwell time produce essentially the same blocking
probabilities as more elaborate models. Forced termination probabilities, on the other hand, can

be slightly optimistic.
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