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Abstract

A thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA)
is applied to a fluid of spherical particles with a pair potential given by a hard-core
repulsion and a Yukawa attractive tail w(r) = —exp[—z(r — 1)]/r. This potential
allows one to take advantage of the known analytical properties of the solution to
the Ornstein-Zernike equation for the case in which the direct correlation function
outside the repulsive core is given by a linear combination of two Yukawa tails
and the radial distribution function g(r) satisfies the exact core condition g(r) =0
for r < 1. The predictions for the thermodynamics, the critical point, and the
coexistence curve are compared here to other theories and to simulation results.
In order to unambiguously assess the ability of the SCOZA to locate the critical
point and the phase boundary of the system, a new set of simulations has also
been performed. The method adopted combines Monte Carlo and finite-size scaling
techniques and is especially adapted to deal with critical fluctuations and phase
separation. It is found that the version of the SCOZA considered here provides
very good overall thermodynamics and a remarkably accurate critical point and
coexistence curve. For the interaction range considered here, given by z = 1.8, the
critical density and temperature predicted by the theory agree with the simulation
results to about 0.6%.
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1 Introduction

After applying their version of thermodynamic perturbation theory to square-well and
Lennard-Jones fluids, John Barker and Doug Henderson characterized it as a “successful
theory of liquids” [1]. And so it was. When tested against simulation results it proved to
be impressively accurate at liquid-state densities and temperatures, unlike some versions
of thermodynamic perturbation theory that had preceded it. And it bypassed the trou-
bling lack of thermodynamic self-consistency associated with the direct use of the radial
distribution functions obtained from the integral-equation theories then available, as well
as yielding thermodynamic results as good or better than the best results obtainable from
such integral equations.

These positive features became hallmarks of successful thermodynamic perturbation
theories for simple fluids and were shared by the versions [2] that followed the Barker
and Henderson work as well as an alternative perturbative approach set forth somewhat
earlier by Hauge and Hemmer [3] that was based on using the inverse range of the attrac-
tive interaction rather than its strength as a perturbation parameter. Integral-equation
approaches with improved self-consistency were also developed subsequently to yield ac-
curate liquid-state thermodynamics [4].

Unfortunately, the accuracy of all these approaches begins to decrease substantially
as one leaves the liquid-state region located slightly above the triple point in temperature
and follows the liquid-gas coexistence curve in the density—temperature plane up to the
critical region. In particular, the shape of the coexistence curve and location of the critical
point are not accurately reproduced, nor are related critical parameters. In the case of
the perturbation theories, it is not hard to understand why this is so. All of them are
mean-field-like in nature, associated with coexistence curves that are quadratic close to
the critical point, whereas the true coexistence curve is very nearly cubic. That is, in

these theories one finds near the critical point a coexistence curve of the form
T.-T = Alp - p.l" z =2, (1)
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where p. and T, are the critical values of number density p and absolute temperature
T, and A is a constant. In contrast, in an exact treatment, one would expect to find z
close to 3. In these theories the resulting T is usually more than 5% too high and the
critical compressibility factor (P/pkgT). is usually more than 10% too high. Here P is
the pressure, and kg is the Boltzmann constant.

The thermodynamics associated with the radial distribution function g(r) obtained
form various integral-equation approaches cannot be so neatly categorized. However, in
the cases in which there are substantial discrepancies between the several paths available
for obtaining thermodynamics from g(r), the most reliable and accurate coexistence be-
havior is often obtained from evaluating the thermodynamics through the excess internal
energy expressed in terms of an integral over the pair potential w(r) weighted by g(r). For
continuum-fluid models the resulting critical behavior is typically mean-field like in the
cases that we have studied, and thus subject to the same deficiencies as one approaches
the critical region. In some integral-equation approaches that have been developed in or-
der to insure a certain degree of thermodynamic consistency, the description of the critical
region and of the phase diagram appears to be more problematic: for instance, the mod-
ified hypernetted chain (MHNC) theory [5] is indeed able to predict quite satisfactorily
the liquid and the vapor branches of the coexistence curve of a simple fluid at low enough
temperature, but it fails to converge close to the critical point, so that the two branches
remain unconnected, and the position of the critical point is not given directly by the
theory, but must be determined by extrapolation [6, 7). The same kind of behavior [6, 8]
is found also for the HMSA integral equation [the acronym coming from the fact that the
theory [9] interpolates between the hypernetted chain (HNC) and the soft mean spherical
approximation (SMSA)].

The self-consistent Ornstein-Zernike approximation (SCOZA) we consider here is not
mean-field-like, and it remains highly accurate as one goes from liquid-state conditions
to critical-point conditions. In particular the power z in Eq. (1) was recently shown

analytically to be given in the SCOZA by exactly 20/7 [10]. And as we discuss in this
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paper, in the hard-core Yukawa fluid (HCYF) T, appears to be within 0.6% of its value
as estimated by our simulation results. (Similarly, in recent three-dimensional lattice-gas
studies [11, 12] the SCOZA T, was found to be within 0.2% of its estimated exact value).
As described elsewhere [10, 12] the scaling behavior of the SCOZA thermodynamics is
somewhat different from the simple scaling one expects to see in the exact thermodynam-
ics, although those differences only begin to appear clearly when p and T are within less
than 1% of their critical values. Closer to the critical point, the effective exponents defined
above T, approach spherical-model values as the critical point is approached, whereas the
exponents defined below T, do not. The exponents are discussed in Sec. 3.

The SCOZA was proposed some time ago by Hgye and Stell {13, 14] but fast and
accurate algorithms for evaluating its thermodynamic predictions were developed only
recently [11, 12, 15]. A sharp assessment of its accuracy for the HCYF could not be
made on the basis of existing simulations, and for that reason our study here includes
new Monte Carlo (MC) results exploiting finite-size scaling (FSS) techniques [16].

We have chosen the HCYF pair potential as the first of the continuum-fluid potentials
to be considered in our studies of the SCOZA for several reasons. First, it embodies the
two key features one requires in an off-lattice pair potential in order to consider both
the liquid state and liquid-gas criticality—a highly repulsive core and an attractive well.
Second, the HCYF proves to be particularly convenient to analyze using the SCOZA
(the square-well fluid is far less convenient in this regard). Third, the functional form
of the hard-core Yukawa potential makes it appropriate as a generic solvent-averaged
interaction potential between polyelectrolytes and colloids as well as a generic simple-
fluid pair potential. For this reason it seems particularly useful to have an accurate
theory for both the structure and thermodynamics of the HCYF, which has already been
the subject of a number of previous studies. We shall make contact with several of those
here.

The paper is organized as follows: in Sec. 2 we describe the theory and present some

details of the method for the system under study, in Sec. 3 our results are shown and
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a comparison with other theories and simulation results is made, and in Sec. 4 our con-
clusions are drawn. The treatment of the hard-sphere gas and the main features of the

MC-FSS simulation method are summarized respectively in Appendix A and Appendix B.

2 Theory

Here we consider a fluid of spherical particles interacting via a two-body potential v(r)
which is the sum of a singular repulsive hard-sphere contribution and an attractive tail

w(r) < 0. The expression for v(r) is then

+o00 r<l
v(r) = (2)

w(r) r>1,
where the hard-sphere diameter has been set equal equal to unity. As is customary
in integral equation theories of fluids, the present approach introduces an approximate
closure relation for the direct correlation function ¢(r) which, once supplemented with the
exact Ornstein-Zernike equation involving ¢(r) and the radial distribution function g(r),
yields a closed theory for the thermodynamics and the correlations of the system under
study. The basic requirement we want to incorporate in the SCOZA is the consistency
between the compressibility and internal energy route to the thermodynamics. According
to the compressibility route, the thermodynamics stems from the reduced compressibility

Xred as determined by the sum rule

1
Xred = -1_——pc"(_k—=_0) ) 3)
where ¢(k) is the Fourier transform of the direct correlation function and p is the number
density of the system. In the internal energy route the key to the thermodynamics is
instead provided by the excess internal energy as given by the integral of the interaction

weighted by the radial distribution function:

u =2mp? /1+°°dr r2w(r)g(r), (4)



where u is the excess internal energy per unit volume and we have taken into account
that g(r) vanishes for r < 1 due to the hard-core repulsion. In the following we will refer
to the “excess internal energy” simply as the “internal energy”. If x;eq and u come from

a unique Helmholtz free energy it is straightforward to find that one must have

0 1 8%u
— = p—o 5
aﬂ (Xred) paP2 ’ ( )

where # = 1/(kgT), T being the absolute temperature, and kg the Boltzmann constant.

While this relation is of course satisfied by the exact compressibility and internal energy,
this is not the case with those predicted by most integral equation theories. In order to
cope with this lack of thermodynamic consistency, we consider the following closure to
the Ornstein-Zernike equation:

g(r)y=0 r<l,
(6)
o(r) = eus(r) + K(p, Bw(r) r>1,

where cys(r) is the direct correlation function of the hard-sphere fluid, and K(p,f) is a
function of the thermodynamic state of the system. In Eq. (6) the approximation clearly
lies in the simple form of ¢(r) outside the repulsive core. The closure above resembles
the one used in the approximation known as both the lowest-order gamma-ordered ap-
proximation (LOGA) [17] and the optimized random phase approximation (ORPA) [18].
However, while in the LOGA/ORPA one has K(p,3) = —f, in Eq. (6) K(p,5) is not
fixed a priori, but instead must be determined so that the thermodynamic consistency
condition (5) is satisfied. This gives rise to a partial differential equation (PDE) for the
function K(p, ), provided an expression for the hard-sphere direct correlation function
cus(r) is given. The most popular parameterization for cys(r) in the fluid region is due
to Verlet and Weis [19]. Another choice that yields the same thermodynamics as Verlet-
Weis, and that we find convenient in view of the calculations performed in this work, is
originally due to Waisman [20]. It was subsequently extended analytically by Hgye and
Stell [21] and explored in some detail by Henderson and coworkers [22]. It amounts to

assuming that the function cys(r) outside the repulsive core has a one-Yukawa form, so
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that for the hard-sphere system we have:

gus(r) =0 r<l,
) = K, SRl = ) ")

r>1.

The Ornstein-Zernike equation supplemented by Eq. (7) can be solved analytically in
terms of the amplitude K; and the inverse range z; of ecys(r). These can be in turn
determined as a function of the density by requiring, as in the Verlet-Weis parameteriza-
tion, that both the compressibility and the virial route to the thermodynamics give the
Carnahan-Starling equation of state. The basic features of the calculation are recalled in
Appendix A.

A considerable, although purely technical, simplification in the closure scheme outlined
above based on Egs. (5), (6) occurs when also the attractive potential w(r) in Eq. (2) is
given by a Yukawa function, i.e. when one has

w(r) = _exp[~z(r — 1)] , (8)

r

z being the inverse range of the potential. From Eq. (7) it is then immediately seen that
Eq. (6) becomes

g(r)=10 r<l,
(9)

o(r) = K, exp[—z1(r — 1)] + K2exp[—z2(r - 1)) P>,

where K and z; are the quantities referred to as K and z in Eq. (6), (8), and K, 2, are
known function of the density. It is now possible to take advantage of the fact that for
the Ornstein-Zernike equation supplemented by the closure (9) extensive analytical results
have been determined [23, 24, 14]. If both K, and K, are given, as in the LOGA/ORPA,
this enables one to solve Eq. (9) altogether [25, 26, 27]. More generally, irrespective of the
form of K, and K, a prescription can be found to determine the reduced compressibility
Xred a5 a function of the density p and the internal energy per unit volume u, which can

be used in Eq. (5) to obtain a closed PDE. A similar procedure for the same potential
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considered here was adopted in a previous work [15], where however the hard-sphere
contribution to the direct correlation function cus(r) outside the core was not taken into
account, so that ¢(r) was given by a simple one-Yukawa tail. This further simplifies the
theory, but implies that the description of the hard-sphere fluid coincides with that of the
PY approximation, which as is well known is not very satisfactory at high density. This
defect becomes more and more severe as the range of the attractive interaction decreases,
and can considerably affect the phase diagram predicted by the theory, unless some more-
or-less ad hoc procedure is adopted to correct the hard-sphere thermodynamics. In order
to incorporate a better treatment of the hard-sphere fluid into the theory one can turn
to the two-Yukawa form for ¢(r) of Eq. (9), whose use in the consistency condition (5)
we are now going to illustrate in some detail. In the following we will exploit the results
determined in Refs.[23, 24, 14], which will be respectively referred to as I, II, III. Let us

introduce the packing fraction { = mp/6 and the quantity

f=(1=6)y—, (10)

Xred

which is the square root of the quantity referred to as A in I, II, III. Eq. (5) becomes

o (o) (), (5, ay

To obtain a PDE for u we need to express f as a function of p and u in Eq. (11). From

Eq. (I1.14) it is found that f can be written as

__#H-2)+4/a(e-—m) A4-4 n72(72 — 1)
Y YA TP ey N e ooy ey oy oy AR

where we have set

(14 2¢)
The quantities v, and +, are given by Eq. (I1.5)
U,
m o= 2-Vi- g (14)
W,
Y2 = 2"\/5—"Wi- (15)

8



The ratios U; /Up and W, /W, depend on the integrals
+oo
I = 47rp/ drr exp[—zi(r — 1)] g(r) (: =1,2). (16)
1

From Eq. (1.35) it is found in fact

LV_1__4+222—2§ I -1
Wo - 2(2+22) 0'2]2—1,

(17)

and the corresponding relation with W; /W, replaced by U, /U, and the index 2 changed
to 1. The quantities 7; and o; depend only on z; and are given by Eq. (1.34):

SN EY
b 2z; lz; + 2
1 [22422-4 ]

+exp(-2)] | (18)

7 +exp(—zi) (19)

= -2—£: [4-{-22;—2,
with ¢ = 1,2. From the expression of the potential (8) it is readily seen that I is directly

related to the internal energy per unit volume u given by Eq. (4):
1

Egs. (15), (17), (20) allow then to express v, explicitly as a function of p and u:

4+422,—22 2rau+p
=2- - .
72 Vi~ Gt ) Zo,utp

(21)

We now need 4; as a function of p and u. This is less straightforward than for v,, since
the integral I; does not have any direct thermodynamic meaning, the exponential in I,
being related to the tail of the direct correlation function of the hard-sphere gas. We have
then to make use of some further results determined in I-III. From Eq. (1.36) it is found
that the amplitudes K;, K, of the Yukawa functions in the closure (9) can be expressed

in terms of the above introduced quantities Uy, U;, Wy, W;. One has

_ 2(21 +2)20']2_ [Ul ]2
I(l - 362% UO UO — ’ (22)

where o, is given by Eq. (1.37):

o = (4 4+ 22z ~ 22)ny
! 2(2 + 21)0’1

(23)
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and the corresponding equations with the index 1 replaced by 2 and Uy, U; replaced by
Wo, Wi. Let us now introduce the quantities =, y given by

2

%1
= S 24
‘ ! 4y’ (24)
2
y = i--. (25)
47,
From Eq. (I11.30) one has
4
Uo = z—%P(\/ﬁ—w)z, (26)
4
Wo = z—gs(\/a-yf- (27)

where p and s must satisfy Eq. (I1.39) (in the notation of II one has z = ug /ug, ¥y =

’wa/wqo, D = Ugo, S = wqo):

p+3+ 2 2(y_m) = :l{zl"x2a
2] — 22 (28)
4 2 1 2
pts—S——W-2)° = zm—y
2] 2

Eq. (28) is readily solved for p and s to give
2 _ 2

- 22)4 {4z§(y ~z)? - 16y*(y — z)* — (23 — 23) [z? — 25 +4(y* - ‘”2)]} » (29)

P= "y oy

and the expression for s is obtained by exchanging 21, z; and z, y in the r.h.s. of Eq. (29).

If Egs. (14), (24), (26), (29) are used in Eq. (22) we finally obtain

[42 ~ V3~ a)(v/a - 2) ~ 2] {42k (y — 2)* ~ 1643 (y — 2)?

384 £24
—(5F - ) [~ 447 oY)} = ¢4

"o = -2t (30)

and a similar equation obtained by exchanging the indices 1 and 2 and the quantities z, y.
We recall that in Eq. (30) K, 21, 01, and a; are known functions of the density p which
refer to the hard-sphere system. For given values of p and u, Eqgs. (21), (25) allow one

to determine y. Eq. (30) can then be solved numerically with respect to z to obtain v,
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via Eq. (24). This solves the problem of determining 7; in terms of p and u. The partial
derivative (8f/0u), that appears in Eq. (11) can then be determined as

af\ _(8f\ (on) , (9F) (om
(5),- (30), (32),+ (30), (&%), @

where (87;/0u), is calculated explicitly by Eq. (21), while (8y:/0u), must be determined
as the derivative of the function implicitly defined by Eq. (30). If we write Eq. (30) as
F(z,y,p) =0, it is found straightforwardly that Eq. (11) takes the form

Ou *u
5/@ - C(P, u)'@? ’ (32)

where the functions B(p,u) and C(p,u) are given by the following expressions:

B(p,u)

2f Oy |0f OF 0r  Of OF Oy

Blou) = (1-€)? 0u |07, 0z 071 Om Oy Oye) (33)
aF 8
Clp,u) = b—a (34)

All the partial derivatives in Eqs. (33), (34) are calculated at constant p and can be deter-
mined by Egs. (12), (21), (24), (25), (30). The resulting expressions are then evaluated as
a function of p and u via the procedure described above. The same procedure also allows
one to determine the reduced compressibility as 1/xrea = f2/(1 — €)? once f has been
obtained from Eq. (12). The PDE (32) is a non-linear diffusion equation that must be
integrated numerically. To prevent the occurrence of any numerical instability, especially
in the critical and sub-critical region, we have adopted an implicit finite-differences algo-
rithm [28] tailored to equations that, although globally non-linear, depend on the partial
derivatives of the unknown function in a linear fashion like Eq. (32). The integration with
respect to 3 starts at 3 = 0 and goes down to lower and lower temperatures. Before each
integration step Eq. (30) is solved numerically and the coefficients B(p,u), C(p,u) are
determined. The density p ranges in a finite interval (0, pg), whose high-density bound-
ary has been typically set at po = 1. The initial condition can be determined by taking

into account that at 8 = 0 the radial distribution function coincides with that of the
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hard-sphere gas. From Eqs. (4) and (8) one has then

+oo
u(p,=0) = —27rp2/0 dr r exp[—z2(r — 1)] gus(r) for every p, (35)

where gys(r) is obtained in the present scheme by the closure (7). For such a closure,
as shown in Appendix A, both Uy and U; in Eq. (14) can be determined analytically as
a function of p, thus providing v;(p) at § = 0. This allows one to obtain u in Eq. (35)
analytically as well: in fact, one can solve Eq. (12) for 4, as a function of vy, f, and p,
where f is readily obtained by using the Carnahan-Starling expression of xreq in Eq. (10).
Once v, is known, Eq. (21) is solved with respect to u. It must be noted that solving
Eq. (12) for v, gives two branches, so attention must be paid in order to single out the
branch that actually corresponds to the physical solution. We also need two boundary

conditions at p = 0 and p = po. From Eq. (4) one has immediately
u(p=0,8)=0 for every 3. (36)

At high density we instead make use of the so-called high-temperature approximation
(HTA), according to which the excess Helmholtz free energy per unit volume is determined
via Eq. (35) for every temperature. In the fluid region of the phase diagram this of course
is not exact unless 8 = 0, but it becomes more and more accurate as the density of the
system is increased [29], so we expect that for a given sweep along the $-axis the results
will not differ appreciably from what would be obtained using an hypothetical exact
boundary condition, provided the boundary pq is located at sufficiently high density. We
used the HTA at p = po for the reduced compressibility. This yields via Eq. (5) the

boundary condition

0? 0?
gﬁ(po,ﬂ) = -67‘;<po,ﬂ=0) for every 4. (37)

We have checked that the output of the numerical integration of Eq. (32) is quite in-
sensitive to the specific choice of the high-density boundary condition. Moreover, for
po =~ 1 moving the boundary condition to higher densities also leaves the results un-

affected. Eq. (10) shows that to be physically meaningful, the quantity f has to be
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non-negative. On the other hand, below the critical temperature the solution of Eq. (32)
does not satisfy this condition along the whole density interval (0, po), but only outside a
certain temperature-dependent region (p,1(3), ps2(8)). For p = ps1(B) or p = p,a(B) the
quantity f vanishes, and consequently the compressibility diverges. As 3 changes, p,1(3)
and p,2(fB) give then respectively the low- and the high- density branch of the spinodal
curve predicted by the theory. The fact that f becomes negative for p,1(8) < p < ps2(8)
not only implies that the theory behaves unphysically in this interval, but it also gives rise
to an analytical instability which would make the numerical integration of the PDE (32)
impossible, if one tried to determine the solution over the whole interval (0, po) even below
the critical temperature. Therefore, the region bounded by the spinodal has been excluded
from the integration of Eq. (32). Specifically, as soon as it is found that f changes sign,
so that for a certain density 7 one has f(7,8) < 0, the integration is restricted to the
interval (0,5 — Ap) or (p + Ap, po) respectively for p < p. or § > p., where Ap is the
spacing of the density grid. Within the precision of the numerical discretization, one has

ps1 = p— Ap (or ps; = p+ Ap) and the further boundary conditions

U(Psi, :8) = uS(Psi) t= 1a25 ﬂ > ,Bc’ (38)

where £, is the critical inverse temperature and ug(p) is the value of the internal energy
per unit volume when the compressibility at density p diverges. This can be determined
by setting f = 0 in Eq. (12) and solving for v, as a function of p and ~,. If Eqgs. (24)
and (25) are substituted into Eq. (30), an equation for v, is obtained that allows one to
determine the value of v, when 1/xreq = 0 for a certain p. Solving Eq. (21) with respect
to u then yields ug(p).

Once the internal energy per unit volume u has been determined from Eq. (32), the
pressure P and the chemical potential y are obtained by integration with respect to A
via the relations 9(BP)/0B = —u + pOu/dp, O(Bu)/dB = Ou/dp. Thanks to the self-
consistency of the theory, this route to the thermodynamics is equivalent to integrating

the inverse compressibility with respect to p, but it does not require one to circumvent the
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forbidden region in order to reach the high-density branch of the subcritical isotherms.

3 Results

The numerical integration of the PDE (32) with the initial condition (35) and the bound-
ary conditions (36)-(38) has been performed on a density grid with Ap = 1073-10~*.
At the beginning of the integration the temperature step AS was usually set at A =
2 x 1075-10"%. As the temperature approaches its critical value, AS can be further de-
creased if one wishes to get very close to the critical point, and then gradually expanded
back. The integration was usually carried down to 8 ~ 2.43.. The inverse range pa-
rameter of the attractive tail in Eq. (8) has been set at 2 = 1.8. For this value of z
several simulations [30, 31, 32] and theoretical [6, 26, 27] predictions have already been
reported in the literature. Fig. 1 shows the SCOZA results for the compressibility factor
Z = P/(pkpT) along two different isotherms, corresponding to T' = 2 and T = 1.5, to-
gether with the MC simulation results by Henderson and coworkers [30]. The agreement
is very good both at low and high density. The compressibility factors are also reported
in Tab. 1, together with those obtained by the LOGA/ORPA via the internal energy
route [27], which is the one that gives the best agreement with the simulation results.
It can be seen that for the non-critical states reported here the SCOZA and the energy
route of the LOGA/ORPA are very close to each other. In Tab. 2 the predictions for the
chemical potential and the reduced compressibility are compared to the data from the
MC simulations performed in this work. The internal energy per particle is reported in
Tab. 3, where again the LOGA /ORPA results are also shown. The critical point predicted
by the theory has been located by the vanishing of the inverse compressibility 1/xrea. No
extrapolation procedure to 1/xrea = 0 is necessary, since the algorithm adopted here al-
lows one to get as close as desired to the critical singularity. As mentioned in Sec. 2,
below the critical temperature T, the theory yields a spinodal curve. The coexistence

curve must be determined by a Maxwell construction, i.e. by imposing the equilibrium
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conditions p(p,,T) = u(pi, T), P(pg, T) = P(pi,T) for the densities py, p; of the gas and
liquid phases at coexistence at a temperature T'. In comparing our results for the critical
point and the coexistence curve with the available simulation data, we found that the
two simulations for the phase diagram of the system under study already reported in the
literature [31, 32] do not agree very well with each other. We then performed a new set
of simulations using the MC-FSS method summarized in Appendix B. The SCOZA and
the simulation results for the critical point are compared in Tab. 4, which also shows the
predictions of other theories [6]. It can be seen that the agreement between the SCOZA
and the present simulation is remarkably good: the error in the critical density and tem-
perature is respectively slightly more and slightly less than 0.6%. The SCOZA and the
simulation coexistence curve in the temperature-density plane are compared in Fig. 2. A
similar comparison in the temperature-internal energy and in the temperature-chemical
potential plane is shown respectively in Fig. 3 and in Fig 4. In every case the SCOZA
agrees very well with the simulation. It can be also appreciated that in the SCOZA the
coexistence curve extends up to the critical point, while, as already observed in the In-
troduction, this is not always the case with other theories. In Tab. 4 and in Figs. 24
we have also reported the predictions of the simpler version of the SCOZA mentioned in
Sec. 2, in which the direct correlation function outside the repulsive core is given by just
one Yukawa tail, and the thermodynamics of the hard-sphere gas is described in the PY
approximation. It can be observed that even for not very short-ranged interaction the
treatment of the repulsive contribution considerably affects the phase diagram predicted
by the theory, the two-Yukawa SCOZA sensibly improving over the one-Yukawa version.
The behavior of the SCOZA in the critical region has been studied both analytically [10]
and numerically [12]. This investigation has shown that above the critical temperature the
SCOZA yields the same critical exponents as the mean spherical approximation (MSA),
ie. ¥y =2, 6 =5, a = -1, where the usual notation for the critical exponents has been
used. On the other hand, on the coexistence curve the critical exponents are neither

spherical nor classical, and one finds v' = 7/5, o = —1/10, 8 = 7/20 (here of course
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is the critical exponent that gives the curvature of the coexistence curve near the critical
point). Although these results were determined in the case of a nearest-neighbor attrac-
tive lattice gas, we expect them to hold also in the continuum case. Fig. 5 shows the
reduced compressibility of the HCYF for T > T, and p = p. as a function of the reduced
temperature t = (T' — T,)/T. on a log-log plot. Also shown is the correspondent effective
ezponent v.q, defined as the local slope of the plot. It can be seen that vex eventually
saturates at v = 2, thus signaling the onset of a MSA-like power-law behavior, but the
asymptotic regime can be detected only at very small reduced temperature (¢ ~ 1076).
This is the same scenario previously found in the nearest-neighbor lattice gas. For the
HCYF, the crossover is controlled as expected by the inverse range parameter z. It has
been verified that as the interaction becomes longer and longer ranged, the asymptotic

regime is further pushed to smaller and smaller values of the reduced temperature ¢ {33].

4 Conclusions

We have studied the thermodynamics and the phase diagram of the HCYF using both
the SCOZA and MC simulations supplemented by a finite-size scaling analysis. The
comparison between theory and simulation results shows that the SCOZA yields both
very good overall thermodynamics and a remarkably accurate coexistence curve up to
the critical point. The version of the SCOZA considered here takes into account the
hard-sphere contribution to the direct correlation function outside the repulsive core, and
sensibly improves over the simpler one-Yukawa version, in which the hard-sphere gas is
described as in the PY approximation. On the other hand, as stated in Sec. 2, here
(as well as in the simpler version just mentioned) consistency has been enforced between
the internal energy and the compressibility route, but not between the virial route and
either of the above. We think that the further development of making the theory fully
self-consistent by taking also the virial route into account is worth pursuing, since we

anticipate that the present version of the SCOZA will yield liquid-state pressures from
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the virial theorem that are not significantly better than those obtained using the virial
theorem with the LOGA/ORPA ¢(r). We defer a detailed examination of this issue to a
later study. In this respect it is worth mentioning an investigation of the HCYF along the
lines considered here [34], where some results for the critical parameters were reported
taking into account all the three routes to the thermodynamics although, as explicitly
pointed out by the authors, the SCOZA equations were studied in an approximate fashion,
and no attempt to determine the phase diagram was made.

Although dealing with a Yukawa potential entails certain analytical simplifications in
implementing the SCOZA, such an approach can be applied to any kind of tail potential.
It should also be pointed out that the idea of using the requirement of self-consistency
to get a closed theory of thermodynamics and correlations is pertinent not only to the
realm of simple fluids or lattice gases, but has also proven to be a powerful tool in the
study of a system of spins with continuous synimetry [35], and of a site-diluted [36] or

random-field [37] Ising model.
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of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy. G.S.
gratefully acknowledges the support of the National Science Foundation. N.B.W. ac-
knowledges support from the EPSRC (grant number GR/L91412), and the Royal Society
of Edinburgh.

A Waisman parameterization of cyg(r)

In this Appendix we recall the procedure that allows one to determine analytically the
amplitude K, and the inverse range z; of the direct correlation function cys(r) of the hard-
sphere gas in the Waisman parameterization (7). The relevant equations are reported in
Ref. [21], which will be referred here as IV. Both z; and K; are conveniently expressed

in terms of two quantities V5, V4 which are formally analogous to Uy, U; and Wy, W,
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introduced in Egs. (14), (15). From Eq. (IV.2.32 a) it is found that z, is given by

21 =

2
— = [+ P =) + o+ = a] | (39)
where f and q are defined in Egs. (10), (13). The expression of the amplitude K; is the
same as in Eqgs. (22) with Uy, Uy replaced by W, ¥1:
2 2
I{l—&iz—)ﬁ%[———a] : (40)
3¢z}

where ¢ is the packing fraction £ = 7p/6 and a; is a function of z; given by Eq. (23). The
ratio V;/V, can be expressed as a function of V, by Egs. (IV.2.24) and (IV.2.26). One has

4

B=2- Vi g (et -+ M+t A] . @)

2V Vi
To obtain the explicit expressions of z; and K; as functions of the density, one must then

feed into Eqgs. (39)—(41) the expression of V;. This depends on the contact value of the
radial distribution function yo = g(r=1%) via Eq. (IV.2.32 b):

Vo=66yo— f*+1. (42)

For a hard-sphere gas yo can be determined from the equation of state via the virial
equation:

%=1+45y0. (43)

The requirement that both the virial and the compressibility route to the thermodynam-
ics must give the Carnahan-Starling equation of state is then satisfied if the Carnahan-
Starling pressure and compressibility are substituted respectively in Eq. (43) and Eq. (10).
Eqs. (42) and (41) then yield V5 and V;3/V, as a function of density. From Egs. (39)
and (40) we finally get 2; and Kj.

B Simulation details

The principal aspects of the simulation and finite-size scaling techniques employed in this

work have previously been detailed elsewhere in the context of a similar study of the
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Lennard-Jones fluid. Accordingly we confine our description to the barest essentials and
refer the reader to reference [16] for a fuller account of our methods.

The Monte-Carlo simulations were performed using a Metropolis algorithm within
the grand canonical ensemble [38]. The MC scheme comprises only particle transfer
(insertion and deletion) steps, leaving particle moves to be performed implicitly as a
result of repeated transfers. To simplify identification of particle interactions a linked-list
scheme was employed. This involves partitioning the periodic simulation space of volume
L3 into m® cubic cells, each of side the cutoff r.. This strategy ensures that interactions
emanating from particles in a given cell extend at most to particles in the 26 neighbouring
cells.

In our Yukawa system the potential was cutoff at a radius r. = 3.0¢, and a correction
term was applied to the internal energy to compensate for the trunction. System sizes
having m = 3,4, 5,6 and 7 were studied, corresponding (at coexistence) to average particle
numbers of approximately 230, 540,1050,1750 and 2900 respectively. For the m = 3,4
and 5 system sizes, equilibration periods of 10° Monte Carlo transfer attempts per cell
(MCS) were utilised, while for the m = 6 and m = 7 system sizes up to 2 x 10® MCS
were employed. Sampling frequencies ranged from 20 MCS for the m = 3 system to 150
MCS for the m = 7 system. The total length of the production runs was also dependent
upon the system size. For the m = 3 system size, 1 x 107 MCS were employed, while for
the m = 7 system, runs of up to 6 x 10" MCS were necessary.

In the course of the simulations, the observables recorded were the particle number
density p = N/V and the energy density u = E/V. The joint distribution py(p,u) was
accumulated in the form of a histogram. In accordance with convention, we express p
and u in reduced units: p* = po3,u* = uo3. To allow us to explore efficiently the phase
space of the model, we employed the histogram reweighting technique [39]. This method
allows histogram accumulated at one set of model parameters to be reweighted to provide
estimates appropriate to another set of not-too-distant model parameters.

To facilitate study of the subcritical coexistence region, the multicanonical preweight-
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ing technique [40] was employed. This technique allows one to circumvent the problems
of metastability and nonergodicity that would otherwise arise from the large free energy
barrier separating the coexisting phases. Details of this technique and its implementation
in the fluid context are described in reference [16].

The critical point parameters were estimated using finite-size scaling technique as de-
scribed in [16]. This involves matching the distribution function of the ordering operator
to the independently known universal critical point form appropriate for the Ising univer-
sality class. The ordering operator is defined as M o (p*+su*), where s is a non-universal
“field mixing” parameter, which is finite in the absence of particle-hole symmetry, and
which is chosen to ensure that p(M) is symmetric in M. The estimate of the apparent
critical temperature obtained by this matching procedure is, however, subject to errors
associated with corrections to finite-size scaling. To deal with this, we extrapolate to the
thermdodynamic limit using the known scaling properties of the corrections, which are
expected to diminish (for sufficiently large system sizes) like L=/ [16], where 6 is the
correction to scaling exponent and v is the correlation length exponent. The extrapola-
tion has been performed using a least squares fit to the data for the four largest system
sizes. The results of the extrapolation are shown in figure Al, from which we estimate

T. = 1.212(2). The associated estimate for the critical density is p% = 0.312(2).
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TABLE 1

T P MC'  SCOZA LOGA/ORPA;’D_
00 0.4 2.52 2.518 2.518
00 0.6 4.22 4.283 4.283
%) 0.8 7.65 7.750 7.750
2.0 0.4 1.08 1.120 1.118
2.0 0.6 2.04 1.977 1.974
2.0 0.8 4.27 4.433 4.432
1.5 0.4 0.69 0.667 0.663
1.5 0.6 1.21 1.220 1.214
1.5 0.8 3.31 3.333 3.330

Compressibility factor PV/NkgT for the hard-sphere + Yukawa fluid (z = 1.8). Density
and temperature are in reduced units p* = po3, T* = kgT/¢, where o is the hard-sphere

diameter and € is the strength of the attractive potential. t: Monte Carlo data from

Ref. [30]. o: LOGA/ORPA-energy route results from Ref. [27].

21



TABLE 2

.U/kBT Xred
T p* MCT SCOZA MC! SCOZA
s 0.4 1.736(2)  1.7316 | 0.1958(2) 0.19744
00 0.6 4.833(2)  4.8147 | 0.0848(5) 0.08721
2.0 0.4 -0.936(2) —0.9396 | 0.4992(8) 0.50439
2.0 0.6 0.515(2) 0.5003 | 0.1594(5) 0.15976
1.5 04  -1.823(2) -1.8258 |0.968(3)  1.0150
1.5 0.6  -0.905(2) -0.9294 | 0.2217(5) 0.22147

Chemical potential p and reduced compressibility xreq of the hard-sphere Yukawa fluid
(z = 1.8). Density and temperature are in reduced units. f: Monte Carlo simulation

performed in this work. The numbers in brackets give the error in the last figure.
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TABLE 3

T o MCT MC?  SCOZA LOGA/ORPA®
oo 04 2495 —2.516(2) -2.517 —2.517
00 0.6  -3.975 -4.002(2) —4.002 ~4.002
00 08  -5.573 ~5.611 -5.611
2.0 0.4  -2.583 -2.595(2) —2.583 ~2.574
2.0 0.6  -4.030 -4.036(2) —4.030 -4.026
2.0 0.8  -5.622 -5.620 -5.618
1.5 0.4  -2.622 -2.640(2) -2.623 -2.602
1.5 0.6  -4.051 -4.053(2) —4.043 -4.036
1.5 0.8  -5.630 -5.623 -5.621
1.0 0.6  -4.073 ~4.097 ~4.065
1.0 08  -5.635 -5.631 ~5.628

Internal energy per particle of the hard-sphere Yukawa fluid. All quantities are in reduced
units. {: Monte Carlo simulation of Ref. [30]. }: Monte Carlo simulation performed in
this work. The number in brackets give the error in the last figure. o: LOGA/ORPA.

The entries for T* = oo are from this work, the rest are from Ref. [26].
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TABLE 4

MC° MC® MC'  SCOZA, y, SCOZA  HMSA®* MHNC’

o 0.294 0313 0.312(2)  0.308 0.314 0.36 0.28
T* 1.192 1178 1.212(2)  1.201 1.219 1.25 1.21

Critical density and temperature (in reduced units) for the hard-sphere Yukawa fluid.
o: MC simulation of Ref. [31]. o: MC simulation of Ref. [32] t: MC simulation performed
in this work. }: SCOZA with 1-Yukawa c¢(r) (see text). o: from Ref. 6]
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FIGURE CAPTIONS

1 Compressibility factor Z = P/(pkgT) of the hard-sphere Yukawa fluid (z = 1.8)
as a function of the reduced density p* along two isotherms at reduced temperature
T* = 2 (upper curve) and T* = 1.5 (lower curve). Full curve: SCOZA. Squares:
MC simulation results [30].

2 Coexistence curve of the hard-sphere Yukawa fluid (2 = 1.8) in the density-
temperature plane. Density and temperature are in reduced units. Full curve:
SCOZA. Dashed curve: SCOZA with a one-Yukawa direct correlation function ¢(r)

(see text). Squares: MC results (this work).

3 Coexistence curve of the hard-sphere Yukawa fluid in the internal energy-temperature

plane. E*/N is the internal energy per particle in reduced units. Notation as in

Fig. 2.

4 Coexistence curve of the hard-sphere Yukawa fluid in the temperature—chemical

potential plane. All quantities are in reduced units. Notation as in Fig. 2.

5 Log-log plot of the reduced compressibility xrea of the hard-sphere Yukawa fluid
(z = 1.8) on the critical isochore as a function of the reduced temperature t =

(T — T,)/T. according to the SCOZA (a) and effective exponent 7., defined as
VYeft = —d(log Xred)/d(logt) (b)

A1 The apparent critical temperature, (as defined by the matching condition de-
scribed in the text), plotted as a function of L=¢+1/¥_ with @ = 0.54 and v = 0.629.

The extrapolation of the least squares fit to infinite volume yields the estimate

T* = 1.212(2).
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