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j On The Time-Bamhidth Concentration of Signal 
Functions Forming Given Geometric 

Vector Configurations 

Summary-Landau, Pollak, and Slepian, 141-[6] have shown that 
be prolate spheroidal wave functions play an important role in 
determining the approximate dimensionaliw of a space of functions 
whose energies  are concentrated in a given time bandwith WT. 
They have a l s o  shown the extent to which this space may be assumed 
2 IT dimensional. The function space which they consider is 
actually infinite dimensional and a subset of 62, but it is not a linear 
subspace of 82,  nor in general does it necessarily contain any linear 
subspace of dimensionality 2 WT. 

However, in the problem of the discrete M-nary channel with 
additive Gauss i an  noise and perhaps other types of noise, one is 
mainly concerned with given n-dimensional linear subspaces of $2 
and given geometric configurations of vectors in those subspaces. 
Thus to be conveniently applied to this problem, the results of 
Landau, P o l l a k  and Slepian should be reformulated in terms of 
arbitrary given finite dimensional linear subspaces of 82, with given 
geometric configurations therein. This paper undertakes such a 
reformulation f o r  some important special cases. 

Inparticular, for the cases of orthogonal, biorthogonal and simplex 
configurations, it is shown that one can orient the configuration such 
that the time-bandwidth concentration of the least concentrated 
vector in the configuration is maximized. The maxi-min criterion is 
chosen because ,  as is also shown, the average concentration for 
these three configurations is always independent of orientation. 

U C H  OF MODERN detection theory was 
formulated under the impetus of wartime and 
early, post-war researches into radar. The 

problems involved echoes from large, relatively slow, and 
widely separated targets. I n  the context of that problem, 
everyone was well aware that when the theory required 
I the limits' of a convolution integral over the time vari- 

able to be extended to plus a i d  minus infinity, this 
really m e a n t :  "far enough to include virtually all the 
return associated with a single echo-but not so far as 
to include substantial parts of the returns from other 
echoed'. Usually,  this statement was practically meaning- 
ful. The separation between echos was normally many 
times the nominal duration of a single echo. Similar 
integrals in t h e  frequency domain could have their limits 
extended over an "effectively infinite" bandwidth with- 
out picking up interference from other radars or man- 
made sources  of electromagnetic radiation because the 
narrow a n t e n n a  beamwidth, generally high pointing angles 
and often t h e  geographical remoteness of the actual 
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systems considered gave a high degree of spatial isolation 
that left the usable spectrum relatively uncrowded. 
Unfor tmte l~ ,  these convenient circumstances genemlly 
have never existed in the field of communications prob 
kms. With today's dense, high velocity "threat cloudsu 
and the associated ambiguity and discrimination prob 
lem, Spatial isolation can no longer so blithely be pre- 
sumed in the context of many radar problems 

In theory, the signal functions of the communications 
problem and the echo functions of the multitarget radar 
problem can be made identically zero outside some 
arbitrarily speciIied time interval. An integration of a 
single-signal function over limits just encompassing 
this interval then gives the desired result without en- 
croaching on time slots otherwise occupied. However, 
in attempting to synthesize signal functions which are 
absolutely time limited, one necessarily causes the corre- 
sponding spectrum functions to spread beyond any 
given finite limits, by virtue of the uncertainty principle 
of Fourier transform theory. 

Certainly there are interesting communications prob- 
lems where by virtue of spatial isolation the entire 
usable spectrum is, in effect, available at  all times to 
each channel (e.g., the local telephone system). Effec- 
tive bandwidth is then limited solely by transmission 
and noise properties of the medium or by practical 
problems in the design of arbitrarily wideband terminal 
equipment. However, this limit is not sharp, and leaves 
the bandwidth d i c u l t  to define in terms of a single 
numeric measure W. Then basic results of communica- 
tion theory, including the very cornerstone relati011 

become correspondingly dBicult to interpret. 
The type of problem for which the sophisticated 

theory is at  once more clear in its interpretation and 
more useful in its application is one in which the usable 
spectrum is shared by frequency multiplexing among tt 
large number of channels with each assigned to a dierent 
one of a set of contiguous sharply defined frequency 
bands. Any spillover in frequency then causes the 
chahnels to interfere with one another, just as spill 
over in time causes the individual time-contiyous 
signals on one channel to interfere with one another. 
One must seek signal functions or sets of signal functions 
which are simultaneously concentrated both in time 
and bandwidth. This paper is concerned with sets of 



1964 Dollard: Time-Bandwidth Concentration of Signal Functions 

functions which are time-bandwidth concentrationed and 
have certain desirable geometric properties. It is directed 
mainly a t  the communications problem just mentioned 
but may have some interesting implications for the 
many-target radar problem. 

We present the results simply as a collection of 
theorems and proofs. Interpretations thereof in the way 
of practical applications would vary widely according 
to individual circumstances and are therefore left largely 
to the reader. The results, however, have been formu- 
lated with a particular model in mind and with the 
general intention of relating this model more closely to 
the actual systems one might like to represent with it. 

The model has been discussed quite extensively in the 
literature (e.g., [I], [2], [3]). It constitutes a discrete 
M-nary channel on which the M independent equi- 
probable channel symbols are each represented by one of 
a configuration of M vectors (usually of equal length) 
in Euclidean n space. Once each T seconds, a vector is 
received which consists of the sum of one of these symbol 
vectors and a spherical Gaussian-distributed random 
noise vector. The detection is by minimum distance 
(maximum likelihood). 

In  this model, for every doublet (M, n) there is an 
"optimum" configuration (see Shannon, [I]). In particular, 
for any n and M = n + 1 there is the "simplex," while 
for any n and M = 2n there is the "biorthogonal" con- 
figuration.' Our results are specifically formulated in 
terms of these configurations (and of the plain orthog- 
onal configurations, which are not optimum but which 
lead trivially to the biorthogonal) . 

The use of such configurations is meaningful only if 
the vector model is valid. Shannon [I] points out the 
obvious correspondence between the model and an actual 
system wherein signaling is accomplished by using wave- 
forms of electromagnetic energy which have nominal 
duration T and nominal bandwidth W with n = 2WT. 
He also warns his readers to invoke this correspondence a t  
their own peril. We eliminate one possible source of that 
peril simply by assunling that n, W, and T are given num- 
bers, not necessarily (although perhaps desirably) obeying 
the n = 2WT relation even approximately. Reduction of 
the remaining peril by reducing the spurious noiselike 
effects of intersymbol interference and interchannel 
interference is one end product of the results to follow. 
The model requires that the noise be "white Gaussian2," 
whereas the various spurious effects are unlikely to be so. 

A "simplex" configuration consists of the position vectors of 
the vertices of a regular simplex centered a t  the origin in n space. 
The n + 1 vectors are equi cross correlated with cross correlation of 
any pair equal to  - l / n .  A "biorthogonal" configuration in n space 
consists of n equal length mutually orthogonal vectors with the 
negative of each. It could be termed "cross polytope" by analogy to 
the term "simplex," but this is obviously too lacking in euphony. 

"White Gaussian" noise is d e h e d  as noise whose vector 
representation in the model has all its n orthogonal components 
given by independent zero mean Gaussian variates with equal 
variances. (The more usual notion of white Gaussian noise is suf- 
ficient but not necessary for this more restricted notion.) A process 
which is white Gaussian in this sense makes each event a spherical 
Gaussian n variate. 

To the extent that they are not white Gaussian, 
effects must be kept negligibly small compared to wl: 
ever true noise or noise-like effects are white Gaus~ 
and should, of course, be kept small in order to red 
the total noise. 

Functions will be related to vectors in the follom 
manner. A set of n linearly independent functions {xi( 
will be given. We may assume without loss of genera 
that they are orthononnal such that 

L (t)x,(t) dt = &,. (Kronecker delta). 

These will be the basis functions which define the n sp, 
Any square integrable function d(t) may be represeI 
as a vector in the space by the ordered n tuple of nwnl 

r j  = /-- b(t)xj(t) dt. 

Then the function 

is the orthogonal projection of $(t) onto the n space; 
remaining component I(t) - s(t) is orthogonal t o  
space and is "lost" in the representation of d(t). 

For simplicity of presentation, we will assume for 
remainder of the paper that the functions xi(t) 
identically zero outside the interval (0, T). This 
illustrate the salient features of the more general 
and will require a somewhat briefer development. An 
other simplifications, this permits a direct connec 
between the functions xi(t) and the impulse respo 
of n "sampling networks" in the receiver of an a( 
system. Thus by letting xi(t) = hj(T - t) where hi(t) i; 
impulse response of the jth sampling network, aj 
comes the sampled value a t  time T of the output oj 
jth network when the input is d(t).3 

We are interested primarily in the case where $ 1  
a sequence of signal waveforms, 

and where { Si (t) j is the set of M channel symbol v 
forms as they appear a t  the inputs to the bank of rec 
sampling networks. Thus the ordered n tuple of OX 

sample values a t  t = T represents d ia l  while the n . 
of sample values a t  t = (k + 1) T represents d i  
course, if each of the di(t) are not absolutely time-lir 
to (0, T), then the sample values a t  t = (k + I)? 
not be a "pure" representation of Sil(t - kT) but 

a For further simplification, we will assume either 1) t h  
signalling is a t  baseband for the channeli n question, with 
channels occupying modulation bands which start just abov 
baseband, or 2) that the signals are generated a t  baseband, I 
lated up to some assigned RF band, then coherently demod 
back t o  baseband after reception. The modulation-demodu 
process is conceptually included in the channel, but  all 61 
which follows demodulation is assumed to be included as. p 
the sampling networks. These assumptions are necessary ln 
that we may invoke certain prior results which apply 01 
baseband signals. 
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I inelude contributiolls from the transient "tails" of 
earlier arrivals and the anticipatory buildups to later 

( yfivals. This is one for111 of iutersynnbol interference.' 

I mentioned above, however, we co~nbine this with the 
and define the "pure" represelltation of b,(t) by 

'Kok that. if- the x i ( t )  were not identically zero outside of 
(OITl, then a slmlar interference effect would appear even d the s i  
"re absolutely tlme limited. 
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n 

8, ( t )  = C ciix, (0- 
i-1 

For lack of a n y  better or more reasonably simple mea- 
sure of the intersynlbol interference, we will use a liieasure 
ofrelative enel-gy col~centration wit4hin (0, T )  of each of the 
it([). This svill be most meaningful when the restriction 
Of b,(t) to (0, T) is in fact equal to s i ( t )  so that none of 
the energy of Si (t) within (0, 5") is lost in the projection. 

irnilar nleasure of spectral energy concentration 
dthin (- W ,  W )  bl the frequency domain will be used 
8s a nleasure of interchannel interference. 

If the signal that  one must transmit in order to have 
$,(t) appear a t  the  receiver has spectral energy com- 
ponents which "spill over" beyond the assigned base- 
band (-W, TV), the11 this will cause a noise-like inter- 
ference to appear within the n~odulation bands assigned 
to other channels. Suppose me were to  confine our own 
transnlission entirely to  the assigned band. Then, if our 
iolicitude for t h e  other channel users was reciprocated 
in kild, we would have elinlinated one form of inter- 
channel interference within our own channel, viz., that 
rrhicl~ arises f rom other  channels' transnlission appearing 
in our demodulated wave within our assigned baseband 
(-I!', W). Homcver, we have already assuined that 
the impulse responses of our sampling netvorks are 
absolutely t ime l in~i tcd and tllcrcfore callnot bc abso- 
Ir~tely band limited. They ~izust admit some energy from 
outside the (- W, TV) band, and our deinodulation of 
the other channels' transmitted energy will place it in 
bands starting just outside (-llr, W ) .  This latter form 
could be nleasured by the relative spectral energy con- 
centration of t h e  xi (t), but it is measured equally well 
and more conveniently by the concentration of the 
$,(I), Since this more nearly represents the coniparative 
d~urbing effect as a n d  when each different signal be- 
comes the one whose presence one is attempting to 
detect. We will also assume by the above philosophy 
of reciprocation tha t  t h e  first kind of interchannel inter- 
ference is estimated by the spectral concentration of 
Our om transmitted signals, and that this in turn must 

measured by the  spectral concentration of the signals 
!dt) mhich appear in the  receiver (since the transmission 
~ha~cteristics of t h e  medium are not specified). That 

we assume t h e  other users will avoid our assigned 
Vectral band approximately to  the same degree that 
me avoid theirs. 

With this background we may now proceed to the 
business a t  hand. In Section 11, we begin with a brief 
review of some important recent results in the theory of 
time-bandwidth concentrated functions which will he 
the basis for our own results. Since the final results are 
simply set down in Section IV in the form of Theorcm: 
Proof, with little intervening discussion, the results 
will be sumn~arized and discussed beforehand in Section 
111. 

8 
~e I 

This Paper is concerned with the extent to \vhich 
sets of functions forming simplex and biortliogonal 
vector codgurations in n space can be siniultaneously 
concentrated in a time interval of width T and ill a 
bandwidth interval (-W, W) .  In particular, it seeks 
to explore the dependence of this concentration on n, 
W ,  T, and the particular n-dimensional function space 
in which the configuration is imbedded. Clearly this 
must be related in some way to the uncertainty principle 
of Fourier transform theory. 

In a series of recent papers [4], [5] ,  [GI, Landau Pollak, 
and Slepian have shown that the prolate spheroidal 
wave functions (PSWF's) play a fundamental role in 
this uncertainty principle. Anlong the many significant 
results in this monumental morlc, they have at last 
provided a rigorous mathematical statenlent of the old 
engineering addage, that the space of functions time 
bandwidth concentrated in WT is 2ErT dimensional. 
In  view of this, it would seem that the question of di- 
n~ensionality in relating the vector model to actual 
channels, as discussed in Section I, is now properly 
answered. Further, the manner in which they provide 
this answer in ternis of time-bandwidth concentration 
would seen? to provide answers simultaneously to thc 
interference problems. 

Unfortunately, their results are formulated from a 
different point of view and in terms of subsets of thc set 
of functions in 2.2 rather than in ternis of finite di- 
meiisional subspaces of 2: itself. These subsets 1) in 
general may not contain any simplex set of n + 1 func- 
tions or orthogonal set of n functions if n = [2lVT] + 1 
(one plus the largest integer in 2WT), 2) almost surely 
will not contain any entire n-dimensional subspace if 
12 = [2WT] + 1, and 3) in general niay not even con- 
tain any subspace of dimensionality greater than 1. 
(Any which contain no one-dimensional subspace must 
be empty.) Thus we must reformulate their results if 
we are to apply them to finite subspaces. The following 
brief review of their more pertinent results is provided 
for the reader's convenience. 

We will be interested mainly in two infinite dimensional 
linear subspaces of $:, which are the ranges of two 
operators whose domain is all of c:. Norms are defined 
throughout to be the ordinary Hilbert norms in 2:. 
Following Landau, Pollak, and Slepian, we define the 
operator D to be that of absolute time truncation to the 
interval (- T/2, T/2), and operator B to be that of 
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absolute bandwidth limiting to the interval (- W, W).' 
Their ranges are denoted 9 and a, respectively. Landau, 
Pollak, and Slepian focus their attention mainly on 
functions in 63, but for reasons previously explained we 
choose rather to concentrate on 9. Thus we seeli the 
eigenvectors and eigenvalues of the combined operator 
DB whose eigenvectors lie in 9, rather than that of 
BD whose eigenvectors lie in a .  As they point out, how- 
ever, our fornl follows directly from theirs by time-fre- 
quency duality. 

The eigenvector solutions to 

hf = DBf 

are the tinle truncated PSWF's {DJ.i(t; c))" in which c 
is a parameter equal to TWT, with eigenvalues {hi(c)}:; 
1 > ho > X, > - .  > 0. The X,(c) are monotone in- 
creasing functions of c for all i. We normalize 1 I D$il l 2  = 1, 
and hereafter drop the prefixed operator D such that 
the notation J.$ implies time truncated PSWF's. Then 

Relative frequency concentration CB(f) of any f E 9 
is defined by 

The function J., is the maximally concentrated func- 
tion in 3 ;  J., is the maximally concentrated of all func- 
tions orthogonal to J., in 9, etc. 

I n  terms of the {Xi]", CB(f) for arbitrary f E 9 is 
given by 

in which the {a,]",re the coefficients of the Fourier 
expansion of f in the PSWF's. 

Landau, Pollak, and Slepian [4]-[6] prove the following 
two theorems ( [6 ] ,  Theorems 1 and 3): 

Theorem: Let a(€)  be the subset of all functions f E 9 
for which CBCf) 2 1 - d. Then for any N the first 
N + 1 PSWF's achieve the - h a 1  minimum in 

min max min 
{~i} :  f a(€) {ail? I Fl I-' I If - C i=o aiViI I 1' 

Theorem: For all f E a ( € )  and N = [2WT], 

min N 2 

II~II-' llf - ai+il12 5 
e 

Iai) o r = O  
5 122. 

1 - h + l  

The latter states that for all f E a(€), a Fourier ex- 
pansion in PSWF's using [2WT] + 1 degrees of freedom 
is sufficient to represent f to within a relative integrated 
square error of 122, and in this sense, the space of 

5 At this point, in order to  follow the notation of [4]-[6], we make 
a shiit of T/2  in the zero reference time to center the T interval. 
This merely means that the impulses which yield the impulse 
responses discussed in the introduction occur at - T / 2  in this new 
time scale. 

sentration of Signal Functions 

absolutely time-limited, nominally band-liilited f 
tions is 2WT dimensional. (Similar results are sE 
for the more general case of nominally time-bandq 
limited functions.) 

However, in the context of the problem as out1 
previously, n is a number already chosen, with the a' 
result as one criterion but subject to other consideral 
as well. In  fact the n-dimensional subspace itself w 
be chosen, and this would not lilrely be one spame( 
the first n or any n PSWF's. The PSWF's are not 
tabulated nor are they the impulse responses of 
known networks. Moreover, we would not be inter€ 
in any finite representation of signals or noise in tc 
of the PSWF's, since the n space we have chosen 
fact the very space of representations to which we I 
decided to limit ourselves in the actual detection. 

The pertinent question for the problem as state 
not, "What is the effective dimensionality of a subsc 
all functions time bandwidth concentrated to a g 
degree?", but rather, "What is the effective concel 
tion of a given configuration in a given n-dinlensj 
linear subspace of c:?" We will define this effec 
concentration to be the concentration of the least 
centrated vector in the configuration when it is orie 
to maximize this least concentration. This maxi 
criterion is used because, as shown below, the ave 
concentration for each of the particular contigural 
considered herein is independent of orientation. 

111. SUMMARY AND DISCUSSION 

We are now prepared to summarize the result 
follow. Let X, be an n-dimensional linear subspac 
3 .  Then it is shown (Theorem I I I )  that the averag 
the concentrations of the vectors in any orthono 
set of n vectors in X, is the same as for any othei 
thonormal set of n vectors in X,. From this it is SF 
(Corollary III-a) that the average of the concent,ral 
of any simplex set of n + 1 vectors in X, has the E 

value as for an orthonormal set. 
Next it is shown (Theorem IV) that for eveilr n 

X, C 9, there exists at least one orthonoril~al 1: 
each of whose vectors has concentration exactly e 
to the average concentration. From this it follows triv 
(Corollarg (IV-a) that there exists a biorthogol~al st 
2n vectors with the same property. This is clearly 
maxi-minimally concentrated biorthogonal configlu.5 
in X,. Next it is shown (Corollary IV-b) that sill 
co~gurations, each of whose vectors has concentrs 
equal to the average, do not exist in general. How 
special cases for which they do exist are noted, a] 
method valid for "most" if not all other cases is out1 
for finding simplex configurations whose least col 
trated vectors very nearly achieve the average. 
configurations obtained by this method are believe 
be maxi-minimally concentrated, but at present th 
pure conjecture. 

Vectors in these maxi-minimally concentrated 
figurations are expressed as n tuples in what is de 
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as a "proper" basis of X,. This basis (xi]; has the double 
orthogonality property 

(xi, xi) = 6ii 

(Bx~, Bx!) = pi&;. 

Such a basis is shown (Theorem I )  to exist for all X, C 3. 
In fact, {xi]; and {pi}:, respectively, are the normalized 
eigenvectors and eigenvalues of a certain operator on X, 
analogous to the operation DB on a itself. The set 
function Tr (X,) is defined as the trace of this operator 
on X,,, i.e., Tr (X,) = z; pi. Therefore, the average 
concentration for any orthonormal basis of X, is p = 
l / n  Tr (X,). For each given X,, the pi, and therefore 
p, are clearly monotone increasing functions of c = TWT 
(t.he xi themselves depend parametrically on the param- 
eter c) and are semi-ordered. 1 > po(c) 2 - . - 1 
p.-,(c) > 0 for all c > 0. 

Thus at least for biorthogonal configurations, the 
quantity of interest for determining a from given WT 
and S, is p(c) = 1 - e2. In  the special cases noted, this 
same quantity determines E from given TVT and X, for 
sinlplex configuratioas. That is, in line with the notation 
of [4]-[6], we ineasure concentration by the parameter e 
using the relation maxi-min CB = 1 - a'. For these 
cofigurations, maxi-min CB = p. For simplex configura- 
tions in general, maxi-min CB will equal a weighted 
average pi with weights fairly close to unity, and there- 
fore p d l  be a good upper bound approximation to 
maxi-min CB.  

The following is suggested as a formal scheme for 
choosing a X,, and finding {xi); and {pi}: for it when 
IYT is given. First find x,(t) as the most B-concentrated 
unit energetic function in which one is willing and 
able to implement.' Next find x,(t) as the most B-con- 
centrated unit energetic function orthogonal to x, in a> 
~ h i c h  one is willing and able to  implement. Continue 
in this manner to obtain {xi);. Clearly, this spans a X, 
and by construction, i t  is in fact a proper basis for X.' 
Except for sign changes, it is the unique proper basis if 
the concentrations of the xi are strictly ordered. Pre- 
sunlably, the numerical values of the {pi]: will be ob- 
tained as a by-product of the calculations leading to 
the choice of the {xi);. As a guide in determining how 
much effort it is profitable to  expend on the implementa- 
tion of the (xi};, it is shown (Theorem 11) that for any 
1. C a, PI(C) 5 XO(C), PZ(C) < XI(~), ' * '  , ~n(c) I Xn-l(c) 
for all c, where the Xi are the eigenvalues of DB as noted 
previously. We might note, incidently, and without 
proof herein that equality can hold for some value of c 
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and for some i = k only if it holds for all i < k, in which 
case x,(t; c) r $(-,(t; c) for all i < k a t  that value of c. 

In this work, we have made no attempt a t  a direct 
clarification of the significance of Landau and Pollak's 
Theorem 3 !6] for the class of problems considered. 
We have, in fact, taken a directly opposite viewpoint 
in seeking to determine the extent to which a particular 
n-dimensional signal space (a linear subspace of a )  can 
be considered WT-limited in a particular problem, rather 
than seelcing to determine the extent to which the entire 
subset, of functions in 9 which are B concentrated by a 
given amount (not a linear subspace of 9) can be con- 
sidered to be 2WT dimensional. Thus we virtually abandon 
the a priori assumption that n = 2WT. Nevertheless, 
our results are for the most part a straightforward re- 
forinulation of Landau and Pollak's from the alternate 
viewpoint and therefore retain a close relation to theirs. 
When n = 2WT, one should expect that the task of 
finding and implementing a X, for which l /n  Tr (X,,) 
represents a high degree of concentration should prove 
relatively easy. As ?z is decreased below 2WT, it should be- 
coine progressively easier. Conversely, if n = 2WT/(1- e'), 
then l /n  Tr (X,) < 1 - eyer all X, C 3. This follo~vs 
as a direct consequence of Corollary 11-a which states 
Tr (X,) < Tr (Q,) < Tr (3 )  = 2WT. 

The numerical significance of the differences between 
the two approaches may be illustrated by some examples 
taken from Table 1.' One might, for example, require 
that all signal functions be a t  least 90 per cent con- 
centrated. But clearly from the table, @(a) for 
2WT = 2.55 contains only two mutually orthogonal 
vectors and for 2WT = 5.10 contains only five mutually 
orthogonal vectors, whereas, [2WT] + 1 equals 3 and 
6 respectively, for the two cases. Unfortunately, data 
are not available on the behavior of X,(c) for larger n 
and larger c = TWT, but it appears quite possible that 
@(m) for large 2WT contains more than [2WT] + 1 
mutually orthogonal vectors. An upper bound is 
[2WT/0.9], and it is believed that this upper bound is 
approached asymptotically with increasing 2WT. Thus 
i f  one is interested in orthogonal sets of signal functions 
WT-limited to a prescribed degree, [2WT] + 1 is no 
more than an estimate of the total number of such func- 
tions theoretically available. The approach adopted 
herein can be used to determine the actual number 
available in practice. It is interesting also to note that the 
space spanned by the orthogonal set can contain a 
vector considerably less concentrated than the vectors 
in the set. For example, @(m) for 2WT = 5.10 
contains five mutually orthogonal vectors whose actual 

well 

s i n  

' 

That is, implement with a network whose impulse response is 
h( t )  = xt(T - t ) .  

Implled in this is the premise that if one is willing and able 
to implement the (z, ) p, one is willing and able to implement any 
linear combination of them. The construction therefore imparts 
to the chosen {x{jln a property unique to the proper basis, viz., 
that x j is the most concentrated vector in X, orthogonal to xi for 
all i < j and all j = 1, 2, . . . , n. 
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concentrations are all equal to 0.94+, yet the 5 space 
they span contains a vector (not in @(fl)) whose 
concentration is less than 0.75. 

8 Data for this table are taken from Slepian and Pollak [4], 
Table 1. 
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TABLE I interference of the first type. However, a sufEci 

TABULATIONS OF An-1 AND X vs n FOR 
Two VALUES OF 2WT = 2 4 ~ .  accurate model of a given physical situation may 

clude a choice of transmitter functions from (B - 
A theory sufficiently general to cover this case is be 
the scope of the present effort. 

IV. DETAILED RESULTS 

Theorem I: For each X, C 9, -there exists a basis {xi(t 
with the double orthoganality property (x*, xi) = 
@xi, Bxi) = pi (It is termed the "proper bm 

Proof: The proof follows trivially from the obs~ 
tions that any projection operator P is characterize 

Thus far we have considered only an optimization 
with respect to the receiver representations {si} of the 
received signals. Clearly, if the actual received signals 
are themselves virtually time-limited (no intersymbol 
interference), then they are identical to the {si}. In 
this case, both types of interchannel interference de- 
scribed in the introduction are mini-maxed. If, alter- 
natively, the actual received signals are virtually band- 
limited (no interchannel interference of the &st type) 
then it is shown (Corollary I-a) that for every element 
x E X,, there exists a unique element E 8 such that 
DZ = x. From this and Theorem 111 it follows (Corollary 
III-b) that for any orthonormal set {s,(t)); of X,, the 
average reciprocal time concentration C~l(5,) of the corre- 
sponding set {Si(t)); is the same as for any other or- 
thonormal basis of X, where C,(f) 3 l ( f  ((-' ((Df(('. The 
same is shown (Corollary III-c) to be true of any sim- 
plex set of n + 1 vectors in X,. Finally it is shown 
(Corollary IV-c) that for any n and any X,, C D there 
exists an orthonormal basis {s, (t) }; for which 

min 
i cD(~j) = c~'(gi)-'~ 

and that this achieves the maxi-min CD(Si) over all 
orthonormal bases of X,. In this paper, we do not attempt 
either to prove or disprove the existence in general of 
an orthonormal basis which simultaneously achieves 
maxi-min CB (si) and maxi-min CD (5;). However, interest- 
ing special cases in which they are achieved simul- 
taneously are noted. Similar special cases lead to simul- 
taneous achievement of both maxi-mins for simplex 
configurations. 

With regard to the more general case of transmitted 11: any C the eigenvaluea {pi(c 
signals wkch are neither tkelimited nor PxB are majorized by the jirst n eigenvalues {hi(' 
virtually band-limited, little can be said in line with the DB. That is, 

above. The signals Si for which Ds, = si are no longer pl(c) x,(~), pz(C) 5 x ~ ( ~ ) ,  . . . , pa(C) < 
unique. One might investigate transmitted signals from 
the space 9 f 8, ~uch as asi + (1 - where 'i ' 

9 See Landau and Poll& [6], . 1298. See also Dunfor 
as in the preceding paragraph and 0 I a I 1. For specific S C ~ W & I ~ Z  (71, p. 480. Dunford &chwartz defme a more f 
problems this may indicate a desirable compro~se  r j e c t i o n  (nonorthogonal) which does not require seli-adiou 

owever, the present work deals only with orthogond proje 
between no intersymbol interference and no interchannel 10 See Dunford and Schwa& [7], p. 481. 

P is self adjoint 
P2 = P ( P is idempotent). 

B is such a projection (of 8: onto (8). Deiine Px a! 
projection of onto X,, and note that Pxx = x fc 
x E X,,. Then the combined operator PxB is compll 
continuous with n independent solutions to 

The eigenvectors associated with unequal eigenvr 
are orthogonal, and those associated with equal e 
values can be chosen as orthogonal. All can of court 
normalized in 8:. Denote these eigenvectors and e 
values by {xi}; and {pi);, respectively. Then 

Corollary I-a: For every element x E X, there is a u: 
element Z e (8 such that Dz = x. Moreover, Z e BX. 

Proof: Uniqueness follows from the fact that t 

element f(t) e 63 is an entire function of time 
therefore completely determined by its behavic 
(-T/2, T/2)  or any other finite interval. Existen 
shown by construction. Note that the operato1.1 
and D are naturally orderedx0 Px < D which 3-1 
PxD = DPx = Px. Since x E X,, Pxx = x. Then 
if DZ = x, PxDz = Pxz = x. Let the expansion oj 
{xi be given by z = aixi. Then 3 = x; (ailpi 
clearly satisfies P,z = x, and indeed 3 E BX,. Sins 
pi > 0, 2 always exists in the form given. Q 
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proof: This theorenl in more genera1 form was a p  In either case, & 5 NOW let Xn-, denote the space 
Psrently fvat proved by [8]- The simp1e spanned by i x i } r l ,  and 1.-1 denote the spaced spamed 
pd of the above form is given for the con- by {J.iIF-'. Repeat the above argument to show 
venience. Let .k, C a) be the space spanned by the first Pn-1 < L - 2 .  Repeat again for ( P ,  I;-'. The final state- 
r pSWFjs (+, );;-', and let PI be the projection of s: ment PI < X O  is obvious since & is the most concentrated 
onto \E,. Let si denote  PIX^ where xi E {xi};.  Then vector in D. Q.E.D. 
&her (Case 1) (&I ;  is an  independent set, or (Case 2) 
it is a dependent set, i.e., ( P i } ;  either spans or does not we now define the set function Tr (X,) to be the 

span !I?,,. trace of the operator P,B on X,. That is, Tr (X,) = z; ,,. 
Case 1 : There exists a unique linear combin* It from Theorem I I  that Tr (X.) < Tr (\kn). 

tion of the Li satisfying Clearly Tr (\En) < TR (9) = C.f; X i  since Xi > O for all 
i. It is also clear from the results of [4], [5] and [6] that 

5 a,$, = 
Tr (a)) (which is the trace of DB on 3) equals the trace 

1 of BD on 63. The operation BDf is defined as 

T / 2  

BDf(t)  - 1 sin 2nW(t - 
-T /2  ~ ( t  - t') 

f( t l)  at1 

The vector x = aixi is a unit energetic vector in X. from which 
Since ($i}",s complete in a) and X, C a), x may be 
expanded in a Fourier series in the { $ ; I " ,  This yields Trace B D  = IT'' dtf [lim sin 2nW(t tT t f ) ]  

m 
- T / 2  t ~ ( t  - 

x = aJ.n-I + C ai$i 
% =I = 2WT. 

From this 

We have thus proven: 

Corollary 11-a: TR (X,) 5 Tr (\kn) < TR (3) = 2WT 
for all X ,  C 9. 

We next state and prove: 

I 
Theorem 111: Given any orthonormal basis ( s i ( t ) ) ;  for 

1 HOveverl vivtue the odhOgonalit~ { ~ i } ; 7  X n  C a), the average concentration = x; CB(si) 

Case 2: T h e r e  exists a t  least one linear combination of 
the 3, for which 

The vector x = a,zi E X n  C a). Therefore 

exactly equals l /n  Tr (X,) and is therefore thesame for 
all orthonormal bases of given X,. 

Proof: Each of the functions si E Isi}; may be ex- 
pressed as 

wherein 

Let S denote the n X n matrix (uii);  i, j = 1, 2, . . - , n. 
S is orthogonal by definition. Now let M denote the 
n X n matrix i, j = 1, 2, . . . , n wherein 

Clearly Trace M = Tr (X,).  The transformation 

is a similarity transform and therefore trace invariant. 
Note that the diagonal element cii (i = 1, 2, - . . , n) 
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of C is given by Then 
n n+ 1 

cti = C ( T : ~ P ~  = CB(si). Trace f = nfl Tr (Xn)  = C fi 
?= I  n r = l  

Therefore n n+l 
=- 1 C cB(vi) + Tr (X). 

n n f 1 
Trace C = Tr (Xn)  = CB(si) Therefore 

1 

1 
C&i) = ; Tr (X,) . Q.E.D. or 

Corollary 111-a: Given any X n  C D and any simplex 
set of n + 1 equi-energetic equicrosscorrelated vectors 
{ vi ( t )  ) ; " + I ,  the average concentration 

exactly equals l / n  Tr (X,) and i s  therefore the salne for all 
simplex sets in the given X,. 

Proof: We assume without loss of generality that the 
vi are unit energetic. Then each of the functions vi e [vi];+' 
may be expressed as 

wherein (from the definition of simplex set)' 

Let V denote the (n + 1 )  X n matrix ( f i i ) .  then 
form I? = VMVt  where M is the diagonal n X n 
nlatriv (pi) as above. Note that the diagonal element 

(i = 1, 2, . . -  , n + 1 )  of I' is,given by 

n 

Y i i  = C ~ : j l ~ j  = CB(vi). 
i - 1  

Now from V form the (n + 1 )  X (n + 1 )  orthogonal 
matrix P by adding an (n + 1)th column all of whose 
elements are +l/&, (thus making the row vectors 
mutually orthogonal), then scaling by dn / (n  + 1) 
(to renormalize). Also form the (n + 1 )  X (n + 1 )  
diagonal matrix M as the direct sun1 of l$I and the 1 X 1 
mat1-k (P) where P = l / n  Tr (X,,). Then trace 

= (n + l ) / n  Tr (X,) ,  and the similarity transform 
f i t  = f is trace invariant. Note that the diagonal 
element qii (i = 1, 2, . . , n + 1 )  of f is now given by 

1 
CB(vi) = - Tr (X,). n Q. 

Corollary 111-b: Given any orthonori~zal basis (si(t)} 
X,, denote by { S i ( t ) ] ;  the unique set in BXn for u 
DSi = si. Then the average reciprocal tilne concentrc 
C;'(s;) = l /n  x; C i l ( s i )  exactly equals the averag 
ciprocal eigenvalue >, and i s  therefore the sanze fo 
orthonorvzal bases of X,. 

Proof: By definition, 

since ( 1 si 1 1 = 1. But from Theorem I ,  

Now denote by M the diagonal matrix ( l / ~ ~ ) l '  and 
(? the similarity t ra~sform S M S ~  = I?. Note that 
diagonal element Ei i  of C is given by 

Therefore 

Corollary 111-c: Given any simplex set { vi ( t )  1;" 
X,, the average recirpocal time concentration C;'(2ji) ezc 
equals the average reciprocal eigenvalue p-I and i s  therc 
the same for all simplex sets in X,. 

Proof: Following the proofs of I I I -a  and 111-b, 1 

that the diagonal element yii  of f = V a V t  is given 

l1 a is in fact M-1. 
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Then 2, is unit energetic and orthogonal to all the 
, Trace 5 = n s ~ ~ e  M. 

n xie{xi}l-'. Moreover B3, is orthogonal to all the 
Bxie{BxiJ;-'. Let X,-I C D be the space spanned by 

Therefore, 31 V {xi):-' and let {x:};-' be the reordering of this 
orthonormal basis to place PI = eel + p, - ,ii in its correct - 1 - - 

e;l(gi) -Trace M = i1 . Q.E.D. position in (4 I;-'. Note that now n 
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P as and as the direct sum of and the The first will constitute the first row of the final s 
r 1 x 1 matrix T h e n  as above7 matrix. From the second form, the vector 
I 

I Theorem IV: Given a n y  X, C 9, there exists at least one 
orthonormal basis  {si ( t )  1; such that CB(si) = l /n  Tr  (X, 
foralli = 1, 2, , n. 

3 ,  

1.D. 

ill 

:cf$ 
/on 

~ote 

br 

I 

We have proven that simplex and orthogonal (and 
therefore, as w e  shall see, biorthogonal) configurations, 

Proof: W e  have on ly  to prove that there exists an 
I& X n orthogonal S matrix such that the similarity 
transformSMSL=C yieldscii=cjjforalli,  j=l ,2,  ,n .  
The following constructive proof was suggested by 
Landau.12 Consider the pair of row vectors (n tuples) in 
the proper basis {xi};: 

These are n ~ u t u a l l y  orthogonal and unit energetic. The 
first has concentration 

of n + 1 a n d  n (and 2n) vectors, respectively, in a given \ &, all have t h e  same average concentration. One might 

I The second has concentration 
I 

lhicli 
'tion 
'Yt- 

' 01 

I a, private conversation with the author. 

I 

advance heuristic geometric arguments to  show that any 
1 configuration with sufficient symmetry would have this 

property; indeed tha t  any optimum code configuration 
as defined in [I] or [3], even those with such misfit values 

The entire process is then repeated to form 

of K and n that symmetry is totally lacking, would have 
"very nearlyJ' this property. That is, the average con- 
centration is at most weakly dependent on orientation 
of the configuration. W e  therefore adopt a maxi-minimal 
criterion, a n d  proceed to  show how one can find maxi- 
minimally concentrated simplex and biorthogonal con- 
figurations. 

1) An (n - 1) tuple in the basis {x:};-' which is unit 
energetic, has concentration l/(n - 1) Tr (X,-,I) = 
l /n  Tr (X,,), and becomes an n tuple in the original 
basis {xi]; orthogonal to the one previously found. 
It constitutes the second-row of S 

2) A new space X,-, for which Tr (X,-,) = 
(n - 2)/(n - 1) Tr (Xn-,) = (n - 2)ln Tr (X,). 

3) A proper basis {x:'};-~ for Xn-2 with concentra- 
tions {p:J};-2 in proper sequence. 

The process is repeated n - 3 more times, thereby generat- 
ing a total of n - 1 n tuples (rows of S) which are all 
mutually orthogonal, unit energetic, and have concen- 
trations l /n  Tr (X,,). The "remainder space" X1 has 
Tr (XI) = l /n  Tr (X,). Its single unit energetic basis I 

vector 2:"-l' therefore has concentration l/n Tr (X.) 
also. When expressed as an n tuple in {x;); it is or- 
thogonal to the first n - 1 rows of S just found, and 
therefore can form the nth row to complete an orthogona1 
matrix S = (aij), i, j = 1, 2, . . - , n, with the desired 
property. The vectors si e isi]; are of course formed by 

si = ciix;. Q.E.D. 
j-1 

Corollary IV-a: Given any X, C 9, there exists an equi- I 

energetic biorthogonal code set of 2n vectors in X, each of 
which has concentration l /n  Tr (X,). 

Proof: The proof is trivial. We need only form the 
I 

set of 2n vectors { f asi 1; from {s, 1: just found and note 
that C e ( ~ i )  = CB(-OIS~) = CB(si)* 

Corollary IV-b: I t  is not true in general that given 
an X, there exists a sinzplex set of n + 1 code vectors in X., 
each of which has concentration l /n Tr (X,). 

Proof: To prove the corollary as stated, we need only 
cite a single example to contradict the converse. We 
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choose the trivial example of a 'Lsimplex71 (triangle) 
in XI. The code set consists of three vectors in the plane, 
separated by 120'. Given any p,, p2 such that 1 > pl > 
p2 > 0, the orientation which maximizes the least con- 
centration is that which places one of the vectors along 
the x, axis. Then the three concentrations arc p,, 

$pl + jpZ, and again ip ,  + 3p2. Thus the maxi-minimal 
concentration is $pl + 3pZ < $pl + $pZ = 4 Tr (Xz). 
(Of course if pl = p2, then every vector in the space has 
concentration 4 Tr (X,), but this does not occur in 
general). Q.E.D. 

The corollary is intended to imply the existence of a 
wide class of cases for which a maxi-min equal to the 
average can be achieved, and a correspondingly wide or 
wider class for which it cannot. Unfortunately, the proof 
given contributes little to the implication. Following the 
proof of Corollary III-a, one can easily show that a 
necessary and sufficient condition for the existence of an 
equiconcentrated simplex code in X, is the existence of an 
orthogonal (n + 1) X (n + 1) matrix P having the same 
properties as those of the matrix S in Theorem I V  (but 
not necessarily constructed by the method given in the 
proof of Theorem IV). That is, to be a P matrix 
it must contain a column all of whose elements are 
+I/ ( d n x ) ,  while to be simultaneously an S matrix 
from Theorem IV for the ficticious space ~,+,, for which 
the eigenvalues of PaB are p V {pi];, it must equalize the 
diagonal elements of PfiP" I?; however, this merely 
translates the problem to that of h d i i g  necessary and 
sufficient conditions for the existence of such a P, and 
these are not known. A suflicient condition, independent 
of the actual eigenvalues {pi\: or of the actual space 
Xn itself, is theexistence of AFHadamard matrix H of 
order n + 1. (See Paley [9] and Peterson [lo].) 

A Hadamard matrix is a square matrix all of whose 
elements are f 1, and whose row vectors are mutually 
orthogonal. It remains Hadamard if the signs of all 
elements in any row or column are changed. Thus it 
rnay always be transformed to have all plus elements in 
the final column. If a Hadamard matrix H of order n + 1 
exists, then l / ( d m )  times the H in this form will 
always yield the desired P. (The proof is by inspection). 

Another set of sufficient conditions is that the set 
{pi); of eigenvalues of PxB on Xn contain one value 
pi = p, and that there exist a Hadamard matrix of order 
n. Cast the Hadamard matrix in a form such that the 
jth column has all elements negative. Then scale by 
d m / n  and replace the jth column by a column 
all of whose elements are - l ln .  Finally add an additional 
row vector containing all zeros except for a + 1 in this 
jth column. This yields an (n + 1) X n V matrix directly, 

column of H yields a V matrix for X, whose leas1 
centrated vector has concentration p - (pi - p) 
pi+,, respectively. The former cannot be irnprovc 
small perturbations in the orientation of the confi 
tion. The latter can, however, be improved by apr 
to the V matrix the simple rotation operation 

in which Ik is the identity matrix of order k, and B 

is given by 

Then V ,  ,,,, = V  ,,,,, R contains n/2 + 1 row vect 
with concentrations all equal and slightly below p, T 

the remaining n/2 row vectors have concentration 
equal and slightly above p. The lower value is 

min 
= C,(v,). a 

The greater of this number and ,a - (pi - p)/.n 
minimal concentration when the original manipul: 
is applied to the index-j row of H) is believed to b 
maxi-minimal concentration for simplex codes in 
X,. Similar but increasingly complex procedures ma 
used to derive simplex codes whose least concenti 
vector is "almost" l /n  Tr (X,) in spaces X, of di 
sionality one, two, or more above the order of a Had= 
matrix. 

It should also be noted that the use of Hada 
matrices leads to a considerable simplification oj 
procedure for constructing the S matrices of T h  
IV. The matrix l/& times any Hadamard nlatr 
order n is clearly an S matrix satisfying the the( 
provided of course that a Hadamard matrix of or( 
e~ists.'~ If none exists of order n, determine the smal 
for which one of order n - j exists. After the jth 
in the construction suggested in the proof, the rema 

and the reader may easily verify that VMV' = r with 
Ti; = l/n Tr (X,) for all i = 1, 2, - - .  , n + 1. ls n is even, since by hypothesis there exists an H ma1 

order n. 
If the second but not the first condition is satisfied, 14 This fact, was apparently noted concurrently by the 

i.e., if > P > P;+,  when the set {p,): is properly ordered, to and have by Petrich overlooked [ll] w o r h g  the generalizations independently. t o  However other dimensior petrich 

then this same manipulation on the jth or ( j  + 1)th and to the simplex sets. 
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task is to h d  a n  S matrix in the basis { x : ~ ' } ; - ~  for the 
space X,-i. Then l/(1/=) times any Hadamard 
matrii of order n - j is such an S matrix, and its row 
vectors expressed as n tuples in the original basis {x,}:, 
along with the j n tuples already found, comprise the 
rows of the desired S matrix for the original X,. Rules 
for generating Hadamard matrices, of virtually all orders 
for which they are known to exist, are given by Paley [9]. 

I 
The existence of Hadamard matrices of order n leads 

to interesting consequences of a further corollary to 
Theotem IV. We first state and prove the corollary. 

Corollary IV-c: For every X ,  C 9 there exists at least 
one orthonormal basis {s , ( t )};  (with the corresponding 
pre-image set {di ( t)];  in BX,) for which 

min 
i c D ( g i )  = Ci1(gi)-l, 

and this achieves the mmi-min CD(Si) over all possible 
orthonormal bases of X,. 

torsJ3 t Proof: The proof directly follows the construction in 

while the proof of Theorem I V ,  with pi replaced by p,l for all 

is all j and p replaced by 2. That construction determines 
for any given positive definite n X n diagonal matrix A, 
with diagonal elements ordered either nonincreasing or 
  ion decreasing, a n  orthogonal matrix S such that the 
diagonal elements of S A S t  = C are equalized. The S 
so constructed for A = 6 has row vectors si for each of 
vhich C;'(Ej) = Cil(gi). This proves the existence. We 
prove that this achieves the maxi-min by contradiction. 
Assume there exists an orthonormal basis {s : ) ;  for X, 
such that 

men- 
nard f However it is clearly impossible for the largest of any 

set of real numbers to be less than the average. Q.E.D. 
nard 

the 

Now note that if there exis ts  a Hadamard matrix of 
order n, the S matrix o b t a i n e d  from it simultaneously 
equalizes the diagonal e lements  of E M S L  = C and of 
S M S ~  = c, and therefore simultaneously achieves maxi- 
min Cn(si)  and maxi-min CD ( ~ i )  for any given X, in 3. 
Similarly, if there exists a Hadalnard matrix of order 
n + 1, then the T matrix obtained from it specifies a 
simplex set {vi};+l in a n y  given X, such that the two 
concentrations are simultaneously maxi-minimized. It is 
significant to note that since M = n + 1 for simplex 
and IM = 2n for biorthogonal encodigs, Hadamard 
matrices of the appropriate orders for both types of code 
will exist whenever ill is a p o w e r  of 2. 
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