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Summary—IX_andau, Pollak, and Slepian, [4]-[6] have shown that
the prolate spheroidal wave functions play an important role in
determining thie approximate dimensionality of a space of functions

They have also shown the extent to which this space may be assumed
7 WT dimensional. The function space which they consider is
gtually infinite dimensional and a subset of £2, but it is not a linear
subspace of £ 2, nor in general does it necessarily contain any linear
subspace of dimensionality 2 WT.

However, in. the problem of the discrete M-nary channel with
additive Gaussian noise and perhaps other types of noise, one is
mainly concerned with given n-dimensional linear subspaces of £2
and given geommetric configurations of vectors in those subspaces.
Thus to be comveniently applied to this problem, the results of
Leadau, Pollale and Slepian should be reformulated in terms of
abitrary given: finite dimensional linear subspaces of £2, with given
geometric configurations therein. This paper undertakes such a
reformulation for some important special cases.

In particular, for the cases of orthogonal, biorthogonal and simplex
wnfigurations, it is shown that one can orient the configuration such
that the time-—bandwidth concentration of the least concentrated
vector in the configuration is maximized. The maxi~min criterion is
chosen because, as is also shown, the average concentration for
these three comfigurations is always independent of orientation.

I. InTRODUCTORY REMARKS

UCH OF MODERN detection theory was
formulated under the impetus of wartime and
ecarly post-war researches into radar. The

poblems involved echoes from large, relatively slow, and

ereryone was well aware that when the theory required
the limits” of & convolution integral over the time vari-
tble to be extended to plus and minus infinity, this
rally meant: “far enough to include virtually all the
rtum associated with a single echo—but not so far as
fo include substantial parts of the returns from other
ehoes”. Usually, this statement was practically meaning-
fil. The separation between echos was normally many
times the mominal duration of a single echo. Similar
ntegrals in the frequency domain could have their limits
ttended over an “effectively infinite” bandwidth with-
wt picking up interference from other radars or man-
mde sources of electromagnetic radiation because the
narow antenna beamwidth, generally high pointing angles
id often the geographical remoteness of the actual
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whose energies are concentrated in a given time bandwith WT. -

videly separated targets. In the context of that problem,
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systems considered gave a high degree of spatial isolation
that left the usable spectrum relatively uncrowded.
Unfortunately, these convenient circumstances generally
have never existed in the field of communications prob-
lems. With today’s dense, high velocity “threat clouds”
and the associated ambiguity and discrimination prob-
lems, spatial isolation can no longer so blithely be pre-
sumed in the context of many radar problems

In theory, the signal functions of the communications
problem and the echo functions of the multitarget radar
problem can be made identically zero outside some
arbitrarily specified time interval. An integration of a
single-signal function over limits just encompassing
this interval then gives the desired result without en-
croaching on time slots otherwise occupied. However,
in attempting to synthesize signal functions which are
absolutely time limited, one necessarily causes the corre-
sponding spectrum functions to spread beyond any
given finite limits, by virtue of the uncertainty principle
of Fourier transform theory.

Certainly there are interesting communications prob-
lems where by virtue of spatial isolation the entire
usable spectrum is, in effect, available at all times to
each channel (e.g., the local telephone system). Effec-
tive bandwidth is then limited solely by transmission
and noise properties of the medium or by practical
problems in the design of arbitrarily wideband terminal
equipment. However, this limit is not sharp, and leaves
the bandwidth difficult to define in terms of a single
numeric measure W. Then basic results of communica-
tion theory, including the very cornerstone relation

become correspondingly difficult to interpret.

The type of problem for which the sophi.stieated
theory is at once more clear in its interpretation and
more useful in its application is one in which the usable
spectrum is shared by frequency muljciplexing among 2
large number of channels with each assigned to a different
one of a set of contiguous sharply defined frequency
bands. Any spillover in frequency then. causes tl'le
chahnels to interfere with one another, just as spill
over in time causes the individual time-contiguous
signals on one channel to interfere W'l'ﬁh. one anot..her.
One must seek signal functions or sets of signal fgnchpns
which are simultaneously concentrated boﬂ) in time
and bandwidth. This paper is concerned with sets of
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functions which are time-bandwidth concentrationed and
have certain desirable geometric properties. It is directed
mainly at the communications problem just mentioned
but may have some interesting implications for the
many-target radar problem.

We present the results simply as a collection of
theorems and proofs. Interpretations thereof in the way
of practical applications would vary widely according
to individual circumstances and are therefore left largely
to the reader. The results, however, have been formu-
lated with a particular model in mind and with the
general intention of relating this model more closely to
the actual systems one might like to represent with it.

The model has been discussed quite extensively in the
literature (e.g., [1], (2], [3]). It constitutes a discrete
M-nary channel on which the M independent equi-
probable channel symbols are each represented by one of

a configuration of M vectors (usually of equal length)

in Euclidean n space. Once each 7 seconds, a vector is
received which consists of the sum of one of these symbol
veetors and a spherical Gaussian-distributed random
noise vector. The detection is by minimum distance
(maximum likelihood).

In this model, for every doublet (M, n) there is an
“optimum” configuration (see Shannon, [1]). In particular,
for any n and M = n 4 1 there is the “simplex,” while
for any n and M = 2n there is the “biorthogonal” con-
figuration.! Our results are specifically formulated in
terms of these configurations (and of the plain orthog-
onal configurations, which are not optimum but which
lead trivially to the biorthogonal).

The use of such configurations is meaningful only if
the vector model is valid. Shannon [1] points out the
obvious correspondence between the model and an actual
system wherein signaling is accomplished by using wave-
forms of electromagnetic energy which have nominal
duration T and nominal bandwidth W with n = 2WT.
He also warns his readers to invoke this correspondence at
their own peril. We eliminate one possible source of that
peril simply by assuming that n, W, and T are given num-
bers, not necessarily (although perhaps desirably) obeying
the n = 2WT relation even approximately. Reduction of
the remaining peril by reducing the spurious noiselike
effects of intersymbol interference and interchannel
interference is one end product of the results to follow.
The model requires that the noise be “white Gaussian®”
whereas the various spurious effects are unlikely to be so.

1 A “simplex’ configuration consists of the position vectors of
the vertices of a regular simplex centered at the origin in n space.
The n + 1 vectors are equi cross correlated with cross correlation of
any pair equal to —1/n. A “biorthogonal” configuration in n space
consists of n equal length mutually orthogonal vectors with the
negative of each. It could be termed “cross polytope’ by analogy to
the term “simplex,” but this is obviously too lacking in euphony.

2 “White Gaussian’’ noise is defined as noise whose vector
representation in the model has all its n orthogonal components
given by independent zero mean Gaussian variates with equal
variances. (The more usual notion of white Gaussian noise is suf-
ficient but not necessary for this more restricted notion.) A process
which is white Gaussian in this sense makes each event a spherical
Gaussian n variate.
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To the extent that they are not white Gaussian,
effects must be kept negligibly small compared to w}
ever true noise or noise-like effects are white Gauss
and should, of course, be kept small in order to red
the total noise.

Functions will be related to vectors in the follow
manner. A set of n linearly independent functions {z;(
will be given. We may assume without loss of genera
that they are orthonormal such that

©

f 5()z,(0) dt = 5, (Kronecker delta).

These will be the basis functions which define the n sp:
Any square integrable function §(f) may be represer
as a vector in the space by the ordered n tuple of numl

«©

v, = f_ 8(t),(0) d.

Then the function

0 = 3 o)

is the orthogonal projection of 8(t) onto the = space;
remaining component §(t) — s(t) is orthogonal to
space and is “lost”’ in the representation of §().

For simplicity of presentation, we will assume for
remainder of the paper that the functions z;(f)
identically zero outside the interval (0, T'). This
llustrate the salient features of the more general
and will require a somewhat briefer development. An
other simplifications, this permits a direct connec
between the functions z;(#) and the impulse respo
of n “sampling networks” in the receiver of an ac
system. Thus by letting z;(t) = h;(T — t) where h;(¢) 1
impulse response of the jth sampling network, o;
comes the sampled value at time 7' of the output o
jth network when the input is §(¢).°

We are interested primarily in the case where
a sequence of signal waveforms,

() = 20 8,(t — kD),

and where {§;(6)}% is the set of M/ channel symbol v
forms as they appear at the inputs to the bank of rec
sampling networks. Thus the ordered n tuple of ot
sample values at ¢ = T represents §,,, while the n -
of sample values at t = (k + 1) T represents 3,
course, if each of the §,(¢) are not absolutely time-lir
to (0, T), then the sample values at ¢t = (X + 1)7
not be a “pure” representation of §;, (¢ — k7T) but

3 For further simplification, we will assume either 1) th
signalling is at baseband for the channeli n question, with
channels occupying modulation bands which start just abov
baseband, or 2) that the signals are generated at baseband,
lated up to some assigned RF band, then coherently demod
back to baseband after reception. The modulation-demodu
process is conceptually included in the channel, but all fil
which follows demodulation is assumed to be included as_p
the sampling networks. These assumptions are necessary in
that we may invoke certain prior results which apply oz
baseband signals.
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ncide contributions from the transient ‘“tails’” of
wilier arrivals and the anticipatory buildups to later
arivals. This is one form of intersymbol interference.*
ismentioned above, however, we combine this with the
oise and define the “pure” representation of §(t) by

.
oo = [ 80 di
0

i O'iixi(t>'

i=1

Si(t)

Tor lack of any better or more reasonably simple mea-
areof the intersymbol interference, we will use a measure
irelative energy concentration within (0, 7') of each of the
&{). This will be most meaningful when the restriction
o §(t) to (0, T") is in fact equal to s;(f) so that none of
the energy of 8, (¢) within (0, T') is lost in the projection.
4 smilar measure of spectral energy concentration
within (=W, W) in the frequency domain will be used
sameasure of interchannel interference.

If the signal that one must transmit in order to have
i(t) appear at the veceiver has spectral energy com-
pnents which “‘spill over” beyond the assigned base-
bnd (=W, W), then this will cause a noise-like inter-
frence to appear within the modulation bands assigned
fo other channels. Suppose we were to confine our own
mnsmission entirely to the assigned band. Then, if our
wlictude for the other channel users was reciprocated
h kind, we would have eliminated one form of inter-
damnel interference within our own channel, viz., that
thich arises from other channels’ transmission appearing
now demodulated wave within our assigned baseband
(-, W). However, we have already assumed that
the impulse responses of our sampling networks are
solutely time limited and therefore cannot be abso-
litely band limited. They must admit some energy from
utside the (— W, W) band, and our demodulation of
fhe other channels’ transmitted energy will place it in
hnds starting just outside (— W, W). This latter form
mild be measured by the relative spectral energy con-
witiation of the z;(¢), but it is measured equally well
ud more conveniently by the concentration of the
i{l), since this more nearly represents the comparative
lstubing effect as and when each different signal be-
umes the one whose presence one is attempting to
leecs. We will also assume by the above philosophy
ifreciprocation that the first kind of interchannel inter-
fence is estimated by the spectral concentration of
wrown transmitted signals, and that this in turn must
temeasured by the spectral concentration of the signals
i(l) which appear in the receiver (since the transmission
tancteristics of the medium are not specified). That
5 we assume the other users will avoid our assigned

Petral band approximately to the same degree that
Te avoid theirs.

‘Note that if the Z (%) were not identically zero outside of

@v T), then a similar interference effect would appear even if the §;
Tee absolutely time limited.

I
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With this background we may now proceed to the
business at hand. In Section IT, we begin with a brief
review of some important recent results in the theory of
time-bandwidth concentrated functions which will be
the basis for our own results. Since the final results are
simply set down in Section IV in the form of Theorem:
Proof, with little intervening discussion, the results

will be summarized and discussed beforehand in Section
I1T.

II. REview oF BACKGROUND THEORY

This paper is concerned with the extent to which
sets of functions forming simplex and biorthogonal
vector configurations in n space can be simultaneously
concentrated in a time interval of width T and in a
bandwidth interval (—W, W). In particular, it seeks
to explore the dependence of this concentration on n,
W, T, and the particular n-dimensional function space
in which the configuration is imbedded. Clearly this
must be related in some way to the uncertainty principle
of Fourier transform theory.

In a series of recent papers [4], [5], [6], Landau Pollak,
and Slepian have shown that the prolate spheroidal
wave functions (PSWI’s) play a fundamental role in
this uncertainty principle. Among the many significant
results in this monumental work, they have at last
provided a rigorous mathematical statement of the old
engineering addage, that the space of functions time
bandwidth concentrated in WT is 2WT dimensional.
In view of this, it would seem that the question of di-
mensionality in relating the vector model to actual
channels, as discussed in Section I, is now properly
answered. Further, the manner in which they provide
this answer in terms of time-bandwidth concentration
would seem to provide answers simultaneously to the
interference problems.

Unfortunately, their results are formulated from a
different point of view and in terms of subsets of the set
of functions in £2 rather than in terms of finite di-
mensional subspaces of £2 itself. These subsets 1) in
general may not contain any simplex set of n 4 1 funec-
tions or orthogonal set of n functions if n = [2WT] + 1
(one plus the largest integer in 2WT), 2) almost surely
will not contain any entire n-dimensional subspace if
n = [2WT] 4+ 1, and 3) in general may not even con-
tain any subspace of dimensionality greater than 1.
(Any which contain no one-dimensional subspace must
be empty.) Thus we must reformulate their results if
we are to apply them to finite subspaces. The following
brief review of their more pertinent results is provided
for the reader’s convenience.

We will be interested mainly in two infinite dimensional
linear subspaces of £2, which are the ranges of two
operators whose domain is all of £;. Norms are (:leﬁnezd
throughout to be the ordinary Hilbert norms in £.
Following Landau, Pollak, and Slepian, we c.ieﬁne the
operator D to be that of absolute time truncation to the
interval (—T/2, T/2), and operator B to be that of
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absolute bandwidth limiting to the interval (—W, W).?
Their ranges are denoted © and ®, respectively. Landau,
Pollak, and Slepian focus their attention mainly on
functions in ®, but for reasons previously explained we
choose rather to concentrate on ©. Thus we seek the
eigenvectors and eigenvalues of the combined operator
DB whose eigenvectors lie in ©, rather than that of
BD whose eigenvectors lie in &. As they point out, how-
ever, our form follows directly from theirs by time-fre-
quency duality.
The eigenvector solutions to

N = DBf

are the time truncated PSWF’s {Dy,(f; ¢)}5 in which ¢
is a parameter equal to #WT, with eigenvalues {\;(c)}%;
1 >N >N > -+ > 0. The N\;(c) are monotone in-
creasing functions of ¢ for all 7. We normalize ||Dy.||* =1,
and hereafter drop the prefixed operator D such that
the notation ¢, implies time truncated PSWEF’s. Then

s, ¥3) = 84y
(Bll’i,kafi) = Nidy;.

Relative frequency concentration Cy(f) of any f ¢ D
is defined by

Cs() = I 11BfIP.

The function ¢, is the maximally concentrated func-
tion in D; ¢, is the maximally concentrated of all fune-
tions orthogonal to ¢, in D, ete.

In terms of the {A;}%, Cz(f) for arbitrary f ¢ D is
given by

in which the {a;}7 are the coefficients of the Fourier
expansion of f in the PSWE’s.

Landau, Pollak, and Slepian [4]-[6] prove the following
two theorems ([6], Theorems 1 and 3):

Theorem: Let ®(e) be the subset of all functions f & D
for which Cz(f) > 1 — ¢. Then for any N the first
N 4+ 1 PSWF’s achieve the final minimum in

min  max min E

oot 1o fa,)s |1 ‘f - X
Theorem: For all f e ®(e) and N = [2WT],
oy 17 [ = o] < =5

The latter states that for all f ¢ ®(¢), a Fourier ex-
pansion in PSWE’s using [2WT] -+ 1 degrees of freedom
is sufficient to represent f to within a relative integrated
square error of 12¢°, and in this sense, the space of

2

2 2

< 126,

5 At this point, in order to follow the notation of [4]-[6], we make
a shift of T'/2 in the zero reference time to center the 7' interval.
This merely means that the impulses which yield the impulse
responsef discussed in the introduction occur at —7'/2 in this new
time scale.

absolutely time-limited, nominally band-limited {
tions is 2WT dimensional. (Similar results are sk
for the more general case of nominally time-bandw
limited functions.)

However, in the context of the problem as out!
previously, n is a number already chosen, with the al
result as one criterion but subject to other considerar
as well. In fact the n-dimensional subspace itself w
be chosen, and this would not likely be one spanne
the first n or any n PSWE’s. The PSWE’s are not
tabulated nor are they the impulse responses of
known networks. Moreover, we would not be intere
in any finite representation of signals or noise in t
of the PSWZI’s, since the n space we have chosen .
fact the very space of representations to which we |
decided to limit ourselves in the actual detection.

The pertinent question for the problem as state
not, “What is the effective dimensionality of a subst
all functions time bandwidth concentrated to a g
degree?”’, but rather, “What is the effective conces
tion of a given configuration in a given n-dimens:
linear subspace of £2?” We will define this effe
concentration to be the concentration of the least
centrated vector in the configuration when it is orie
to maximize this least concentration. This maxi
criterion is used because, as shown below, the ave
concentration for each of the particular configuras
considered herein is independent of orientation.

III. SuMMARY AND DIscussioNn

We are now prepared to summarize the result
follow. Let X, be an n-dimensional linear subspac
D. Then it is shown (Theorem II1I) that the averag
the concentrations of the vectors in any orthono
set of n vectors in X, is the same as for any othe:
thonormal set of n vectors in X,. From this it is sk
(Corollary III-g) that the average of the concentra
of any simplex set of n + 1 vectors in X, has the s
value as for an orthonormal set.

Next it is shown (Theorem IV) that for every n
X, C ®, there exists at least one orthonormal k
each of whose vectors has concentration exactly e
to the average concentration. From this it follows triv
(Corollary (IV-a) that there exists a biorthogonal s
2n vectors with the same property. This is clearly
maxi-minimally concentrated biorthogonal configurs
in X,. Next it is shown (Corollary IV-b) that sin
configurations, each of whose vectors has concentr:
equal to the average, do not exist in general. How
special cases for which they do exist are noted, a
method valid for “most” if not all other cases is out!
for finding simplex configurations whose least cox
trated vectors very nearly achieve the average.
configurations obtained by this method are believe
be maxi-minimally concentrated, but at present th
pure conjecture.

Vectors in these maxi-minimally econcentrated
figurations are expressed as n tuples in what is de:
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(xiy 1;,-) =
(B.'I}i, Bil;,)

Such a basis is shown (Theorem I') to exist for all X, C D.
In fact, {z.}7 and {u:}}, respectively, are the normalized
eigenvectors and eigenvalues of a certain operator on X,
analogous to the operation DB on D itself. The set
funetion Tr (X,) is defined as the trace of this operator
on X,, 4e, Tr (X,) = 2.7 u;. Therefore, the average
concentration for any orthonormal basis of X, is g =
I/n Tr (X,). For each given X,, the u;, and therefore
E, are clearly monotone increasing functions of ¢ = #W7T
(the z; themselves depend parametrically on the param-
gter ¢) and are semi-ordered. 1 > py(c) > >
pa_i(c) > O foralle > 0. _

Thus at least for biorthogonal configurations, the
quantity of interest for determining e from given W7T
and X, is g(c) = 1 — €. In the special cases noted, this
same quantity determines e from given W1 and X, for

0,

Bi0;;.

| simplex configurations. That is, in line with the notation

of [4]-[6], we measure concentration by the parameter e
using the relation maxi-min Cjp 1 — €. For these
configurations, maxi-min €z = g. For simplex configura-
tions in general, maxi-min Cp will equal a weighted
average p; with weights fairly close to unity, and there-
fore @ will be a good upper bound approximation to
maxi-min Cjp.

The following is suggested as a formal scheme for

| choosing a X, and finding {z;}7 and {u;}? for it when

WT is given. First find z;(¢) as the most B-concentrated
unit energetic function in » which one is willing and
able to implement.’® Next find z,(f) as the most B-con-
centrated unit energetic function orthogonal to z, in ©
which one is willing and able to implement. Continue

- in this manner to obtain {z;}7. Clearly, this spans a X,
- and by construction, it is in fact a proper basis for X,,.”
- Except for sign changes, it is the unique proper basis if

the concentrations of the z; are strictly ordered. Pre-
sumably, the numerical values of the {u;}7 will be ob-
tained as a by-product of the calculations leading to
the choice of the {z;}7. As a guide in determining how
much effort it is profitable to expend on the implementa-
tion of the {z,}}, it is shown (Theorem II) that for any
Xﬂ C D, ul(c) < )‘0(C>) /1'2(6> < )\1(6)7 T ."‘n(c> < )‘n—l(c)
for all ¢, where the A, are the eigenvalues of DB as noted
previously. We might note, incidently, and without
proof herein that equality can hold for some value of ¢

h(t; That (i%, im%ement with a network whose impulse response is
= T - 1)

7 Implied in this is the premise that if one is willing and able
to implement the {z;}:" one is willing and able to implement any
linear combination of them. The construction therefore imparts
to the chosen {z;}; a property unique to the proper basis, v:z.,
that «; is the most concentrated vector in X, orthogonal to z: for
dli<jandallj =1,2 -, n

IEEE TRANSACTIONS ON INFORMATION THEORY

s 5 “proper” basis of X,. This basis {w:}? has the double
orthogonality property
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and for some ¢ = k only if it holds for all 7 < k, in which
case z;(I; ¢) = ¥,-,(¢t; ¢) for all ¢ < k-at that value of c.

In this work, we have made no attempt at a direct
clarification of the significance of Landau and Pollak’s
Theorem 3 [6] for the class of problems considered.
We have, in fact, taken a directly opposite viewpoint
in seeking to determine the extent to which a particular
n~-dimensional signal space (a linear subspace of D) can
be considered WT-limited in a particular problem, rather
than seeking to determine the extent to which the entire
subset, of functions in © which are B concentrated by a
given amount (not a linear subspace of D) can be con-
sidered to be 2W T dimensional. Thus we virtually abandon
the a priori assumption that n 2WT. Nevertheless,
our results are for the most part a straightforward re-
formulation of Landau and Pollak’s from the alternate
viewpoint and therefore retain a close relation to theirs.
When n 2WT, one should expect that the task of
finding and implementing a X, for which 1/n Tr (X,)
represents a high degree of concentration should prove
relatively easy. As n is decreased below 2W T, it should be-
come progressively easier. Conversely, if n=2WT/(1—¢"),
then 1/n Tr (X,) < 1 — € for all X, C D. This follows
as a direet consequence of Corollary II-a which states
Tr X,) < Tr (¥,) < Tr (D) = 2WT.

The numerical significance of the differences between
the two approaches may be illustrated by some examples
taken from Table 1.° One might, for example, require
that all signal functions be at least 90 per cent con-
centrated. But clearly from the table, ®(~/0.1) for
2wT 2.55 contains only two mutually orthogonal
vectors and for 2WT = 5.10 contains only five mutually
orthogonal vectors, whereas, [2WT] + 1 equals 3 and
6 respectively, for the two cases. Unfortunately, data
arc not available on the behavior of A,(c) for larger n
and larger ¢ = 7WT, but it appears quite possible that
®(+/0.1) for large 2WT contains more than [2WT] + 1
mutually orthogonal wvectors. An upper bound is
[2WT/0.9], and it is believed that this upper bound is
approached asymptotically with increasing 2W7T. Thus
if one is interested in orthogonal sets of signal functions

‘WT-limited to a prescribed degree, [2WT] + 1 is no

more than an estimate of the total number of such func-
tions theoretically available. The approach adopted
herein can be used to determine the actual number
available in practice. It is interesting also to note that the
space spanned by the orthogonal set can contain a
vector considerably less concentrated than the vectors
in the set. For example, ®(1/0.1) for 2WT 5.10
contains five mutually orthogonal vectors whose actual
concentrations are all equal to 094", yet the 5 space
they span contains a vector (not in ®(+/0.1)) whose
concentration is less than 0.75.

8 Data for this table are taken from Slepian and Pollak [4],
Table 1. i
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TABLE I
TABULATIONS OF An-i AND A VS 7 FOR
Two Varues or 2WT = 2¢/wr.
n 2WT = 2.55 2WT =5.10
Mot by Anet N
1 0.99589 0.99589 1.00000~ 1.00000~
2 0.91211 0.95400 0.99988 0.99994
3 0.51905 0.80901 0.99700 0.99896
4 0.11021 0.63431 0.96055 0.98936
5 0.00883 0.50922 0.74790 0.94107
6 0.00038 0.4244]1 0.32028 0.83760
7 0.00001 0.36378 0.06078 0.72663
8 0.0%2 0.31831 0.00613 0.63656
9 0.0%83 0.28294 0.00042 0.56588

Thus far we have considered only an optimization
with respect to the receiver representations {s;} of the
received signals. Clearly, if the actual received signals
are themselves virtually time-limited (no intersymbol
interference), then they are identical to the {s;}. In
this case, both types of interchannel interference de-
seribed in the introduction are mini-maxed. If, alter-
natively, the actual received signals are virtually band-
limited (no interchannel interference of the first type)
then it is shown (Corollary I-a) that for every element
2 ¢ X, there exists a unique element £ ¢ ® such that
Dz = zx. From this and Theorem IIT it follows (Corollary
ITI-b) that for any orthonormal set {s;(t)}7 of X, the
average reciprocal time concentration C3'(3,) of the corre-
sponding set {5:;(t)}; is the same as for any other or-
thonormal basis of X, where Cr(f) = ||f||™® ||Df|*. The
same is shown (Corollary III-c) to be true of any sim-
plex set of n 4+ 1 vectors in X,. Finally it is shown
(Corollary IV-c) that for any n and any X, C D there
exists an orthonormal basis {s,(¢)}} for which

m,l:m CD(gi) = 051(§i)-1j

and that this achieves the maxi-min C,(3;) over all
orthonormal bases of X,. In this paper, we do not attempt
either to prove or disprove the existence in general of
an orthonormal basis which simultaneously achieves
maxi-min Cx(s;) and maxi-min Cp(§;). However, interest-
ing special cases in which they are achieved simul-
taneously are noted. Similar special cases lead to simul-
taneous achievement of both maxi-mins for simplex
configurations.

With. regard to the more general case of transmitted
signals which -are neither virtually time-limited nor
virtually band-limited, little can be said in line with the
above. The signals §; for which D3, = s; are no longer
unique. One might investigate transmitted signals from
the space D + ®, such as as; + (1 — a)§; where §, ¢ ®
as in the preceding paragraph and 0 < ¢ < 1. For specific
problems this may indicate a desirable compromise
between no intersymbol interference and no interchannel

Dollard: Time-Bandwidth Conceniration of Signal Functions

interference of the first type. However, a suffici
accurate model of a given physical situation may
clude a choice of transmitter functions from & -
A theory sufficiently general to cover this case is be
the scope of the present effort.

IV. DeramLep Resvrrs

Theorem I: For each X, C D,-there exists a basts {z:(t
with the double orthogonality property (r:, ;) =

(Bx;, Bx;) = p: 8:;. (It is termed the “proper ba:

Proof: The proof follows trivially from the obs
tion® that any projection operator P is characterize

P is self adjoint
P? = P ( P is idempotent).

B is such a projection (of £2 onto ®). Define Px a:
projection of £2 onto X, and note that Pxz = z I
z € X,. Then the combined operator PxB is compl
continuous with n independent solutions to

ur = PxBx.

The eigenvectors associated with unequal eigenv:
are orthogonal, and those associated with equal e
values can be chosen as orthogonal. All can of cours
normalized in £2. Denote these eigenvectors and e
values by {z:}? and {u,}?, respectively. Then

(Bxi: Bx:) = (Bzxiy xi) = (Bxiy CC,:)
= (Bxi; PXx:) = (PxB.’,E“ xi)
= pi(@:, 2} = padiy Q.

Corollary I-a: For every element x & X, there s a u
element & & ® such that D& = x. Moreover, £ ¢ BX..

Proof: Uniqueness follows from the fact that «
element f(f) ¢ ® is an entire function of time
therefore completely determined by its behavic
(—T/2, T/2) or any other finite interval. Exister
shown by construction. Note that the operator
and D are naturally ordered’® Px < D which in
P<D = DPy = Px. Since z & X,, Pxz = z. Ther
if Df = x, PxDi = Pxi = z. Let the expansion o
{2:)" be given by z = .7 a:x:. Then & = D7 (a:/w
clearly satisfies Px# = z, and indeed & ¢ BX,. Sin
us > 0, £ always exists in the form given. Q

Theorem II: For any X, C D, the eigenvalues {u:(c
PyB are majorized by the first n eigenvalues {\:(
of DB. That 1s,

m©) < N0, mfe) M@, -+r, w0 < R

9 See Landau and Pollak [6], p. 1298. See also Dunfor
Schwartz (7), p. 480. Dunford and Schwartz define a more ¢
projection (nonorthogonal) which does not require self-adjol
However, the present work deals only with orthogonal proje

10 See Dunford and Schwartz [7], p. 481.
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Proof: This theorem in more general form was ap-
prently first proved by Weyl [8]. The following simple
poof of the above form is given for the reader’s con-
venience. Let, W&,  © be the space spanned by the first
1 PSWE’s {¢,}7~! and let Py be the projection of £7
oto ¥,. Let £, denote Pyz; where z; e {z:}]. Then
dther (Case 1) {4#;}7 is an independent set, or (Case 2)
itis a dependent set, i.e., {£:]] either spans or does not
span ..

Thus, Case 1: There exists a unique linear combina-~
tion of the £; satisfying

n
Z a,-:i:‘i = a‘//n—l
1

0<a<l.

n
>d=1;
1

The vector z = Z’; a.x; 1s a unit energetic vector in X,.
Since {¥:}% is complete in D and X, C D, = may be
mpanded in a Fourier series in the {y.}5. This yields

2= apus + 2 ais

From this

Ca(@) = Moy + 20 &N < M.

i=n

However, by virtue of the double orthogonality of {z.}3,
Cyx) = Z Qi >
1

A Hn < )\n—l-

Case 2: There exists at least one linear combination of
the £; for which

n

E a:g:(?)

i
o

> ad = 1.

1

The vector £ = D7 a:x; ¢ X, C D. Therefore

x=20¢i¢’i§ Zaﬁ=1

i=n i=n

CB(x) = Z )\z‘a? < My

i=n

CB(x) = Z a?"‘i > Fon,
1

A Mo < )\n—l‘

October

In ecither case, p, < N1 Now let X, _, denote the space
spanned by {z;}7™, and ¥,_, denote the spaced spanned
by {¥:}57. Repeat the above argument to show
Ba-i < Moo Repeat again for {u:}37%. The final state-

ment u; < )\, is obvious since y, is the most concentrated
vector in D. Q.E.D.

We now define the set function Tr (X,) to be the
trace of the operator P,.B on X,. That is, Tr X,) = Z’,‘ ™
It follows from Theorem II that Tr X,) < Tr (¥,).
Clearly Tr (¥,) < TR (D) = 2% \; sinee \; > 0 for all
1. It is also clear from the results of [4], [5] and [6] that
Tr (D) (which is the trace of DB on D) equals the trace
of BD on ®. The operation BDf is defined as

T/2 . ,
8o = [ SREES D iy a

from which

7/2 . ,
Trace 8D = [ av | im 2 0)]

/2 mr (= 1)
=2WT.
We have thus proven:

Corollary II-a: TR (X,) £ Tr(¥,) < TR (D) = 2WT
forall X, C .

We next state and prove:

Theorem III: Given any orthomormal basts {s,(t)}7 for
X, C D, the average concentration C(s;) = 1/n Y* Cys(s:)
exactly equals 1/n Tr (X,) and s therefore the same for
all orthonormal bases of given X,.

Proof: Each of the functions s; = {s;}} may be ex-
pressed as

si(f) = Z o2;(1)
1=1
wherein

n
E Oik0i = 5-’:‘-

k=1

Let S denote the n X n matrix (s:;);%,j = 1,2, --- , n.
S is orthogonal by definition. Now let M denote the

n X m matrix (ui;);4, 7 = 1,2, --- , n wherein

{o, i j}
Mij = . [
My 1= ]

Clearly Trace M = Tr (X,). The transformation
SMS' = C.

is a similarity transform and therefore trace invariant.
Note that the diagonal element ¢;; (¢ = 1, 2, -+, n)

o

f

T O ST

PO S ke

TP
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of C is given by
Ciy = Z Vg:’l‘i = CB(Si)-
i=1
Therefore

Trace C = Tr (X,) = Y Cals)

- or

Calo) = %Tr (X.). QED.

Corollary III-a: Given any X, C D and any sumplex
set of m 4+ 1 equi-energetic equicrosscorrelated wvectors
{0:(0) 11", the average concentration

n+1

Cpls) = 1/(n + 1) 12 Cr.)

exactly equals 1/n Tr (X,) and is therefore the same for all
stmplex sets in the given X,.

Proof: We assume without loss of generality that the
v; are unit energetic. Then each of the functions v, € {», brt
may be expressed as :

v,(t) = 4”; &a;(t)

wherein (from the definition of simplex set)’

. (1, =
Z Eubi = 1 .
k=1 —5, 7 £ ]J .

Let V denote the (n 4+ 1) X 7 matrix (&:;). then
foom I' = VMV® where M is the diagonal n X n
matrix (u;) as above. Note that the diagonal element
Yii £ =1,2, --- ;7 + 1) of T'is given by

Yii = };1 Eim = Cs(,).

Now from V form the (n + 1) X (n 4+ 1) orthogonal
matrix V by adding an (n 4+ 1)th column all of whose
elements are +1/4/n, (thus making the row vectors
mutually orthogonal), then scaling by vVn/(n + 1)
(to renormalize). Also form the (n -+ ) X (n + 1)
diagonal matrix M as the direct sum of B and the 1 X 1
matrix (z) where g = 1/n Tr (X,). Then trace
M = (n + 1)/n Tr (X,), and the similarity transform
VMV* = T is trace invariant. Note that the diagonal
element 9:; (1 = 1,2, -+, n + 1) of I is now given by

o n S 1
’)’ii—n_[_lf;f:'u#f“i'n“r_lﬂ

n
n -+ 1

Crlv,) + ,;%

Then
n+1
Trace I = ’l—:;—l Te () = 35 9
n n+1 1 X
=T 2 Cal) + 5 Tr (X,
Therefore
n+1
n —
n+1 ; CB(Ui) =Tr (Xn)
or
1 |
Crl,;) = - Tr (X,). Q.

Corollary I1I-b: Given any orthonormal basis {s(t)}
X.,, denote by {3:(t)}7 the unique set in BX, for u
D3§; = s;. Then the average reciprocal time concentre

@) = 1/n 2» C;1(5) exactly equals the averag
ciprocal eigenvalue u*, and is therefore the same fo
orthonormal bases of X,.

Proof: By definition,
Co'E) = 1D [ &l [F = [lsel|™ [[sil [ = []si]I”
since ||s;||* = 1. But from Theorem I,
n 0_2
c ]2 — S T
P = 32

Now denote by M the diagonal matrix (1/u;)"" anc
C the similarity transform SMS® = C. Note that
diagonal element &, of € is given by

n

2
Cis = Z% = |[5]]".

i=1 ]

Therefore

Trace ¢ = = Trace M = F Q.I

[[s:] ] =

S =
S

Corollary III-c: Given any simplex set {v.(f)}+*
X., the average recirpocal time concentration Cp'(B;) exc
equals the averagé reciprocal eigenvalue u™* and 1s there

the same for all simplex sets in X.,.

Proof: Following the proofs of III-a and {'II—'b, 1
that the diagonal element 4,; of T = VMV* is given

%

= 051(77¢)-

n
Vi = Z
i=1

¥
7

=

1 M is in fact M-t
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form V as above, and M as the direct sum of M and the
| X 1 matrix (). Then as above,

n+l
= n - 1 ~
Trace T' = m Z,: Cp @) + Y—LTrace M
— Trace M = [ : 1 Trace M.

Therefore,

C;l(@'i) = %Tra,ce M = ﬁl . QED

We have proven that simplex and orthogonal (and
therefore, as we shall see, biorthogonal) configurations,
ofn+ 1 and n (and 2n) vectors, respectively, in a given
X, all have the same average concentration. One might
advance heuristic geometric arguments to show that any
onfiguration with sufficient symmetry would have this
property; indeed that any optimum code configuration
s defined in [1] or [3], even those with such misfit values
of ¥ and n that symmetry is totally lacking, would have
“very nearly’’ this property. That is, the average con-
entration is at most weakly dependent on orientation
of the configuration. We therefore adopt a maxi-minimal
aiterion, and proceed to show how one can find maxi-
ninimally concentrated simplex and biorthogonal con-
figurations.

Theorem IV : Gaven any X, C D, there exists at least one
othonormal basis {s;(€)}7 such that Cx(s;) = 1/n Tr X,
foralle =1,2, -+, n.

Proof: We have only to prove that there exists an
1 X n orthogonal S matrix such that the similarity
transform SIMS*=C yields ¢;;=c¢;; forall 4, j=1,2, - -+ , n.
The following constructive proof was suggested by
landau.’* Consider the pair of row vectors (n tuples) in
the proper basis {z,}?:

<+ /E;_”",o,o,m,o,o,—I- &1__:__ﬂ>
M Hn H1 = Ha

2 Wiy U B — Hn
( ™y __#nJOJ 0: 70:0:—{_ ”1_”1‘)‘

These are mutually orthogonal and unit energetic. The
frst has concentration

B — M M — R - l
(#l — #n)ﬂx + <%_u1 — un)ﬂ" =Q = nTr X,).

The second has concentration

#1——> (ﬁ—u)
= u ) - — =z
(ul — M 1+ P—— g1+ pn — B

“In a private conversation with the author.
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Thg first will constitute the first row of the final 8
matrix. From the second form, the vector

A M — QO o —
B = —\[—Fg, + Ly
M1 = Wp By~ Uy

Then £, is unit energetic and orthogonal to all the
ze{z:}3". Moreover B#, is orthogonal to all the
Bzre{Bz.}3". Let X,.. C D be the space spanned by
£ U {z:}37" and let {z/]™" be the reordering of this
orthonormal basis to place g, = p, + u, — E in its correct
position in {u/}?™*. Note that now

n—1
Tr(Xn—l) = W +p'n - ﬁ+ Z#l

=TrX,) -z

n—1
n

Tr (X,).

The entire process is then repeated to form

1) An (n — 1) tuple in the basis {/}7"! which is unit
energetic, has concentration 1/(n — 1) Tr (X,_,1) =
1/n Tr (X,), and becomes an n tuple in the original
basis {z;}] orthogonal to the one previously found.
It constitutes the second-row of S

2) A new space X, for which Tr (X, =
(n —2)/(n — 1) Tr (X,-1) = (n — 2)/n Tr (X,).

3) A proper basis {z!}7% for X,_. with concentra-

tions {u}’}37% in proper sequence.

The process is repeated n — 3 more times, thereby generat-

ing a total of n — 1 n tuples (rows of S) which are all

mutually orthogonal, unit energetic, and have concen-
trations 1/n Tr (X,). The “remainder space” X, has

Tr (X)) = 1/n Tr (X,). Its single unit energetic basis

vector 2™ therefore has concentration 1/n Tr (X,)

also. When expressed as an n tuple in {xz;}} it is or-

thogonal to the first n» — 1 rows of S just found, and
therefore can form the nth row to complete an orthogonal
matrix 8§ = (¢:;), 4, 1 = 1,2, -+, n, with the desired
property. The vectors s; & {s;}} are of course formed by

n
8; = Z 0;ilj.
i=1

Corollary IV-a: Given any X, C D, there exisis an equi-
energetic biorthogonal code set of 2n vectors in X, each of
which has concentration 1/n Tr (X,).

Proof: The proof is trivial. We need only form the
set of 2n vectors { +as;}? from {s;}} just found and note
that Cp(as;) = Cp(—as;) = Cp(s:).

Corollary IV-b: It is not true in general thal given
an X, there exists a simplex set of n + 1 code vectors in Xy
each of which has concentration 1/n Tr (X,).

Proof: To prove the corollary as stated, we need only
cite a single example to contradict the converse. We

Q.E.D.
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choose the trivial example of a “simplex” (triangle)
in X,. The code set consists of three vectors in the plane,
separated by 120°. Given any u,, p» such that 1 > u; >
ps > 0, the orientation which maximizes the least con-
centration is that which places one of the vectors along
the 2, axis. Then the three concentrations are gy,
1y, + 3, and again tu, + 3u.. Thus the maxi-minimal
concentration 18 u; + 2u. < 3y + Iu, = 3 Tr (Xo).
(Of course if p, = p,, then every vector in the space has
concentration 3 Tr (X,), but this does not occur in
general). Q.E.D.

The corollary is intended to imply the existence of a
wide class of cases for which a maxi-min equal to the
average can be achieved, and a correspondingly wide or
wider class for which it cannot. Unfortunately, the proof
given contributes little to the implication. Following the
proof of Corollary III-a, one can easily show that a
necessary and sufficient condition for the existence of an
equiconcentrated simplex code in X, is the existence of an
orthogonal (n + 1) X (n + 1) matrix V having the same
properties as those of the matrix S in Theorem IV (but
not, necessarily constructed by the method given in the
proof of Theorem IV). That is, to be a V matrix
it must contain a column all of whose elements are
+1/(vn + 1), while to be simultaneously an S matrix
from Theorem IV for the ficticious space }Enﬂ, for which
the eigenvalues of PsB are g\U {p,}}, it must equalize the
diagonal elements of VMV* = I'; however, this merely
translates the problem to that of finding necessary and
sufficient conditions for the existence of such a ¥, and
these are not known. A sufficient condition, independent
of the actual eigenvalues {p;}} or of the actual space
X, itself, is the existence of a Hadamard matrix H of
order n + 1. (See Paley [9] and Peterson [10].)

A Hadamard matrix is a square matrix all of whose
elements are =41, and whose row vectors are mutually
orthogonal. It remains Hadamard if the signs of all
elements in any row or column are changed. Thus it
may always be transformed to have all plus elements in
the final column. If a Hadamard matrix H of order n + 1
exists, then 1/(+/n 4+ 1) times the H in this form will
always yield the desired V. (The proof is by inspection).

Another set of sufficient conditions is that the set
{u:}? of eigenvalues of PxB on X, contain one value
w; = [, and that there exist a Hadamard matrix of order
n. Cast the Hadamard matrix in a form such that the
jth column has all elements negative. Then scale by
V7 4+ 1/n and replace the fth column by a column
all of whose elements are —1/n. Finally add an additional
row vector containing all zeros except for a -+ 1 in this
jth column. This yields an (n + 1) X n V matrix directly,
and the reader may easily verify that VMV'® = T with
v = 1/nTr (X,) foralli =1,2, --- ,n+ 1.

If the second but not the first condition is satisfied,
1.e.,if p; > E > p;+1 when the set {u;}} is properly ordered,
then this same manipulation on the jth or (§j + 1)th

column of H yields a V matrix for X, whose least
centrated vector has concentration g — (u; — &)
pis1, respectively. The former cannot be improve
small perturbations in the orientation of the confi
tion. The latter can, however, be improved by apg
to the ¥V matrix the simple rotation operation

L 0 0 |

_ cos 6 sin 0) I
k=10 (—sin 6 cos 6

0 0 In-i-2

in which I, is the identity matrix of order &, and ¢
is given by

2p— 14+ V1+2(n+ 1p—nln+

sin® = p — 2

n*n + 1) + 4
_ F = Bin
Mi " Mi+1

Then Viewy = ViR contains n/2 4+ 1 row vect
with concentrations all equal and slightly below z, T
the remaining n/2 row vectors have concentration
equal and slightly above z. The lower value is

Cair1) = B — 2(n; — Bi+1)

90 — 1+ V1 F+n’n + 1)p —n'ln +
) i+ 1) + 4

min

P Cs,).

Il

The greater of this number and g — (; — B/
minimal concentration when the original manipul
is applied to the index-j row of H) is believed to b
maxi-minimal concentration for simplex codes in
X,. Similar but increasingly complex procedures ms
used to derive simplex codes whose least concentl
vector is “almost” 1/n Tr (X,) in spaces X, of di
sionality one, two, or more above the order of a Hada
matrix.

It should also be noted that the use of Hada
matrices leads to a considerable simplification of
procedure for constructing the S matrices of Th
IV. The matrix 1/4/n times any Hadamard mats
order n is clearly an S matrix satisfying the the
provided of course that a Hadamard matrix of or
exists.* If none exists of order n, determine the smal
for which one of order n — j exists. After the jth
in the construction suggested in the proof, the rems

13p is even, since by hypothesis there exists an H ma
order n.

4 This fact was apparently noted concurrently by the
and by Petrich [11] working independently. However DPetrich
to have overlooked the generalizations to other dimensior
and to the simplex sets.
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task is to find an S matrix in the basis {z{”}*"7 for the
space X,.;. Then 1/(v/n — j) times any Hadamard
matrix of order n — §is such an S matrix, and its row
vectors expressed as n tuples in the original basis {z}7,
along with the j n tuples already found, comprise the
rows of the desired S matrix for the original X,. Rules
for generating Hadamard matrices, of virtually all orders
for which they are known to exist, are given by Paley [9].

The existence of Hadamard matrices of order n leads
to interesting consequences of a further corollary to

. Theorem IV. We first state and prove the corollary.

Corollary IV-c: For every X, C D there exists al least

' one orthonormal basis {s: )} (with the corresponding

pre-image set {8;(£) 17 in BX,) for which

nlim CD(gi) = Bl(gi)_ly

- and this achieves the maxi-min Cp(8;) over all possible

orthonormal bases of X,.

Proof: The proof directly follows the construction in
the proof of Theorem IV, with u; replaced by u;* for all
j and g replaced by p'. That construction determines
for any given positive definite n X n diagonal matrix A,
with diagonal elements ordered either nonincreasing or
nondecreasing, an orthogonal matrix S such that the
diagonal elements of SAS' = ( are equalized. The S
so constructed for A = M has row vectors s; for each of
which C3*(8;) = C3'(3;). This proves the existence. We
prove that this achieves the maxi-min by contradiction.

| Assume there exists an orthonormal basis {s/}7 for X,
. such that

mz.“‘ Co@) > C3NE0

Then

C3'(8) < C3'(D).

max

)
However it is clearly impossible for the largest of any
set of real numbers to be less than the average. Q.E.D.
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Now note that if there exists a Hadamard matrix of
order n, the S matrix obtained from it simultaneously
equalizes the diagonal elements of SMS ‘= C and of
SMS* = (, and therefore simultaneously achieves maxi-
min Cp(s;) and maxi-min Cp (8:) for any given X, in 9.
Similarly, if there exists a Hadamard matrix of order
n + 1, then the ¥ matrix obtained from it specifies a

simplex set {v;}7** in any given X, such that the two

concentrations are simultaneously maxi-minimized. It is
significant to note that since M = n + 1 for simplex
and M = 2n for biorthogonal encodings, Hadamard
maitrices of the appropriate oxders for both types of code
will exist whenever M is a power of 2.
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