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ABSTRACT

Recent experimental results on liquid rubidium have demonstrated

agreement between derivatives of the structure factor with respect to

density and momentum transfer as predicted by the Uniform Fluid Model.

Using a selection of model fluids (the hard sphere fluid, the Yukawa

fluid and a simplified model of liquid metals), each of which is

solvable analytically within the mean spherical approximation, we

present evidence that the observed experimental behaviour can be

explained in terms of the density-dependent Friedel oscillations in

the effective inter-ion potential for rubidium.



1. INTRODUCT ION

In this paper we are concerned with offering an explanation for

the density dependence of the experimental results on the structure

of liquid Rb, in terms of Friedel oscillations in the Rb effective

pair potential. The experimental results of interest are those of

Egelstaff, et ale (1980) in which the structure factor S(q), where

q is momentum transfer, was measured on a grid of temperature-density

points in the phase plane such that density derivatives of S(q) were

obtained. They proceeded to interpret these results in terms of a

Uniform Fluid Model (UFM) (introduced by Egelstaff, et ale (1971) to

explain less extensive data on rubidium). The UFM can be characterized

in the following simple way: for true liquid metal potentials we

assume there is a characteristic scaling of r induced by the density

dependence of the Fermi wavenumber -- i.e., kF ~ pl/3, so it is

conceivable that r ~ p-l/3; hence g(r) the radial distribution func-

tion, is a universal function g(x) where x = rpl/3 and consequently

S(q) is a universal function S(y) where y = qp-l/3. This leads

directly to the prediction

dS (q) ~ - q dS (q)
P dP 3 dq

( 1)

Egelstaff, et ale (1971 and 1980) verified experimentally that

. liqui~ Rb did indeed satisfy (1) in the region of the first peak of

S(q) [which is the natural domain of validity of (1) if the arguments

leading to (1) are correct]. It has also been shown (Egelstaff and
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Wang 1972) that the UHf does not agree with data on neon or the

Lennard-Jones fluid, probably because the nearest neighbor packing

changes with density in these cases.

However, the agreement between the UFM and experiment is not

necessarily a definitive test of the assumptions underlying it, since

the behaviour (1) may result from factors other than, or in addition

tD, the density dependence in kF. In this paper we examine the UFM

closely using the model introduced by Cummings (1979) and defined

by an effective pair potential between the liquid metal ions, ~(x),

of the form

00 r < 0

~(r) = -z(r-0)

A e [cos 2kFr + 8]

( 2)

r > 0

wh~re r is the inter-ion separation, A, z and 8 are constants and kF

is the Fermi wavenumber of the electrons given by

kF = 2(37T2Zp)I/3 (3)

where Z is the valence and p is the number density of the ions.

Notice that in (2) it is assumed that the ions have a hard impenetrable

core of diameter 0. Whilst (2) is an idealisation of a true liquid

metal potential in a number of ways [for a detailed discussion, see

Cummings and Stell (1981)], it is nonetheless an attractive model for

the examination of the qualitative effect of Friedel oscillations

since, as shown by Cummings (1979), the mean spherical approximation
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(MSA) can be solved analytically for the potential (2). The MSA is

an approximate closure to the Ornstein-Zernike (OZ) equation connecting

the total correlation function her) and the direct correlation function

c(r). The OZ equation is given by

f
-+ -+ -+

her) = c(r) + p ds c(s)h(lr- sl) (4)

and the HSA for hard core potentials (Lebowitz and Percus 1965) is

defined by the two closures

g(r) = her) + 1 = a r < cr ( 5)

c(r) = -<jJ(r)/kT r > cr . (6)

Equation (5) represents the exact hard core condition; Eq. (6) repre-

sents an extrapolation of the asymptotic behaviour of c(r) (Stell

1977) to small separations.

The accuracy and validity of the MSA have been discussed at length

elsewhere (Stell 1977) . The consensus is that the MSA is unreasonably

good in predicting the qualitative structural and thermodynamic behaviour

of the fluids to which it is applied. It cannot, however, in general,

be relied upon for quantitative accuracy.

We shall present persuasive evidence that the assumptions under-

lying the UFM are indeed correct within this framework. From the

general behaviour of the MSA, there is reason to expect our results

will remain true in a qualitative way in an exact treatment of (2).

However, the adequacy of the model (2) to reproduce the behaviour of

true liquid metals -- in particular,Rb -- must be considered.
The
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most serious error is the assumption of a hard core: considerable

evidence, reviewed by Mountain and Haan (1979), now exists to sub-

stantiate the idea that liquid Rb has a relatively soft core compared

to noble gases (see also Page, et ale 1969). From the point of view

of comparison with experiment, the unfortunate aspect is that the

soft-core and Friedel oscillations tend to cancel one another in their

effect on a property such as the shape of the first peak in S(q).

[Fer a discussion see Section IV and Cummings and Stell (1981).] The

most obvious property in which this cancellation occurs is the magni-

tude of the peaks in S(q); the Friedel oscillations tending to increase

them and the soft core tending to decrease them. Simple perturbation

theory (e.g., Barker and Henderson 1967) tends to disregard the role

of the attractive part of ~(r), but this is inappropriate for Fourier

components whose wavelength is similar to that of the oscillations in

~(r). Thus we cannot expect quantitative agreement with experiment

for any hard core model. Therefore we test the model by asking whether

equation (1) is satisfied.

The effect of the Friedel oscillations can be delineated, however,

by comparing the predictions of the model (2) with those of the hard

sphere fluid (A = 0) and those of the Yukawa fluid (kF = 0, 0 = 0)

(Cummings and Smith 1979a,b). The latter two fluids can be regarded

as simple models of noble gases. Explicitly, the hard sphere potential

[~HS(r)]and the Yukawa potential [~YUK(r)]are given by
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By solving all three models (2), (7) and (8) iri the MSA, we are able

to observe the explicit effect of the Friedel oscillations; in par-

ticular, we are able to see the extent to which (1) is satisfied.
I

The details of the solution of the MSA for (2) and (8) have been

given previously [Cummings 1979 , Cummings and Stell 1981 , Cummings

and Smith 1979a,b] and are not repeated here. The MSA for <PHS(r)

is simply the Percus-Yevick approximation (Percus and Yevick 1955)

and this has been solved analytically by Wertheim (1963) and Thiele

(1963) . In Section III we report the results of a series of compu- 'I

tations for the potentials <p(r), <PHS(r) and <PYUK(r). Preceding this,

in Section II, there is a brief discussion of the salient density

dependence of a published potential for Rb (Price, et ala 1970) which

provides the focus of the discussion in Section III. The possibility

of soft core effects is discussed in Section IV, and our conclusions

are summarized in Section V.

00 r < a

Hs(r)=j
(7)

0 r > a

00 r < a

<PYUK(r) =j B e-y(r-a)
(8)

r > ar
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II. DENSITY DEPENDENCE OF THE PRICE POTENTIAL

The Price potential for liquid Rb (Price, et ale 1970) has been

shown by Mountain (1978) to yield quite accurate structural properties

for liquid Rb. On this basis, we assume that the Price potential ~p(r)

can be considered to be a reasonable representation of the inter-ion

effective pair potential. One of the clearly density dependent aspects

of this potential is the asymptotic form

~p(r) '\;cos 2kFrr
(9)

We wish to examine a number of other density dependent features of

~p(r) which might account for, or contribute to, the observed experi-

mental behaviour (1) for liquid Rb.

A stylized form of the Price potential is shown in Fig. I. There

are four important parameters defined in this figure: the first zero

of the potential, °1; the second zero of the potential °2; the position

of the first minimum R . ; and the depth of the first minimum 80mln
If

~p(r) takes up the asymptotic form (9) even at short separations, then

°2 - °1 should vary '\;p-l/3.We are also interested in the behaviour

of O1' R. and 8 as a function of p.mln

The experimental work of Egelstaff, et alo (1980) was concentrated

in the density regime p '\;0.01 ions A-3. Hence ~p(r) was calculated

for a range of density in the vicinity of p = 0.01.
The results are

tabulated in Table 1. From this table it is easy to verify the

following results:
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(i) O
2

- ° - -1/ 3
1 - P .,

(ii) e: ::: p-l/3 .,

(iii) O
1 and R. are relatively independent of p .m~n

Result (i) implies that the scaling effect of kF is present! even

at relatively short separations; result (ii) is clearly an additional

scaling property of the Rb potential which must be examined as a

possible contributing factor toward (1).

The experimental conditions at which Egelstaff, et ala (1980)

found agreement between these derivatives were 0.0098 ~ P ~ 0.0108 A-3

and absolute temperature 3280 ~ T ~ 47300 In Figure 2, the Price

potential is shown at a number density p = 0.01036 A-3. As noted

above, °1 for the Price potential is only weakly dependent on p.

Hence for all the calculations reported here, the potentials ~HS(r),

~YUK(r) and ~(r) were assumed to have a common, fixed hard core
0

diameter of 4.2 A. Also shown in Figure 2 is the ~YUK(r) and ~(r)

used in the calculations: ~(r) was fitted in a least squares fashion

to ~p(r) over the first minimum; the depth of ~YUK(r) was assigned to

be the same depth as ~p(r). In regard to the fitting of ~(r) to ~p(r),

it should be pointed out that the functional form (2) is not sufficiently

flexible to enable a good fit to ~p(r) over a large range. Consequently

although the first minimum could be well fitted, there was an over-

estimate of the amplitude of the Friedel oscillations over one' or two'

ion diameters. Alternatively, ~(r) was fitted to ~p(r) over ,the range
0

r = 7 to 10 A, but this led to a very poor fit of the first minimum
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region. Also the latter fitting was found to be unstable: that is,

it displayed sensitive behaviour to the number of points included

in the fitting procedure. As a consequence of this, fitting in the

bowl region only (4.4 A ~ r ~ 6.4 A) was used. It is felt that this

captures the essential physics of the Price potential: a potential

well with density-dependent width and depth, and a potential mound

at r ~ 7-8 A. The main defect seems to be that this mound is too

large, and this feature coupled with the hard core seems to generate

too tall a peak in S(q) in our calculations. For this reason, and

in view of the deficiencies of the potential (2) noted above, we do

not make direct comparisons with experimental data, but investigate

the conditions under which equation (1) is satisfied.

III. DENSITY DEPENDENCE OF S(q)

In this section we report a series of model calculations on the

hard sphere fluid [pair potential ~HS(r), Eq. (7)], the Yukawa fluid

[pair potential ~YUK(r), Eq. (8)] and the model liquid metal [pair

potential ~(r), Eq. (1)]. The derivatives

p as(q)
ap

and q as(q)
- 3" 8q

(10)

will be evaluated and compared for each model. The calculations

covered a large range of possible origins for the observed behaviour

(1) .
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3.1 Total Density Dependence in ~(r)

In this calc~lation, the Price potential~p(r) was calculated
0-3

at densities p - 6p, p, p + 6p (where p = 0.01036 A and 6p =
0-3

0.0002 A ). The parameters for the model liquid metal potentials

were determined at these three densities by fitting in the bowl

region, and the MSA was solved for T = 4230 using the techniques

previously described (Cummings 1979, Cummings and Stell 1981),

thus yielding three structurefactors S(q;p -~p), S(q;p), S(q;p +6p).

The derivatives in (10) were then obtained from the formulae

Because the potentials ~(r) were obtained by fitting ~p(r) at three

neighbouring densities, each ~(r) carries full density dependence:

i.e., in kF' A, z and o. The results are shown in Figure 3, with

the same derivatives for ~HS(r) shown for comparison.

noteworthy features:

There are two

(i) for hard spheres, there is clearly no agreement between

(11) and (12) while for the model liquid metal there is

near perfect agreement.
,

(ii) the magnitudes of the derivatives for the model liquid

metal are much higher (by a factor of about 2) than the

hard sphere derivatives which agree with the magnitude

of the experimental data (Egelstaff, et al., 1971).

as (q):: tS(q; p + 6p) - S (q; p - 6P)j
(ll)

Pap - P 26p

-:l as(q) ;;; - tS(q+6q;P) - S(q-6q;P)j (12)
3 aq 3 26q
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This latter point was anticipated in the discussion in Sections

I and II where it was pointed out that tha model potential (2) is

artificial in having a hard core and a large mound at 8 A: (ii) is

one of the consequences of this artificiality. Nevertheless the

difference in the agreement between the derivatives (11) and (12) for

~he hard sphere and model liquid metal systems (both solved in the

tvISA) is attributable only to the difference in the potentials -- that

is, to the inclusion of the Friedel oscillations.

There are, at this point, a number of questions which can be

asked: what are the precise factors in <p(r) which determine the

agreement between (11) and (12)? Is it simply that kF ~ pl/3, or

does it depend on the potential being oscillatory? That is, if one

considered a Yukawa fluid (8) with y ~ pl/3, would agreement be

obtained between the derivatives (11) and (12)? How important is

d -1/3 h .

the fact that the well epth E ~ P ? We answer t ese questlons

in the calculations reported below.

We focus on the density dependence in various parameters in

<PYUK(r) and <p(r). The Price potential <pp(r)owas calculated at
0 '"

p = 0.01036 A-~, and the liquid metal potential (2) was fitted as

before, yielding A, z and 6, [kF being determined by (3)]. The

Yukawa parameter B was set to be the well depth of <pp(r)at this

density and y was set equal to z, the decay in <p(r).

ensuing calculations, z and 6 [in <p(r)] were considered fixed at

In all the

their values for p = 0.01036. The density-dependence of the remaining
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parameters [A and kF in ~(r), Band y in ~YUK(r)] was studied by

separate calculations covering the following classes:

CLASS I:
A, B, kF' Y all density independent

A, B ~ p-l/3; with kF' y density independent

A, B density independent; kF' y ~ pl/3

-1/3 1/3
A, B ~ P ; kF' y ~ p

CLASS II:

CLASS III:

CLASS IV:

In this way, tentative answers call be given to the questions

raised in the preceding paragraph: the MSA is used in all cases

with T = 423°K.

3.2 Class I

We shall ask two questions: first is the observed agreement in

Figure 3 simply the result of ~(r) having an attractive bowl? If so,

the Yukawa fluid should show agreement between (11) and (12). On the

scale of Figure 4 the Yukawa results are indistinguishable (except

near k = 0) from those of hard spheres (Fig. 3), for which there was

no agreement between (11) and (12). Secondly, how much of the agree-

ment between (11) and (12) is caused by the fact that ~(r) is oscil-

latory? The results for ~YUK are shown by the dashed and dot-dash

lines in Figure 4, and do not agree. However for ~(r) there is good

agreement between (11) and (12) in Figure 4 which may be the result

of the pair potential having an oscillatory tail. This fact is

discussedin SectionV.



3.3 Class II

This class of calculations examines the effect of the density

dependence in well depth, as noted in Section II for ~p(r)o
The

results are shown in Figure 5. Both the Yukawa and the model liquid.1

metal results are virtually unchanged from Figure 4. We conclude,

therefore, that, by itself, the density dependence in the well depth

has no appreciable effect on the agreement between (11) and (12).

3.4 Class II I

In the brief introduction to the UFM given in Section I, the

key point was the distance scaling of the potential with p-l/3 as a

result of k ~ P
l/3

F .
If this were the only fact .resulting in the

agreement (1), then this argument would hold for a Yukawa potential

(9) with y ~ pl/3. As shown br the results in Figure 6, this is not

the case -- if Y ~ pl/3 for the Yukawa fluid we obtain derivatives

(11) and (12) which are virtually unchanged from Figures 4 and 5.

For the model liquid metal, however, it can be seen that allowing

kF ~ pl/3 yields an improvement over the agreement in Figures 4 and

5. Thus the agreement reported in Section 3.1 depends mainly

upon the oscillatory form of the potential, and full agreement

requires kF ~ pl/3 as well. In the tleal case the relative importance

of the kp ~ pl/3 factor may be greater since the importance of the

oscillatory factor in this model calculation is probably overestimated

due to the large amplitude of the mound at r = 8 A.

12

"
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3.5 Class IV

From Sections 3.3 and 3.4 we conclude that the density dependence

of the well depth is unimportant both for ~YUK(r) and ~(r), and that

the density dependence of y is unimportant in ~YUK(r); by contrast,

the density dependence of kF in ~(r) -was found to be, comparatively,

quite important. The calculations of this section were designed to

check whether in combination these density dependences are more

significant than when acting independently. As seen by comparing

Figs. 6 and 7, the answer is no, both for ~YUK(r) and ~(r).

~. EFFECTS DUE TO THE SOFT CORE

A factor which might contribute to the agreement (1) is the

soft core of the rubidium potential as discussed in Section I. One

possible way of introducing soft core effects would be through per-

turbation theory (e.g., Barker and Henderson 1967), but to first

order the change in S(q) from, e.g., hard spheres, is insufficient

to yield agreement with (1). Nevertheless this treatment is signifi-

cant in showing that the magnitudes of S(q) and its derivatives are

moved closer to the experimental values by including a soft core. In

another attempt we investigated the soft sphere model of Hoshino (1980),

but we found that the calculated derivatives were unphysical and

concluded that this model was not applicable to our problem.

In a third attempt we used the "soft core Yukawa potential" in
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the MSA where:

00 r < a

<PSCy(r) =

+ B e-y(r-a)
(13)

r r > a

We found. that if the parameters were chosen so that <PSCy(r) had roughly

the same shape as <pp(r) for r less than the first minimum (R . ) innlln

<pp(r), it was not possible to fit either S(q) or its derivatives.

However if the parameters were chosen arbitrarily (e.g., B = 7.23 kTa;
0

ya = 8.9; a = 4.2 A) it was possible to obtain a reasonable fit to

the experimental data on both S(q) and its derivatives 0 But in this

case <PSCy(r) was unlike <pp(r), being much steeper for r < Rmin.

~ddition for some values of r we observed <PSCy(r) » kT making the

corrections to MSA quite important (eogo, Stell 1977)0 Consequently

In

we concluded that this agreement was artificial, and that the potential

(13) did not lead to the agreement (1) if consistency was demanded.

It would be desirable to treat these effects in a more positive

way, but it may be that extensive computer simulations are required

to do this.

v. DISCUSSION

The ~bove calculations lead to the following conclusion:
the

features of a liquid metal potential which lead to the experimentally

observed agreement (1) are the existenceof Friedel oscillations (see
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Section 3.2) and their density dependence via kF (see Section 3.4).

As noted in Cummings and Stell (1981) the effect of Friedel oscil-

lations appears to be to order the fluid to a greater extent than in

their absence. Our physical picture thus assumes that the primary

effect of the Friedel oscillations is to localize the positions of

nearest neighbours to a greater extent than occurs for a non-oscillatory

potential. -For example the existence of the potential mound beyond

°2 in Figure 1, will lead to a greater localization of nearest neighbours

in the range °1 < r < °2 than would be the case for a noble gas. As

increases, °2 - °1 ~ p-l/3 and so the localization of nearest neigh-

bours will scale similarly with density. In essence, this is the

behaviour reflected in the experimental observation (1). Since all

the density-dependence in ~(r) [and ~p(r)] arises from the contribution

of the electrons, it can be seen that the electrons playa greater

role in determining liquid metal structure than is emphasised by the

hard sphere model, for example. The fact that the UFM has been found

to be applicable only to simple liquid metals is an illustration of

this property.

All our conclusions have been based on results for model systems

solved in the MSA: thus our conclusion can only be regarded as accurate

to the extent that the MSA is reliable for making model comparisons

and that the liquid metal model represents liquid rubidium fairly.

Ultimately, however, they should be verified conclusively by computer

simulation.
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TABLE I

Variation of the parameters 01' 02' Rmin and E with density

for the Price potential for Rb

p

q-3A

0
1

0
A

0
2

0
A

R .
mlD
0
A

Elk

oK

0.0100 4.412 7.246 5 .175 -405

0.0102 4.412 7 .229 5.175 -402

0.0104 4.412 7.215 5. 175 -400

0.0106 4.411 7 .194 5.150 -397

0.0108 4.411 7. 178 5.150 -394

0.0110 4.410 7. 161 5.150
I

-392

0.0112 4.410 7.142 5. 150 -390



Figure 1.

Figure 2.

FigUre 3.

Figure 4.
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FIGURE CAPTIONS

A typical liquid metal potential showing the parameters

aI' a2' R. and E (for discussion, see Section II).m~n

The potential ~p(r) for liquid Rb at p = 0.01036 A-3

(- - - - -) compared with three model potentials; the

model liquid metal potential ~(r)(_. - .-) [Eq. (2)],

the Yukawa potential ~YUK(r) ( ) [Eq. (8)] and the

hard sphere potential ~HS(r) ( -) [Eq . (7)]. All

model potentials have an impenetrable core of diameter

a = 4.2 A.

Derivatives of the structure factor for ~(r) and ~HS(r):

- .9..as(q) for ~(r) ( -)and ~ (r) (-. -. -)
3 aq HS'
as (q) ,

p "I~ for <per) (- x - x -) and ~HS(r) (- - - - -).

Derivatives of the structure factor for ~(r) and ~YUK(r)'

for Class I (see Section 3.2): - i a~~) for ~(r) (----

as(q) for ~(r) (- x - x -)
ap

-)

and~YUK(r)(- - -); p

and~YUK(r)( ).

Figure 5. As for Figure 4, with Class II (see Section 3.3).

Figure 6. As for Figure 4, with Class III (see Section 3.4).

Figure 7. As for Figure 4, with Class IV (see Section 3.5).



1 e.rnl51.:I

1.0

oz

3-

0

0{3-
,--.,
I-j'--'
.........
;.;-
~



2 ~.In1J1d

(V) .I
0

OT 8 9 t'

/';..
'/~ ~

.? \ II
." \' / 1

II .\ /.1 \\ I I
9

"

\ / I

! .:
i II I
J /, I
/i / I I

,1 / \ I
Ii // i I

/i / I:
').//

\

I

/1, I
.// / . I

I I I

.: :::;: ----- / i 1' I . ,

I

-' / I".- .' \ I' / . ! I
'. /" .. /" .. //'

00t'-

002-

-e-
,-..,"i
'-'
..........
;?;"'

i
\t
'\l.
,\
n
,.

n
,

II

\
I
,
,

0
,-..,

0
~'-'

002

00t'

1Z



£ e.In~1d

O.Z
(1-'&) b

S.1 0.1
01-

,

~

II '\
I( ~

, \
)( 1t

, \
x "/.

I \"
, \
IX .,.

I \

X \

J,. ",

/ l /\ '\.I
,
/ .'.~~~

I '-. ~ ~i r

I

I.
I.

/.

./

s-

0

s

,

01

zz



17 8.m~B

£z

O'z

(1-'&') b

S.l

s

01



('+-
x \ II "l-

i ~I
~ \
I ~I

)( \
L ~~

I
. ,

. "/ .
/ ~l / -"',
I '/ .. J( " ~,

I
1

'~+ '. . ,~"'--
1 )( ~ ":->c -

. I --.! I~

"', ~ .I I I
" .I /)(

" , / / I
". / I )(

- / I
/ )c

I
)(

I
~

I
r

I)(

,I>c

O'z

VG

S 8.In'61d

(I-X') b

S'1 0'1

01-

S-

0

S

01



9 G.rn131d

sz

(T-'&) b

O.Z O.TS.T

OT-

s-

0

OT



L e.m:3-r d

9Z

(1-'i) b

O.Z S.1 0.1

01-

01


