
STATE UNIVERSITY OF NEW YORK AT

STONY BROOK

CEAS TECHNICALREPOR~

Scheduling Algorithms for Divisible Jobs in a

Multiprogrammed Multiprocessor ~ystem
~

S. Bataineh & T.G. Robertazzi

September 30, 1992

Scheduling Algorithms for Divisible Jobs
.
In a

Multiprogramed Multiprocessor System

Sameer Bataineh and Thomas Robertazzi, Senior Member, IEEE

Dept. of Electrical Engineering,

SUNY at Stony Brook,

Stony Brook, N.Y 11794

(516)-632-8412/8400

Abstract

Static and dynamic scheduling algorithms for load sharing a divisiblejob over processors

interconnected through a bus are presented and simulated. A comparative study between

their performance results is presented. The processing time, waiting time and processor's

utilization for the dynamic algorithm is found to be less than for the static one.

Index Terms:

Load Sharing, Divisible Job, Multiprocessors, Multiprogramming.

1

1 Introduction

Computers enter all aspects of life in today's world. The heavy use of computers made

it is necessary to build fast and reliable ones. Computing speed has thus become of

great interest among researchers. Parallel processing is an effective way to improve the

speed of computation. The highest level of parallelism is achieved in multiprogramed

multiprocessor systems. In such systems, more than one processor is used to process one

or more different jobs (programs) simultaneously.

Most of the work to date on load sharing has considered algorithms to schedule a

number of jobs among n processors in order to achieve the minimum finish (processing)

time [4, 5, 6, 7, 8, 9, 10]. Ni and Hwang discussed the case of different classes of

jobs where each class is to be processed in a preassigned group of processors [11]. This

previous work involved the paradigm of indivisible jobs. Under this paradigm a job can

be scheduled and processed by at most one processor. Ravi and Stankovic discussed the

effect of communication delays on performance. However, none of the previous work has

discussed the communication time as well as the computation time together.

In this paper two algorithms, one static and one dynamic, are presented that schedule

different sized divisible jobs among a number of processors in order to minimize the finish

time. A divisiblejob is a job that can be arbitrarily split in a linear fashion among a

number of processors. Applications include the processingof very large data files such as

occurs in signal and image processing, Kalman filtering and experimental data processing.

In addition to the effect of computation time on finish time, we will study the effect

of communication time as well. The communication time is the time that is needed to

distribute the load to the processors in a multiprocessor system.

The organization of the paper is as follows: in the second section we present the

2

static and the dynamic algorithms. Comparative studies and performance evaluations are

presented in the third section. Finally, the fourth section contains the conclusion.

3

2 Scheduling Algorithms

2.1 Introduction

In this section we will introduce two algorithms to distribute the load among n proces-

sors interconnected through a bus in a multiprogramed multiprocessor environment. The

system to be studied is shown in Fig. 5.1. Jobs of different sizes arrive into an infinite

sized FIFO queue. The arrival process is Poisson and a job's size is uniformly distributed.

An arriving job is not queued if the bus is free and the processors are not operating at

their full capacity. Processori operates in its full capacity if it hasn different jobs running

simultaneously. If the bus is free and the processors can accept an additional job, the job

at the head of the queue will be processed. The server for the queue communicates to

each processor in the bus its fraction of that job. The communication time for processor

i, i = 1,2,. . . , N, is proportional to the amount of data that has to be assignedto that

processor. Three major factors determine the amount of measurement data assigned to

each processor. The first is the computational speed of processor i in the network. Faster

processors will receive more data than the slower ones. The second is the order of the

load distribution among the processors in the network. The third is how much of its'

computational power processor i can allocate to a job. Each processor begins to compute

its share of the load once the share has been completely received. Bus propagation delay

is ignored. The timing diagram of the system is depicted in Fig. 5.2.

Let us first introduce the following notation.

4

OCi: The fraction of measurement data (load) that is assigned to

processor I

Tep: The time that it takes the ith processor to process the entire

load when Wi = 1 .

Tem: The time that it takes to transmit the whole load (job) over

the bus when Z = 1.

Wi: A constant that is inversely proportional to the computation

speed of the ith processor. The ith processor can process the

entire load in time wiTep.

Z: A constant that is inversely proportional to the speed of the

single bus. The entire load can be transmitted over the bus in

time ZTem.

Tj: The finish time of the process is the time when the last pro-

cessor finishes processing.

Tj = max(Tl, T2,'" , Tn) (2.1)

The equations that govern the relations among various variables and parameters in

the system are

Tl = alZTem + alwlTep (2.2)

(2.3)T2 = (al + a2)ZTem+ a2w2Tep

T3 = (al + a2 + a3)ZTem+ a3w3Tep (2.4)

(2.5)T4 = (al + a2 + a3 + a4)ZTem+ a4w4Tep

5

-- -,--

Tn = (al + aZ +... + an)ZTcm+ anwnTcp (2.6)

The fractions of the total measurement load should sum to one:

al + aZ+ . . . + an = 1 (2.7)

The minimum finish time Tf is achieved when all processors stop at the same time

[1]. Intuitively this can be proved by contradiction; if the processors do not all stop at the

same time, some will be idle while others are busy and the minimum finish time can be

improved by transfering load to the idle processors. Based on this, the optimal values of

a's for n processors can be computed by solving recursively the following set of recursions:

al + az + a3 + . . . + an = 1 (2.8)

an-I an(wnTcp + ZTcm)

wn-ITcp

an-I (wn-ITcp + ZTcm)
wn-zTcp

(2.9)

an-Z - (2.10)

az - a3(W3Tcp + ZTcm)

wzTcp

az(wzTcp + ZTcm)

WI Tcp

(2.11)

al = (2.12)

Numerical values can be obtained by assuming an = 1, determining the other a/s and

then normalizing the a/s (they must sum to one). Here ai is solved for by equating Ti

to Ti+1

6

2.2 Algorithms

Static

Each processor simultaneously processes n jobs at most, and each job receives; of

the computational power of the processor. In other words, regardless of the number of

jobs in a given processor, each one will get a fixed amount of the computational power.

This will lead to underutilization of the processors under light loads.

Dynamic

Each processor simultaneously processes n jobs at most. However, if there is less than

n jobs at a processor those jobs share the whole computational power of that processor.

For instance, if there is only one job running on a processor, that processor will devote

all its power to that particular job. If a new job arrives, the computational power will be

equally divided between the two jobs and so on until that processor gets its nth job. Note

that a job may not finish at the same time on every processor because the distribution

of new jobs causes a non-uniformity of the computational power available to each job.

However, a new job is not distributed to the processors until there is spare capacity on

every processor.

3 Performance Evaluation

Let us begin by defining the following:

Waiting time is the time that a job arriving to the queue will wait before the server starts

distributing it to the processors over the bus.

Processing time: is the time that elapses between the time that a job begins distribution

over the bus and the time it exits the system.

7

Processors utilization: is the average fraction of the multiprocessor's computing power

actively working on a job(s).

. In Fig. 3, 4 and 5, the average processing time, the average waiting time, and

the processors utilization are plotted respectively against the average arrival time

(load). In those plots w = 1,Z = 1,n = 5 and the number of processors used is

N = 5. Also Tem is distributed as U[O,l] and Tep is four times Tem.

- Fig. 3 shows that the average processing time of the dynamic algorithm is

approximately three times better than the static one. It also shows that the

processing time is independent of the load. It depends only on the speed of

the bus and the speed of the processors.

- As expected, Fig. 4 shows that as mean interarrival time increases the av-

erage waiting time decreases. This due to the low utilization of the bus and

processors when the load is low. The waiting time depends on the state of

the bus, free or busy, and the state of the processors in terms of whether they

can accommodate that job or not. Under low load the two algorithms will

have similar bus and processors states. The bus is almost always free and the

processors are also almost always able to accommodate a new job. This why

the two curves merge into one under very light load.

- Fig. 5 shows that the processor utilization of the dynamic algorithm is less than

that of the static one. This because the average processing time under the

dynamic algorithm is less than under the static one. In other words, the time

that the processors in the dynamic algorithm spend in processing compared to

the total time is less than in the static algorithm.

8

. In Fig. 6, 7, and 8 the average processing time, the average waiting, and the

processors utilization are plotted respectively against the number of processors in

the system. In these plots w = Z = 1, n = 5 and the average arrival rate = 1.

- Fig.6 shows that the dynamic algorithm yields a better processing time than

the static one especially if few processors are used. The two curves level off

after a certain number of processors. This is because the majority of the load

will be delivered to the first few processors. The rest of the processors' share

of the load tends to be small and so they will not contribute to a significant

improvement in performance. Note that both curves level off at an asymptote

of 0.5 as the bus becomes a bottleneck and the asymptotic time to distribute

a job over the bus is ZTcm = 1.0 * 0.5 = 0.5.

- Fig. 7 shows that when less than 10 processors are used the average waiting

time of the static algorithm is larger than that of the dynamic. After a certain

number of processors, the average waiting time will be independent of the

number of processors for both algorithms. An arriving job then will have no

problem in finding available computation power in the processors to use. In

other words, it does not have to wait for available computation power. The

only source of delay left is whether the bus is free or not. The bus in both

algorithms has identical characteristics and so the two curves are identical for

large numbers of processors. Using Little's law and the asymptotic result of

Fig. 7 it can be seen that the asymptotic mean queue length is L = AW =

1.0 * 0.26 =, 0.26,

- The utilization in Fig. 8 decreases as the number of processors increases. It

implies that each processor will have less data to work on and so the utiliza-

9

tion dwindles. Meanwhile, idle time increases. This is a general problem in

multiprocessor systems. One would like to use more processors to decrease

the finish time at the same time that one would like not to see the utilization

decrease.

. The throughput is plotted in Fig. 9 and Fig. 10 against the number of processors

and the speed of the bus respectively. For those two plots, W = 1, n = 5, Z = 1 in

Fig. 9 and the number of the processors used in Fig. 10 is 5.

As shown in Fig. 9, the throughput is constant after certain number of processors.

Fig. 10 shows that as the bus gets slower the throughput decreases. This is

because the nature of the system is such that jobs have first to be served by the

bus before getting to the processors. So the throughput can be determined by the

bottleneck speed of the bus and the average arrival rate. It does not matter how

many processors are present as long as the number of processors are big enough to

be able to keep up with the number of jobs delivered by the bus. This why the curve

is a straight line in Fig. 9 after certain number of processors. To comprehend the

above two observations, imagine a supermarket with one server and N exits. The

number of people to exit the supermarket will determined by the efficiency of the

server and the number of customers. The number of customers to exit the store

could be affected by the number of exits available if the server is able to process

quite a lot of customers who will queue in the exit doors. This is very unlikely to

happen especially if the doors are wide enough.

Note that the knee of the curve in Fig. 10 is at Z = 2. This occurs as this is the

transition point at which the time to send a job through the bus (ZTcm = 2*0.5 =

1.0) matches the mean arrival rate of jobs (for Fig. 10). If Z is greater than 2, the

10

bus becomes a bottleneck and throughput decreases. Note also that throughput

saturates near 1.0 in Fig. 9 and Fig. 10 as this is the mean arrival rate.

4 Conclusion

Two algorithms, one static and one dynamic have been presented for multiprogramming di-

visible jobs in a bus connected multiprocessor system. This first look at multiprogramming

divisible jobs has demonstrated the feasibility of this concept. It has also demonstrated

the need for, and superiority of, dynamic load balancing algorithms in this application.

11

" 0

References

[1] Bataineh, S. and Robertazzi, T.G., "Distributed Computation for a Bus Networks

with Communication Delays", Proceedings of the 1991 Conference on Informa-

tion Sciences and Systems, The Johns Hopkins University, Baltimore MD, March

1991, pp. 709-714.

[2] Bataineh, S. and Robertazzi, T.G., "Bus Oriented Load Sharing for a Network of

Sensor Driven Processors", IEEE Transactions on Systems, Man and Cybernet-

ics, Sept. 1991, Vo1.21, No.5, pp. 1202-1205

[3] Hsiung, T. and Robertazzi, T.G., "Performance Evaluation for Distributed Com-

munication Systems for Load Balancing", SUNYat Stony Brook, Collegeof Engi-

neering and Applied Science Technical Report No. 612, Dec. 17, 1991, Available

from T. Robertazzi.

[4] Baumgartner, K.M. and Wah, B.W., "GAMMON: A Load Balancing Strategy

for Local Computer Systems with Multiaccess Networks", IEEE Transactions on

Compute~s, Vol. 38, No.8, August 1989, pp. 1098-1109.

[5] Bokhari, S.H, "Assignment Problems in Parallel and Distributed Computing",

Kluwer Academic Publishers, Boston, 1987.

[6] Lo, V.M., "Heuristic Algorithms for Task Assignment in Distributed Systems",

IEEE Transactions on Computers, Vol. 37, No.ll, Nov. 1988, pp. 1384-1397.

[7] Ramamrithamm K., Stankovic, J.A. and Zhao, W., "Distributed Scheduling of

Tasks with Deadlinesand Resources Requirements", IEEE Transactions on Com-

puters, Vol. 38, No.8, August 1989, pp. 1110-1122.

12

[8] Shin, K.G. and Chang, Y-c., " Load Sharing in Distributed Real-Time Systems

with State Change Broadcasts", IEEE Transaction on Computers, Vol. 38, No.

8, August 1989, pp. 1124-1142.

[9] Stone, H.S., "Multiprocessor Scheduling with the Aid of Network Flow Algo-

rithms", IEEE Transaction on Software Engineering, Vol. SE-3, No.1, Jan.

1977, pp. 85-93.

[10] Mirchandaney, R. Towsley, D. and Stankovic, J.A., "Analysis of the Effects of

Delays on the Load Sharing", IEEE Transactions on Computers, Vol. 38, No.

11, Nov. 1989, pp. 1513-1525.

[11] Ni, L.M. and Hwang, K., "Optimal Load Balancingin a Multiple Processor System

with Many Job Classes", IEEE Transaction on Software Engineering, Vol. SE-

11, No.5, May 1985, pp. 491-496.

13

~FIFO Queue-
C=bS

2

n

Processor 1

The Bus

Processor 2 Processor N

Fig. 5.1: Linear Network With FIFO Queue

..;i

Communication

a1ZTcm

I cx2ZT,m I CX3Zr~ I CXNZt=

The Control processor

a1 W1Tcp

prdcessor 1
Computation

prjcessor 2

a2W2Tcp

prdcessor N
aNWNTcp

t=o

Fig. 5.2: The Timing Diagram

Dynamic ~
Static +-

2 3 4 .

Mean Arrival Time
5

Fig. 5.3: Processing Time vs Mean Arrival Time

w = I,n = 5,Z = I,N = 5

6

2.75

2.5

2.25

2

1.75

Processtn

T' 1.5Ime

1.25

1

0.75

0.5

0.25

0
1

0.5

Dynamic ~
Static -t-

0.45

0.4

0.35

2 3 4

Mean Arrival Time
5

Fig. 5.4: Avg. Waiting Time vs Mean Arrival Time

w = I,n = 5,Z = I,N = 5

6

0.2

0.15

0.1

0.05

0
1

0.5

Dynamic ~
Static -t-

0.45

0.4

0.35

2 3 4

Mean Arrival Time

5 6

Fig. 5.5: Utilization vs Mean Arrival Time

w = I,n = 5,Z = I,N = 5

0.25

0.2

0.15

0.1

0.05

0
1

1.5

Processtng
Time

2.5

Dynamic V
Static +-

2

1

0.5

0
5 15 20

No. of Processors

2510

Fig. 5.6: Processing Time vs No. of Processors

w = 1, n = 5, Z = 1, mean arrival time = 1

,30

0.3

Dynamic ~
Static -/-

0.2
5 10 15 20

No. of Processors

25

Fig. 5.7: Avg. Waiting Time vs No. of Processors

w = 1,n = 5,Z = 1,mean arrival time = 1

30

0.4

Dynamic ~
Static +-

0.35

0.1

0.3

0.25

Utili
0.2

0.15

0.05

0
5 10 15 20

No. of Processors

25 30

Fig. 5.8: Utilization vs No. of Processors

w = I,n = 5,Z = 1, mean arrival mean = 1

0.98

Dynamic ~
Static -I-

0.975

0.965

0.96
5 10 15 20

No. of Processors

25

Fig. 5.9: Throughput vs No. of Processors

w = 1,n = 5, Z = 1, mean arrival time = 1

30

0.5

Dynamic ~
Static -t-

0.9

0.8

0.7

Thrqughput
0.6

0.4

0.3

0.2
1 2 3 4 5 6 7 8

z

Fig. 5.10: Throughput vs The Bus Speed

w = 1,n = 5,N = 5,mean arrival time = 1

