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Abstract

A load sharing problem involving the optimal allocation of measurement data amongst

n intelligent sensors interconnected through a bus type communication medium is considered

for three distinct architectural connguratiom. It is found that a minimal time solution can

be achieved if the computation by each senJor ends simultaneously. Simple recursions for

the determination of the optimal allocation of load are presented. It is shown that a small

number of intelligent sensors can be almost as effective as a larger number. These bus ori-

ented architectures produce faster solutions than a previously published linear daisy chain

architecture.
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1 Introduction

The problem of the fusion of data from distributed sensors has received an increasing amount

of attention [1, 7, 8, 9, 10, 12, 13} since the publication of a paper by Tenney and Sandell

in 1981 [11}. The basic idea is that measurements are made by spatially separated sensors,

of possibly different types. The data, or better yet statistically meaningful summaries of

the data, are then relayed to a site where the spatially disparate readings are fused so that

meaningful decisions can be made regarding these measurements.

One important issue for distributed fusion concerns the trade-off between commu-

nication and computation [4}. That is, how much computation should take place at the

sensor and how much and what information should be relayed to the fusion site. In this

paper we examine the tradeoff between communication and computation in the context of

a load sharing problem involving an "intelligent sensor" network. An intelligent sensor can

make measurements, perform computation and communicate with neighboring sensors. In

this problem it is assumed that a single sensor receives a burst of measurement data that

requires processing in time proportional to the length of the data. It is further assumed

that the data can be divided amongst multiple intelligent sensors to achieve a faster solution

thru parallel processing. We also wish to take the time that it takes to transmit the data,

or fractional parts of it, between intelligent sensors into account. The objective is to deduce

the fraction of the data that should be allocated to each intelligent sensor so that the data

can be processed in a minimal amount of time.

A network of such sensors arranged in a linear daisy chain was examined in [2} and a

tree type configuration was examined in [3}. In this paper a broadcast bus is used to connect

the sensors. This offers the possibility of a faster solution compared to the linear daisy chain

architecture. Three configurations utilizing a broadcast bus are considered. In the first,

the originating sensor acts as a control unit, distributing load but not processing it. In the

other two configurations the originating sensor can perform computation on a portion of the

load. These latter two configurations differ in whether or not a front-end sub-processor is

included in a sensor for communication off-loading (so the sensor may perform computation

and communication simultaneously).
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In what follows it is assumed that each intelligent sensor is under the control of

its own processor. Thus in the discussion that follows, the term" processor" will be used

interchangeably with" Intelligent sensor ".

2 Architecture 1: Linear Network with Control Processor

Consider the case where the network model consists of one control processor and n communi-

cating processors. As shown in Fig. 1, the control processor receives the measurement data

and communicates it through a broadcast bus to the processors. The communication time

for processor i, i = 1,2,.. . , n, is proportional to the amount of measurement data that has

to be assigned to that processor. Two major factors determine the amount of measurement

data assigned to each processor. The first is the computational speed of processor i in the

network. Faster processors will receive more data than the slower ones. The second is

the order of the load distribution among the processors in the network. Processor i starts

computation immediately after receiving its share of the load from the control processor,

i = 1,2,.. . , n. The timing diagram of the system is depicted in Fig. 2.

Let us first introduce the following notation.

OCi: The fraction of measurement data that is assigned to processor i by the

control processor.

Wi: A constant that is inversely proportional to the speed of the ith pro-

cessor.

z: A constant that is inversely proportional to the speed of the bus between

the control processor and communicating processor i in the network.

Tcp: The time it takes for the ith processor to process the entire processing

load when Wi = 1 .
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Tcm : The time it takes for control processor to transmit all the measurement

data when Z = 1 .

Ti: The total time that elapses between the beginning of the process at

t = 0 and the time when processor i completed its computation. This

include, in addition to computation time, communicating time with

the control processor and waiting time. Waiting time is the time that

processor i has to wait before being able to communicate with the

control processor, i = 1,2,. . . ,n .

TJ: The finish time of the process.

TJ = max(TI, T2"", Tn) (2.1)

The timing diagram, Fig. 2, shows that at t = 0, the communicating processors are all

idle and the control processor has completed receiving the measurement data and starts to

communicate with the first processor in the system.

The equations that govern the relations among various variables and parameters in

the system are

T1 - a1ZTcm + a1w1Tcp (2.2)

(2.3)

(2.4)

(2.5)

T2 = (0.1 + (2)ZTcm + a2w2Tcp

Ta = (0.1 + 0.2 + aa)ZTcm + aawaTcp

T4 = (0.1+ 0.2+ a:, + (4)ZTcm + a4w4Tcp

Tn = (0.1+ 0.2+... + an)ZTcm + anwnTcp (2.6)

The fraction of total measurement load should sum to one

0.1 + 0.2 + . . . + an = 1 (2.7)
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The important point of interest is the optimal total processing time, TM1' In order to

examine the necessary condition to achieve the minimum time solution, let us consider a

simple system with two processor, n = 2.

In this system:

al + a2 = 1 (2.8)

Tl - alZTcm + alwlTcp (2.9)

(2.10)

(2.11)

T2 = (al + a2)ZTcm + a2w2Tcp

- ZTcm + (1 - al)w2Tcp

The optimal processing time, Tm, is:

Tm = min (max(Tb T2)) (2.12)

As shown in Fig. 3 the min max fu'nction, Tm is optimized at the cross over point

of the two lines. That is, where Tl = T2.

The control processor must find the optimal values for al and a2. An interesting

problem would be extending this proof to higher dimensions. It would however, be difficult

to identify the minimum point in three or higher dimensions. It can be seen intuitively

though, that in order to obtain the maximum parallelism and minimum time solution, all

processors must stop at the same time. This is because, otherwise, some processors would

be idle while others were busy. Another way of expressing this intuition is to say one must

keep all processors utilized up till the last moment; that is, all processors stop at the same

time. This achieves the maximum efficiency in the system.

17(efficiency) = average finishf! . hnIS time

2::1 Ti
, n

17= ' r;
'''""''n T.L...i=l t

17= - nTf
(2.13)

Where n: is the total number of processors

Tf = max(Tl,T2,T3,...,Tn)
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71--t1 if ITi - Tj J--t 0 (2.14)

i =Fj, i=1,2,...,n j = 1,2, . . . ,n

To verify the fact that all the processors must stop at the same time so as to obtain

minimum processing (finish) time, two tables of data were obtained and their values were

compared. Table one is obtained by running an exhaustive search program on different values

of wand Z with Tern = 0.5, Tep = 1 and n = 4. the program finds the best values of a' 5 [or

the parameters searched within and the minimum processing time. There are [our processors

used to obtain table 1. The second table is obtained by solving recursively equations (2.2 )

to (2.5) based on previous idea that

Tl = T2 = T3 = T4

The optimal values o[ 0.'5 [or n processors can be computed by solving recursively

the following set of recursions:

0.1 + 0.2 + 0.3+ . . . + an = 1 (2.15)

an-l
an(wnTep + ZTern)

,wn-lTcp

an-l (Wn-l Tep + ZTern)

wn-2Tcp

(2.16)

an-2 (2.17)

a3(W3Tcp + ZTern)

w2Tcp

a2( w2Tep + ZTem)

WI Tep

ai is solved [or by equating Ti to Ti+1' that is Ti = Ti+l' As a comparison o[ the two tables

0.2 - (2.18)

0.1 - (2.19)

reveals, the values o[ a' 5 and the minimum processing time is almost the same for the same

values of w' 5, Z, Tem and Tep.

The optimal minimum processing time ( finish time) function,TMl is given by :

j=nZT Tnj=l em + Wj cp
TMI = n

( )
'

( ) ' l ( ):Ei=l ZTern n-& Tcp 1- WI + W2 + ... + WC:J
(2.20)
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Where lV", is a product of terms:

Wk = (W"'lW"'2. . . Wki-l )

and

kp f kq

kp = 1,2,3,...,n kq = 1,2,3,. . . ,n

The optimal minimum processing time function is symmetric in Wl, W2, . . . Wn. This

can be seen from the expression of TM1 where each term in the denominator contains C:l)

components of Wi each of which consists of i-I combination of w. To clarify the point of

symmetricityan example where n = 3 is provided on the (Appendix). So the position of the

processors on the bus is not important, that is, any processor can be placed any where on the

bus or any two processor can be exchanged without affecting the minimum processing time,

TM1' In Fig. 4 the optimal minimum total processing time is plotted against the number of

the processors in the linear network with Tcrn = 0.5, Tcp= 1.0, Wi = 1 where i = 1,2,3,. . . n

and four performance curves were obtained for Zi =0.1, 0.2, 0.5 and 1 . As shown in Fig.

4, the minimum processing time, TMl1levels off to ZTcm as more processor are added. This

can be proved as following:

Tn = ZTcm + ClnwnTcp (2.21)

It is clear to see that as the number of processors increases, the load that will be assigned

to each processor will become smaller. In other words if

n-too ===} Cln -t 0

therefore,

lim Tn = ZTcmn-+oo (2.22)

Fig. 4 implies that only few numbers of processors are needed to come close to the minimum

processing time. Fig. 4 also verifies some intuitive results such as : the minimum processing

time increases as the value of Z increases and decreases as the number of processors increases.

In Fig. 5 we show the effect of various speeds of processors with a fixed speed of the

bus. In this figure the optimal minimum processing time is plotted against the number of
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processors m the network with Tem = 0.5, Tep = 1.0, Z = 1.0 and four performance curves

were obtained for Wi = 0.05,0.1,0.2,0.5 and 1 where i = 1,2,3. .. ,n. As Fig. 5 reveals, if a

large number of processors is used, the optimal processing time is independent of the speed

of the processors. That is , for any processing speed, the minimum processing time wi1llevel

off to ZTem' The second interesting point to observe is that using a small number of fast

processors to solve the computational problem is better than using a large number of slow

processors.

3 Architecture 2: No Control Processor, Processors with Front-End Processors

In order to improve the optimal minimum finish time, we consider another linear network

topology where there is no control processor. Rather, the load may originate at any of

the n homogeneous processors. Moreover, each processor contains a front-end processor for

communications off-loading. That is, with the inclusion of the front-end processor, each

processor may compute and communicate at the same time. The load may be originated at

anyone of these processors. The processor that originates the load is now performing both

computation and communication simultaneously. Thus, it immediately begins computation

on its share of the load while broadcasting the remaining load over the bus to the other

processors. Each processor begins to compute its share at the moment that it it finishes

receiving its data. As mentioned in the second section, two major factors determine the

amount of measurement data assigned to each processor. The first is the computational

speed of the processor. Faster processors will receive more data than slower ones. The

second is the order of the processor for load distribution. The timing diagram of the system

is plotted in Fig. 6. Between t = 0 and t = a2ZTem the first processor computes its share

of the load and communicates with the second processor. All other processors, processors

3,4,5. . . ,n, are idle. In general, in the perio'J between t = 0 and t = (0.2 + 0.3 + . . .aJZTem,

n - i processors would be idle and i-I processors perform computation; i = 2,3,4, . . . ,n .

This fact serves to increase the minimum finish time.

In the following we will use the same definitions for ai, Wi, Tep, and Tf as in section

2. However, Z, Tem and Ti are defined slightly different as following.
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Tern : The time it takes for the processor that distributes the load to transmit

all the measurement data when Z = 1.

Ti: The total time that elapses between the beginning of the process at

t = 0 and the time when processor i completed its computation,

i = 1,2,. . . , n. This includes, in addition to computation time, commu-

nicating time and waiting time. Waiting time is the time that processor

i has to wait before being able to communicate with the processor that

distributes the load.

Z: A constant that is inversely proportional to the speed of the bus.

With these definitions, the equations that relate various variables and parameters

together are stated below:

Tl - alwlTcp (3.1)

(3.2)

(3.3)

(3.4)

T2 = a2ZTcm + a2'J)2Tcp

T3 = (a2 + a3)ZTcm + a3w3Tcp

T4 = (a2 + a3 + a4)ZTcm + a4w4Tcp

Tn = (a2 + a3 + ... + an)ZTcm + anwnTcp (3.5)

The fraction of the total measurement should sum to one

al + a2 + . . . + an = 1 (3.6)

The objective in analyzing the above equations is to compute the optimal minimum

processing time and compare it with the result that was obtained in the previous section.

The same intuition as in the prevIOUS section can be adopted to show that the

optimal minimum finish time would be achieved when all processors stop at the same time,

9
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that is when:

TI = T2 = T3 = ... = Tn

similarly, two tables of data, table 3 and table 4, were obtained and their values were

compared in order to verify the fact that all processors must stop at the same time. Table

3 is obtained by running an exhaustive search program on different values of wand Z with

Tcrn = 0.5, Tcp = 1 and n = 4. The program finds the best values of a's for the parameters

searched within and the minimum processing time. Four processors were used to obtain Table

3. Table 4 is obtained by solving recursively equations (3.1 ) to (3.4) based on previous idea

that

TI = T2 = T3 = T4

The optimal values of a's that the original processor should calculate in order to

achieve the minimum processing time can be computed by solving recursively the following

set of equations:

an-I = a wnTcp+ ZTn crn
Wn-I Tcp

(3.7)

w4Tcp + ZTcm
0.4

w3Tcp

w3Tcp + ZTcm
0.3

w2Tcp

w2Tcp + ZTcm
0.2

WI Tcp

Here, ai is solved for by equating Ti to Ti+l, that is Ti = Ti+I' A comparison of the

0.3 (3.8)

0.2 (3.9)

0.1 - (3.10)

tables shows that the values of a's and the optimal minimum processing time is almost the

same for the same values of w's, Tcrn, Tcp and Z.

The minimum processing time function, TM2' is given by:

ITj=2( wjTcp + ZTcm)
TM2 = wITcp n

(Z )
'

( )' I ( )Li=1 Tcrn n-1 Tcp 1- WI + vV2 + W3 + . . . + We:!)

and the maximum throughput(r) is:

(3.11)

1
,= T (3.12)
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Where

W", = (Wkl Wk2 ... Wki-l)

and

kp =I- kq kp = 1,2,3,...,n kq = 1,2,3,...,n

Unlike the minimum processing time function, TMl' in the previous section the min-

imum processing time function, TM2' is symmetric in W2,W3,W4, . . ., Wn but not symmetric in

WI, W2, W3, . . . , Wn. This implies that the choice of the processor where the load is originated

is important. To achieve the best processing time in such a system, the fastest processor

would have to distribute the data. This is verified by table 3 and table 4.

In Fig. 7 the minimum total processing time function,TM2' is plotted against the

number of the processors in the network with Tern = 0.5, Tcp = 1.0, Wi = 1 where i =
1,2,3,.. . ,n and six performance curves were obtained for Zi = 0.1, 0.2, 0.5, 1, 10 and 20.

As shown in the figure, the optimal minimum total processing time, TM2' decreases as the

number of processors increases. However, the curves for large Z levels off quickly after a small

number of processors. This is because it is almost fast for a small number of processors to

solve the problem as it is to take time to communicate the problem to a large number of

processors. In that case, it is better to use only smaller number of processors.

4 Architecture 3: No Control Processor, Processors without Front-End Pro-

cessors

The network topology that is discussed in this section is similar to that discussed in the pre-

vious one except for the fact that each of n homogeneous processors in the network contains

no front-end processor for communicating off-loading. That is, each processor may either

communicate or compute but not do both at the same time. The load may be originated

at anyone of these processors. The processor that originates the load broadcasts to each

processor in the network its share of the load before its starts to compute its own share. Each

processor begins to compute its share of the load at the moment that it finishes receiving its

data. As stated previously, two major factors determine the amount of measurement data

assigned to each processor, the computational speed of the processor and the order of the

11



processor for load distribution. Faster processors will receive more data than slower ones.

The timing diagram of the system is plotted in Fig. 8. Between t = 0 and a2ZTc1T1,none of

the processors performs computation, the first processor communicates data to the second

processor and processors 3,4,5,. . . , n are all idle. In general, in the period between t = 0

and t = (al + a2 + ... + aJZTc1T1' only i - 2 processors perform computation and n - i

processors are idle, i = 2,3, . . . ,n. This fact serves to increase the minimum finish time.

In the following we will use the same definitions for ai, Wi, Z ,TC1T1'TCl>'Ti and Tf as

in previous section. With these definitions, the equations that relate the various variables

and parameters together are stated below:

Tl - (1 - adZTc1T1 + alwlTcp (4.1)

(4.2)

(4.3)

(4.4)

T2 = a2ZTc1T1+ a2w2Tcp

T3 = (a2 + a3)ZTc1T1+ a3w3Tcp

T4 = (a2 + a3 + a4)ZTc1T1+ a4w4Tcp

Tn = (1 - adZTcm + anwnTcp (4.5)

The fractions of the total measurement load should sum to one

al + a2 + . . . + an = 1 (4.6)

We can use the same intuition results as in the previous section in order to show that the

optimal minimum finish time would be achieved when all processors stop at the same time,

that is when:

Tl = T2 = T3 = . . . = Tn

As before, in order to verify the fact that all processors must stop at the same time

in order to achieve the optimal minimum finish time, two tables of data were obtained and

their values were compared. To obtain table 5, an exhaustive search program on different
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values of wand Z with Tem = 0.5, Tep = 1.0 and n = 4. The program finds tlIe best \"alues

of a's for the parameters searched within and the minimum processing time. There are four

processors for table 5. Table 6 was obtained by solving recursively the equations from (4.1)

to (4.4) based on previous idea that

T1 = T2 = T3 = T4

The originating processor should calculate the optimal values of a's. These values

can be computed by solving recursively the following set of equations:

an-l
wnTep + ZTem- a

n wn-lTep
(4.7)

0.3 = a w4Tep + ZT
4 em

w3T cp

0.2 = a w3Tep + ZT
3 em

w2Tep

(4.8)

(4.9)

Wn
a~--

0.1 = I: WI
(4.10)

Except for 0.1, here also, ai is solved for by equating Ti to Ti+l, that is, Ti = Ti+l. 0.1 is

solved for by equating Tl to Tn. A comparison of the tables reveals that the values of a's

and the minimum processing time is about the same for the same values of w' s, Tern' Tep and

Z, except when slow communication makes it faster to use a single processor (see below).

The optimal minimum processing time function, TM3' for this network topology, is

given by:

WI ITj=2(ZTem + WjTep)

TM3 = WI L:?;21(Ztem)n-i(Tep)i-2(W1 + fV2 + ... + W(7-=-n)+ (Tep)n-2(ZI + Z2 + ... + Zn)
(4.11 )

and the maximum throughput(-y) is:
1

1= T (4.12)

Where

W", = (WklWk2.. .Wki-2)
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kp = 2,3,4,...,n kq= 2,3,4,...,n
And

Zy = (WklWk2 . . . Wk",-l)

kp= 1,2,3,...,n kq= 1,2,3,...,n

And

n~3

For n = 2, the minimum processing time function is given by:

TM3 = wl(~Tern + w2Tcp)
Wl + W2

(4.13)

The expression ofthe optimal minimum processing time function, for architecture 3, TM3' im-

plies that TM3 is not symmetric in Wl, W2, . . . ,Wn; however, it is symmetric in W2, W3, . . . ,Wn.

The symmetricity of TM3 is obvious if one observes that each term of the summation in the

denominator contains (:-=-n components of W, each of which consists of i - 2 elements of

w. The second term of the denominator, that is not included in the summation, contains

n components of Z each of which consists of n - 1 elements of w. This implies that the

choice of the processor where the load is originated is important as it was the case in the

previous section. Again, in order to achieve the best processing time in this system, the

fastest processor would have to distribute the data. This fact is also v.erified by the table

5 and table 6. However, processor 2,3,4,. ',' , n can receive data in any order without af-

fecting the minimum processing time. In Fig. 9 the optimal minimum processing time is

plotted against the number of the processors in the network with Tern = 0.5, Tep = 1.0,

Wi = 1 ; i = 1,2,3,..., n, and seven performance curves were obtained for Z = 0.1, 0.2,

0.5, 1.0, 1.8, 2.0 and 2.1. From Fig. 9, there are two important obsenrations. The first is

the optimal minimum processing time function levels off to a certain value after few number

of processors. The number of processors at which TM3 levels off increases as the speed of

communication decreases. The second is that there is a thresh- hold value that limits the

speed of communication. After this value, using more than one processor to compute the

load would take more time than if only one processor was used. This is because of the time

that is wasted in slow communication.
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In the following we will calculate the value at which TM3 levels off and the thresh-

hold value of Z. Based on previous result that the optimal minimum processing time is

achieved when all processors stop at the same time, the following equation holds:

Tl - (1- al)ZTcm + alwlTep = TM3

- ZTern + al(wlTep - ZTern) (4.14)

As

n~oo ==} al ~o

and so TM3 ~ ZTern

The following inequality must hold; otherwise, the optimal mmlmum processmg

time will increase as we use more processors to process the load.

wlTep - ZTern > 0

Z < wlTcp

Tern
(4.15 )

This implies that the thresh-hold value of Z is:

Zth = Wl Tep
Tern

(4.16)

Both previous results are verified in Fig. 9.

5 Conclusion

In this paper three bus oriented architecture are examined in the context of a load shar-

ing problem. For the three architectures it was shown that the optimal processing time is

achieved when all processors stop at the same time. The best processing time is obtained

for the architecture where the processors have front end processors for communication off

loading and the fastest processor distributes the load. If the control processor distributes

the load, the location of the processors on the bus is not important. The interaction between

communication and computation has also been examined. If the speed of the bus slow, the

use of more than a few processors will not substantially improve the performance of the

15
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system. This is because it is as fast for a small number of processors to solve the problem as

it is to take the time to communicate the problem to a larger number of processors. It was

also observed that using a smaller number of fast processor to solve a computationl problem

can be better than using a large number of slow processors.
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Appendix

We will clarify the symmetricity in equation (2.20) by using an example Eora system

with three processors, n = 3. For such system the optimal minimum time Eunction is given

by:

T = (ZTcm+ wITcp)(ZTcm+ w2Tcp)(ZTcm+ w3Tcp) (A )
M1 (ZTcm)2(Tcp)O(Wd + (ZTcmTcp)(WI + W2 + W3) + (ZTcm)O(Tcp)2(WI+ W2 + W3) .1

(ZTcm + wITcp)(ZTcm+ w2Tcp)(ZTcm+ w3Tcp)
TM =

1 (ZTcm)2 + (ZTcmTcp)(WI + W2 + W3) + (Tcp)2(WIW2 + WIW3+ W2W3)
(A.2)

The symmetricity is obvious in the product terms oE the numerator oE equation

(A.l). The denominator has three sum oEpruduct terms. The first, the second and the third

terms are obtained Eor i = 1,2 and 3 respectively. As mentioned in the text each W in the

denominator consists oE i-I product terms oE w. In this example i = 1,2,3. ThereEore, in

the first term oEthe denominator W consists oE(1 - 1 = 0) oE w. In the second term each

W consists oEone w, while in the third term each W consists oEa product oE two different

w. Applying the previous steps on equation ( A.l ), We obtain equation ( A.2). One can

readily see the symmetricity in equ. ( A.2 ), since ( WI+ W2+ W3) and (WIW2+ WIW3+ W2W3)

are symmetric in WI, W2 and W3'
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Table 1: Result of Search Program for Architecture 1

al a2 a3 a4 ] Tmin ~

Table 2: Result Obtained by Solving a Set of Recursive Equations for Archi-
tecture 1

al a2 a3 a4

0.1 1.0 1.0 1.0 1.0 0.2700 0.2600 0.2400 0.2300 0.2865
0.5 1.0 1.0 1.0 1.0 0.3400 0.2700 0.2200 0.1700 0.4275
1.0 1.0 1.0 1.0 1.0 0.4100 0.2800 0.1800 0.1300 0.6300
2.0 1.0 1.0 1.0 1.0 0.5400 0.2600 0.1400 0.0600 1.080
1.0 0.5 0.2 0.8 1.0 0.5200 0.4000 0.0600 0.0200 0.5400
1.0 1.0 0.2 0.8 0.5 0.3400 0.5200 0.0800 0.0600 0.5340
1.0 1.0 0.8 0.2 0.5 0.3500 0.2700 0.3200 0.0600 0.5340

0.1 1.0 1.0 1.0 1.0 0.2686 0.2558 0.2436 0.2320 0.2820
0.5 1.0 1.0 1.0 1.0 0.3388 0.2710 0.2168 0.1734 0.4234
1.0 1.0 1.0 1.0 1.0 0.4154 0.2769 0.1846 0.1231 0.6231
2.0 1.0 1.0 1.0 1.0 0.5333 0.2667 0.1333 0.0667 1.067
1.0 0.5 0.2 0.8 1.0 0.5311 0.3794 0.0584 0.0311 0.5311
1.0 1.0 0.2 0.8 0.5 0.3541 0.5058 0.0778 0.0623 0.5311
1.0 1.0 0.8 0.2 0.5 0.3541 0.2724 0.3113 0.0623 0.5311



Table 3: Result of Search Program for Architecture 2

o:} 0:2 0:3 0:4
] Tmin ~

=

Table 4: Result Obtained by Solving a Set of Recursive Equations for Archi-
tecture 2

----- -- --

0.1 1.0 1.0 1.0 1.0 0.2600 0.2600 0.2400 0.24000 0.2770
0.5 1.0 1.0 1.0 1.0 0.3400 0.2600 0.2200 0.1800 0.3450
1.0 1.0 1.0 1.0 1.0 0.4200 0.2800 0.1800 0.1200 0.4200
2.0 1.0 1.0 1.0 1.0 0.5400 0.2600 0.1400 0.0600 0.5400
1.0 0.5 0.2 0.8 1.0 0.5300 0.3800 0.0600 0.0300 0.2680
1.0 1.0 0.2 0.8 0.5 0.3600 0.5000 0.0800 0.0600 0.3600
1.0 1.0 0.8 0.2 0.5 0.3600 0.2600 0.3200 0.0600 0.3600

z w} W2 W3 W4 o:} J 0:2
I

0:3 I 0:4 I Tmin II

0.1 1.0 1.0 1.0 1.0 0.2686 0.2558 0.2436 0.2320 0.2686
0.5 1.0 1.0 1.0 1.0 0.3388 0.2710 0.2168 0.1734 0.3388
1.0 1.0 1.0 1.0 1.0 0.4154 0.2769 0.1846 0.1231 0.4154
2.0 1.0 1.0 1.0 1.0 0.5333 0.2667 0.1333 0.0667 0.5333
1.0 0.5 0.2 0.8 1.0 0.5311 0.3794 0.0584 0.0311 0.2656
1.0 1.0 0.2 0.8 0.5 0.3541 0.5058 0.0778 0.0623 0.3541
1.0 1.0 0.8 0.2 0.5 0.3541 0.2724 0.3113 0.0623 0.3541



Table 5: Result of Search Program for Architecture 3

al a2 a3 a4
I Tmin ~

Table 6: Result Obtained by Solving a Set of Recursive Equations for Archi-
tecture 3

al a2 a3 a4 ] Tmin ~

-- -- --

, ,

0.1 1.0 1.0 1.0 1.0 0.2400 0.2600 0.2600 0.2400 0.2860
0.5 1.0 1.0 1.0 1.0 0.2200 0.3200 0.2600 0.2000 0.4150
1.0 1.0 1.0 1.0 1.0 0.1800 0.3800 0.2600 0.1800 0.5900
2.0 1.0 1.0 1.0 1.0 1.0000 0.0000 0.0000 0.0000 1.000
1.0 0.5 0.2 0.8 1.0 1.0000 0.0000 0.0000 0.0000 0.5000
1.0 1.0 0.2 0.8 0.5 0.0400 0.7400 0.1200 0.1000 0.5300
1.0 1.0 0.8 0.2 0.5 0.0400 0.4000 0.4600 0.1000 0.5300

0.1 1.0 1.0 1.0 1.0 0.2408 0.2655 0.2529 0.2408 0.2788
0.5 1.0 1.0 1.0 1.0 0.2078 0.3247 0.2595 0.2078 0.4058
1.0 1.0 1.0 1.0 1.0 0.1739 0.3913 0.2609 0.1739 0.5870
2.0 1.0 1.0 1.0 1.0 0.1250 0.5000 0.2500 0.1250 1.000
1.0 0.5 0.2 0.8 1.0 0.1172 0.7143 0.1099 0.0586 0.5000
1.0 1.0 0.2 0.8 0.5 0.04598 0.7471 0.1149 0.0920 0.5230
1.0 1.0 0.8 0.2 0.5 0.04598 0.4023 0.4598 0.0920 0.5230
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