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A study is made of the terms in an expansion of the direct cor-

relation function at the critical point. If homogeneity of long-range

correlations is assumed, \-lefind that the terms involving m-point cor-

relation functions, m > 2, do not dominate the terms that depend only

on pair--correlation effects. For a system with a short-range pair pot en-

tial, we have previously shown that this result yields, in the usual no-

tation~ 2-~ = min[2, d(o-l)/(o+l)], d=dimensionality. It is argued that

for a pair potential V(.::)"" _r-d-o
,.. co" , we should expect nofor

change in this relation for 0 > min[2,s], where 5 is an exponent ap-

pearing in our analysis; s = 7/4 for d=2 and s=2 for d=3. For

smaller 0 the problem is more complex and our analysis is only suggestive;

it indicated that when 0 < 5 one should be ,prepared to find a marked

difference in the behavior of critical exponents between the 0 < d/2 and

o > d/2 cases. For the latter we again find 2-n = min[2, d(o-V!(c+l)].

We find 2-n=o in both cases.
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1. INTRODUCTION

In a previous workl herein referred to as I, we derived a re-

lationship between the critical exponent 0 that describes the shape of

the critical isotherm and the exponent n that describes the decay of the

pair correlation function h(12) at the critical point as r -+- co
12 .

The

derivation was based upon the use of a functional expansion for c(12), the

direct correlation function. In addition to V(12), the pair potential,
A

the expansioninvolves h(12) and c(12) itself [more precisely,h(12) =

h(12)-n(f)o(12) and c(12) = c(12)-n(1)o(12), where n is the singlet

distribution function and 0 the delta function:,Dirac for a fluid and Kro-

necker fora lattice system] as well as the functional derivatives of
A

C

with respect to n. Here and below we use the notation of I except as

otherwise indicated. As in I we write a function of ':12 sometimes as

f(12) and sometimes as f~12) as convenience dictates, and often we

write R2-!1 simply as r rather than
..... !:12'

~Tith r=lrl.......

The fundamental postulate used in analysing the expansion of c

was the following: near the critical point the correlations between points

":1' £2' ... , are homogeneous in
-1K (the correlation length) and

rij (the distances between any pair of the points) for sufficiently large

r... Specifically it was postulated that on the critical isotherm for small K,1J

the long-range parts of hand
A 2
c . are homogeneous, as well as tpe long-range

parts of the functions
A m-2 A ...

C = 0 [c(12)-c (12)]/on(3)...on(m), m > 2, wherem c

the subscript c here and throughout refers to the critical point. From

this assumption the relation

A ~ ~
Ce("') ;vA{,r) r-'P 00~ c , , (1.1)
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was obtained for a fluid or lattice gas. In I, our derivation of (1.1)

rested upon our conclusion that for r ~ ~ the terms in the expansion of

c (r) containing thec -

A

cm' m > 2, (i.e. directly manifesting m-point cor-

hc for large r. We also dealt only with systems for which VCr)
.....

is neg-

ligibly small(for large r) compared to
A 0
h (r) .

c-

I This paper has two sections beyond the introductory material of

sections 1 and 2. In sec. 3 we are concerned with a system in which VCr)
.....

is short ranged. For such a system we give a detailed argument, based on

the homogeneity of the long-ranged part of cm' in support of our conclu-

sion that the terms containing
,.

c , m > 2m '
do not dominate the terms that

depend only on the behavior of the 2-point functions on the expansion of

A

C .

C

In section 4 we investigate the effect of a long-ranged VCr)

of the form
-d-a

-r for large r (d=dimensionality, (J > 0). He conclude

that there will be no change in the relationship between 0 and ~ for

a > min[2 ,~] where
-
s is an exponent appearing in our analysis that is 7/4

for d=2 and approximately 2 for d=3. For smaller u the problem is

much more complex, and our analysis is only suggestive, requiring.as it

does several strong additional assumptions. It indicates that when a < 2

one should be. prepared to find a marked difference in certain cri~ical be-

havior between the a < c/2 and a > d/2 cases of the sort that one al-

ready finds in the simpler spherical rnode14, f~r which c = -V/kT forc

large r [k = Boltzmann's const. and T = temperature].

relation effects for m > 2) do not dominate the contributions of the terms

that involve oniy c itself and h.. Because of space limitations we gave

only a heurisic argument suggested by the work of Percus 3 . fn support 0

our neglect of the former terms, based upon the slowly varying nature of
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5 .
Since the appearance of I, Ferer et. al. have concluded that when d=3,

£(r) may not satisfy the strong form of homogeneity postulated in I. We- . .

discuss elsewhere6 the modification in our results to be expected from

weakening the homogeneity assumption in a way suggested by their work;

here we retain the homogeneity assumption of I but point out some as-

pects of our work that will be unch~nged if it turns out that the as-

sumption of I must be weakened for d=3. For d=2, there is no evidence

of the breakdown of homogeneity.
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2. GENERAL RELATIONS AND ASSUMPTIONS

Our starting point in I was the assumption that when

l1(r) is ~ homogeneous function of degree t-d in rand ,,-1

T=T ,c

for r

and ,,-1 both large compared to the particle diameter or distance be~l~en

lattice sites, which we shall denote as a.

A "L ;..L
where for r» a, h=h, with h given by

Thus we postulate
" "S "L
h=h +h;

A

AL~ {(I(",) 4""' :t-A. = )( £-:C e (j(-r) , (2.1a)

A/.J
.A ~ Cnt.sT r ;l-efc . (2.lb)

The precise functional form of f(x)

2 ""S "L
the same spirit we write c = c + c

and e(x) will not concern us. In .

where for r» a,
" "L
c=c , with

"L
c

given by

c.4 ~ F ( I( r) r- -,4. ~~e :: K'4. ~ £ £" ( I( -t-) J (2.2a)

Ah
Cc n.' C£»,.d: r -A - ef... ( 2 . 2b )

We use t here to denote what is usually written as 2-n, and the inverse

correlation length " in (2.1) and (2.2) can be defined by the equation

j
.1\ I"-

N-'? = ~,2.J{(;;J~ / JAf:!:)~ ".
(2.3)

From (2.1a) and the suppostion that
AS

Ih (r)dr.,. - is bounded, we conclude

JA{-t-Jk ;v )(-,t- "
(2.4)
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Eq. (2.4) can in fact be used instead of (2.3) to define K when"

Ir2h(r)dr does not exist, as in the case of very long-range potentials7.~ ~

The functions her) and ~(r) are related to one another in a way easily- -

expressed in terms of their d-dimensional Fourier transforms H(k) and
"
C(k) :

...

/\

fOH(A) :-

/\

C(k) -1
-. ,

(2.5)

where p is number density and F(k) = "If(r)ei~.~dr. He~e and throughout

the article the integral IdE stands for a sum over lattice sites in the

lattice-gas case. We note that

p(d~/dp) = -pC(O) = -pl~(r)dr- - ,

2"
(pv ) h(r..) =

o ~J (To To) - < To} (T.)
~ J ~ J

Several distinct cases appear in our analysis depending upon the

magnitude of t/2. To see the way in which they arise we note that at the

critical point (2.1b) and (2.2b) imply that there is a p such that

/\

't, AJ A~r" r» a. " (2.6)

where

A=I'(~-;C)-£ (2.7)

Also consistent with (2.1b) and (2.2b) are the expressions

ere is the chemical potential. For a lattice gas with a volume per

site of v and an occupation variable T taking the values 0 or 1, the0
"

function h is given in the notation often used for lattice correlations by
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A
He (k) "".... ~td A -I k ~ 0 ,../- (2.8)

and

/\ _ jj At /_ ;?; /

Cc (~) -::::: t".t!lcJt; ,-/'l -I- e#tdi;e R of- U~./ N ~ () oj (2.9)

where the term of order kO in (2.9) is zero because C (k) = 0 at k=O.
c~

Using (2.5) to compare (2.8) and (2.9) we conclude that in general s? t,

and if const.21 0, that t = min[2,sJ, so if s < 2, (2.7) yields t = s =

d(p-l)/(p+l). Thus we can write, if const210 >

;t = nrt(~t[ £,J £0-')/fP-t- J)]
(2.10)

On the other hand, if const2=0 we. would have t = s = d(p-l)/(p+l) for

s > 2, as long as s were smaller than the smallest unexhibited power of

k in (2.9). In general, we find no reason to assume const2=O, and would

expect in fact a whole series of even-power terms in (2.9) with non-zero

coefficients that define the spatial moments of C S.c

The relations (2.3) through (2.10) hold even under the weakened

form of homogeneity postulated in ref. [5J since they do not rest upon °

(2.la) or (2.2a), but depend only on the (b) parts of (2.1) and (2.2), whIch

are not brought into question by the work of Ferer et. ale

In the special case of s=2, (2.2b) implies that at the critical

point

C (k)c-
2 2

0:::const k lnk + const 3k -1-... , k ~ 0 ,

",

and as a result, (2.1), (2.2) and (2.5) aPe no longer compatible. However,

the asymptotic forms

UlRAl'I!

~~ Ift.I\VUSITYOf. ~ 101I
~t iTONY IiOOK. I; ... till 18 .
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,A .
c 0:) "" F(K-r) r --t-"(En rf -'" - £)/ ,zJ~ -;--7'00 .) (2.11)

1'\. ..

~(T)~ -f(J(,r) r ;{!;',,(i 1/ )
(.JZ-£)/.;C~

\..-ht-r r OC>, y.)
(2.12)

are compatible with the critical-point transforms

/\ ~ / /J .J(£-.:c.)/ £.J!
Cc (j.) ~ cff/tsi Ie JJ;?( k + ' , ~/ k.-7' 0.....

A -z /'// 1)
(.:2-£ )/:z£

H (h)::=: emt$Z k lJ~t/Z -I- .,~.- h-7o
C - J ;

(2.13)

and hence with (2.5). Eq. (2.6) is satisfied as well ,lith

/? = (£-I-Z)/( £-,,<) . (2.14)

We introduced (2.6) here solely as a consequence of (2.lb) and

(2.2b). In the next section however, it will be shown an independent set

of consideration~ lead us to (2.6),with p = 0 [i.e. to Eq. (1.1)] and that

for a special value of ,0 this is true even if (2.1) and (2.2) are not as-

sum ed, as long as it is assumed that the chemical potential ~ behaves in

the simple way near the critical point given by (2.19). The somewhat less

restrictive assumption (3.16) leads to a generalization of (2.6)

c ;vi ;b~1) ~ (2.15)

If s=2, then (2.15), (2.5). and (2.l~.)are satisfied when q < 1 if (2.11)

and (2.12) are generalized to

,..

C{!.) ~F{ It,,) r Y~-;llg )
,t(d'-R-)- &f-&J/ ~ £.

H'H. I T ---7'<>0" ~ ~

(2.16)
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/\

.A r::) '" f ()(.,..) of' '"--f(R., .,..)('/ -(-')( :z-,R)/ .zd. ,j r :;>c.O. (2.17)

The case s=2, q ~ -1 requires further analysis reminiscent or the case

p >,.(d+2)/(d-2) in (2.6) For s"l2, di'fferentpowers of J.nr in C and

h would have 'to be used to maintain consistency between (2..15) and (2.5),

but only in the special case of s=2 does there appear ~ny compelling

reason for investigating (2.15) in the first place. Similarly for s~2,

one can modify (2.1) and (2.2) by including, for example, factors of 1nr

I

to certain powers that will be consistent with (2.5) and (2.6), but only for

s=2 is one .forced to go beyond the si~p1e homogeneity assumptions of (2.1)

and (2.2) in order to maintain consistency between (2.5) and (2.6).

In addition to (2.5) we shall use a second relation that involves

hand c. It is given by the expressions

C (;,<.) = - l/(i;<)/hT .1- R (;.z)~

R(I:<) = - Yto ~{ -~A{t:<) 1t1/cfro] /hT-f ~/"5-?7(J (2.18)

$",dU) '" ((""1_1 ifC.." (" 3,..~ ",uz).Il;:';'(jJr( ;,<)-~('Zi .fr},

In (2.18), the subscript zero denotes that the quantity labeled is to be

evaluated at the number density pg(i2) rather than at P. It was noted

in I that if we assume

Ju -/lr-/ ~ ~_~c I J
(2.19)

then -[p -p-ph(12)o
o

d~/dpJ/kT ~ h(12)

dominates h(12)o

at the critical point, so that if

neither V nor 8m as
l'12

~ to
at the critical point,

then we shall have (l.I).The relative sizes of S t h,m and V are the sub-

ject of the next two sections.



10

3. THE GENEP~L TERM IN THE EXPANSIONOF C

In-our analysis~ all of which takes place at T=T ~c
~'leshall

make repeated use of the expressions in this paragraph to express various

results as power~ of h~) after gettingthem as powers of KO and

to simplify the expressions for the pm-reI'sof h. If K.-v I p-pc I e: at

aiKq/CJpi Kq-{i/e:)~so that at T=Tc' P=Pc' we have
(d-t)e:" e:

and KO""" 1"12 _ ~ hc(l2). Furthermore

(from the Gunton-Buckingham inequality9and te: = <S-1) and

T=T ,c
i q

a KO /apo

(d-t)e: > 2

then at T=T .

. c'

= K q-(i/e:)o

de:> te:+2~ 0+1. (We also conjecture that (d-s)e:= 2~ even when s > t,
!

but we do not use this conjecture here). Here and below we use q to stand

for whatever'pOi'1er of h appears in a particular discussion; it does not

"L
c ~ m > 2, thatwem

is defined by

m-2 "E ..E
] ) ( ) "E

<5 [c (12)-c (12) /on(3 ... on m = cc m

and since

c~ = CE(12)-C~(12).

. ., , m) is

for m > 2. We extend this definition to

. ..S

( )
,

S~nce c 12 ,vo ~f ri2» a

m=2 by setting
1:'

cU(l,m

completely symmetrical in the variables 1".., 1 ~ i < j ~ m, we believe it
lJ

is reasonable to further postulate that

Because we know

c~ .v o. { -7> > > Cl--r t2Hj 1':;.J i..< / </ f. /77t . (3.1 )

t
!(c(12)-c (12)]d(2).~ K [from (2.4) and (2.5)] as wellc

as

Jfc"(a) - 2/"0,2)}.f{;:l) -v f('4~>
(3,2)

have a fixed meaning throughout the article.

We consider nextte properties 9f
"S

andc
m

shall postulate, where
"E for E either S Lc orm
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[from ( 2 .2a )] we conc.lt~de

.

Jf 2$( 12) - c~sCI.z)] d!{z) "--' f( f w-l!er.:: g ~ r . (3.3)

Because

J F. . .
) ~(.:t.)..,cfr?)'{f-z) =

(3 4 )( I "J 'l?(r~ .
c"~,,... / ;) ""/;)f ""JieE( M) - CcE Oz(/,P(.;')

(3.3) in turn yields

} 2 S (I ..'Flt-f)/r.:<) "'/(?PN) rl-'

~/r/ /;.1

I

In keeping with (2.2a)~ and more generallywith the whole notion of homo-

t;- -~ f.&~ -1)/ ~ ]

)( l' aC 7: Ie-.,Ig 3 -to (3. 5 )

. t ' -1
dgene1. y 1.n K. an

. 1
2

p01.nt~ we postuate

r. .
1.)

of long-range correlations near the critical

/' .10
) .-1 ' ,

C.L- ~ j(" E (~i' t(."'r.;;~1::=-)('0 / -!-(y !; "X1/. (3.6 )'}}f+/ ". ../

We can immediat~lyfind p~ since from (3.l)~ !c~+ld(2)... d(m+l),v KP-md

while from (3.2) and (3.4)

J At
C ""t .,. / t:!(,:<) ,,'£(1'?(-I-/)'" J'»r-/j{ /J~ 71(-/ I

I1J )( 4. - f (~" -,)/c-]
.J

(3.7)

so

~ ==.4. -[~~-I)/tE] +/Yncf
./- . ~ (3.8)

and
A L

!(Cm+l )odO) d (m) "".. h (r) q ~c q ~ o-m.

Instead of calling the vectors over which we do not integrate(in

s ) rand r2~m -1 - it will prove a bit more convenient here to call them r_ex

and 1'6 . (and to write 1:. for ':B-Eexrather than for "':2-!'1)'We shall

d h S b . ,. AL ",S
d

.
d

.
1 h .

stu y eac y sett1.ngc = c + c an consJ.erJ.ngseparatey t e 1n-m m m m -

tegrals !e El«(~l~ ... ,m)o1T.ml{[hCiB)-h (aB)]d(i)} "lith E first takenm+ 1= c
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as L and then S. Each such integral can itself be written as a sum of

terms of the form

iZ(~) Vf-,( feE (.;(.A..:-?-,r)or77:-tJt; (/r3
j
-d(/)... £(?r{) })

~ J C?"fl I' (:-1
(3.9)

where i ~ m. For convenience let us use abbreviated notation to denote the

integral of (?9) as f(cm~l)O~thcd[m]. Since

j(C:;',,). 77;;.Ac /[~.7 ~ J--.y J(>=Jic;:J.7C.~"ff,OJ (3.10)

we need only evaluate

~Ct~l)O~thCd[t]
I

which will prove to be asymptotically proportional to a po~er of h (r)c .....

under our assumptions. Then, because

~-v,-~ ---~c$-/;;~/H-.e)~ ~fr, r~cb ~
(3.11)

we can immediately use our evaluation to find (3.9), and hence S .
m

For r + 00, we argue that

./(cl.J. 'i(fAcjlUl~~/«,~.j). 7(.: /-Ac"(,{J).f{'J]. (3.12)

This follows from the observation that as r + ro for q < (d-t)E, the in-

terval rq < r . < ro becomes equivalent to the interval 0 < KOr . < roo Thisa1 a1.

interval defines the domain of integration of the left-hand side of (3.12);

so if we choose q < (d-t)e we can write

. J(f.;,)o 71; Ac J?[,fJ~j(0~;)o 17;.~c £ [L] ; (3.13)
:tl

where Q is the domain such that r . ~ rq; 1 ~ i ~ i. But as longascu

q > 1 (and we can so cho~se it) then the right-hand side of (3.13) approaches

the right-hand side of (3.12) as r + roo Using (3.6), (3.8), and (2.lb), we

. .. s-[(t-l)/e]+t(d-t) q
est1matethe r1ght hand s1de of (3.12)to be -KO "" hJr) ,

q = 0+£ if s=t and q > 0+£ if s > t. Thus from (3.10) and (3.11) we have
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m~ At q
h (r) l(c l ) oTInh d[m] ~ h (r)-, q ~ 0+£.c m+ 1<.c c -

We must finally consider the contributions from expressions of

the form
!(Ci~l)OTIthCd[t],

which are
t A S

IV. hc (.;:) !(CHI )Od(2) ... dU,).

From (3.5), this expressio~ is O(h~). Thus, using (3.10) and.(.3.11) for

E=S we find that h (r)m-R.!(c Sl )oTInh d[m] N O(ho), r -+-0>, as well.c - m+ 1<.c c

Putting our results together, we see that the dominant contribu-

tion to S comes from interaction of the h's
m and

S'
c

mill'
rather than

A L
cm+1.

according to (2.18), if VCr)-
I 15

of orderh (r) for r -+-0>c-

There is no contribution to S of order lower thanm
o

h (r) .c...... Thus

is negligibly small, c (r)c-.
itself will be

when homogeneity of the long-range corre1a-

tions is assumed, and the p in (2.6) and (2.10) must'be o.

There remains to be treated the special but important case of

~ = "($-1)/($"+1) (3.14)

This is not covered by our previous arguments since in this case we would

be led to s=2 by (2.1b), (2.2b), (2.5), and (1.1), except that when s=2,

then (2.1b), (2.2b) and (2.5) are no longer compatible, as pointed out in

section II. Thus we are forced to modify at least one of our assumptions.

The most gentle modification that can be contemplated appears to be the re-

tention of (2.19) and the replacement of (2.1) and (2.2) by (2.11) and (2.12)~

It is easily checked that (1.1) is still consistent with (2.5), for (2.13),

and (2.14) and that in (2.10) ~o-~-pdu/dp still contributes a term of order

hOc

fail to dominate hO .
c

(9) still
m c

When the preceding arguments of this section are ap-

to c .c The remaining question is therefore whether the

plied, the in terms in (2.11) - (2.14) will introduce powers of tnKo as

well as powers of KO in the analysis of (3.9); and it is necessary to

know what tn terms appear in the relation between K and p. Assuming
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(2.19)~ we find at T-'1'"-,.
c

I/~ ~-I

)(R (AK) /V f;o-f'c/ ,
(3.15)

'l'hisC01OO8from comparing t..!/1.I£j1 -v If> -f1"c / .~-I
!7 ;e/.f \ ~6

~/40""")( (k;C)(J , which follov:s from the use of

I'tjP/4b. It follo\..sthat the most dominantterms in ...

h~. For example ncfcLd! ~hcK~(Ko)1/6~ which from (3.15) is of order h~.

vdth the result

fA /)-1

(2.12) in f;o.JA&:)~J::

(8~),.
are all of order

The analysis of the general term is more tedious but no more difficult; it

y(-;/<c / ~ I~-~c / ~ I~-;oc / ~ (3.16)

is assumed instead of (2.19)" with (~.15)~ (2.16) and (2.17) restoring con-

sistency instead of (1.1), (2.13) ~nd (2.14). Here the dominant term in

(8) would be of order hO(lnh )q.
m c c c

is basically because Ip-p IdK/dp is not of lower order in p-o than K'
c 'c

itself that all terms involving c m > 2 cannot be of lower order thanm

the simple terms involving only c2.
The situation remains similar if
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4. LONG-RANGE POTENTIALS

We ~urn now to a discussion of the case of a long-range (LR) po-

. -d-O"
tent1alV iV -I' for r-+-oo. In Eq. (2.18) there is now a competition

between -8V ancl R
c to consider. We first ask if it is reasonable to

assume that R
c

still looks like hP
c as I' -+- 00 with p equal or very

lows: Assuming (2.i9) it immediat~ly follows that [~o-~-phd~/dp]c still

looks like hO ,c so we can pass on to an analysis of the S .m it sHll

appears.reasdnable to postulate that h ,... rt-dc .

(In the OZ case this is so

with t = min[0",2]; in the Ising case the simplest possibility consistent

with known results ~ppears to be

/ := ~ [~ ZJZ] (4.1)

7
for such cases It is then still as reasonable as in the SR case to as-

sume that for r» a, c-cc
~ . ~1
1S homogeneous 1n A = K and I' of degree

where homogeneity of the correlations can be questioned, p departs only

very slightly from 0, on the basis of Eq. (2.10) and the currently ac-

cepted value of t[~ 49/25]. Thus we conclude that in the LR case as well

as the SR case,

close to o. We believe so and using our knowledge of both the Ornstein-

Zernike (OZ) case
8

[R = 0- for large as in the spherical mode14] andI'
c

the short-range (SR) case [V=O for large r] to guide us, we argue as fol-

where a tilda here and below refers to the SR case). We must take care in

defining K in the case of an LR potential -- for small 0", K defined

by (2.3) no longer exists. However we can use (2.1) as a definition of K

':d-s. The rationale also remains for making the same assumptions on the

"S "L 0
10 P

c and c that we used in the SR case where we found RAlh; withm m c c

p=o when homogeneity of the
"L

was assumed. Even in three dimensions,cm
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Cc .."-- V/kT + O( hcP) , (4.2)

where p=o if strict homogeneity of the
AL
c
m is assumed and p~o other-

wise. From (4.2), (2.lb), (2.2b), and (2.5) we have the useful relation

£+4. = /Y3~ [(d--t::)~.) £ra-] .

(4.3)

Consequences of the above argument are most directly obtained --

and the argument itself is at its most convincing -- for the case a > S

since a > s impliesthat as r +~, V can be neglected compared to the

tween K and K, ~nd assuming p=6, no difference from the SR result:

t = min[2, d(o-l)/(o+l)].

If a < s the situation is more c~~plex. If we continue to as-

sume that V can be neglected compared to R
c so that exponents have the

same values as in the SR case with d+o > (d+t)p, we arrive at a contradic-

tion, since (d-t)p = d+s. Hence if a > s, it is no longer plausible to

postulate that V can be neglected compared to R , i. e. thatc d+o ~ (d-t)p.

This suggests that when 0 < s we start instead with the trial assumption

tl1at Rc can be neglected compared to V, i.e. that the presence of Rc

in (4.2) will not shift the values of the critical exponents away from their

OZ values. On the basis of this starting point we can compare
o

handc
Rc

as r +~. Letting a dot denote an OZ value, we have s=o, and Eq. (4.2)

now tells us that (d-t)p > d+o, so that h P cannot dominatec V. Thus

our trial assumption is at least self consistent. If we further assume that

R that one would have had if V were negligible in the first place.c
-

(For d=2, s=7/4 while for
-

Hence we are led to p=p. d=3, s appears'.

to be 2 or a bit less.) Thus where a > s, we expect no difference be-
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p=o, we have p=6' .with 6=(d+a)/(d-a) when d/2 < a < d, a < 2, and

5=3 when 0 < a < d/2, a < 2. From these expressions follow co-domi-

trial assumption as long as 0 < 3d-6. But for d > 4, .we expect precisely

s = 3d-6 from d+s = (d-i)o, so we conclude that V will strictly dominate

R for all 2 < 0 < s. In summary: if 0 < s, the hypothesis that Vc

leaves s unchanged at 5 is s~lf-contradictory, whereas the plausible

assumption that R Hill not shift sc away from s satisfactorily leads

us back to ,the consistent conclusion that R will not dominate V. Thec

additional postulate that the
~L

cm' m ~ 2, are homogeneous further sug-

gests the result t = 0 = d(o-l)/(o+l) for d/2 < 0 < min[d,2] and

t =0, 0 = 3 for 0 < CJ < min[d/2,2]. For the values CJ = d/2, a = d He

would expect log terms to appear in }l-}l c
as p-p and in h(r),- as they

do in the spherical model. For the value 0 =~, similar complexity

could also appear because of the possible confluence of the V and R
c

terms at this value.
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nance of V and R for d/2 < a < d, if a < 2, and strict dominance ofc

V for o < a <_d/2, if a < 2. When (1 > 2 \-1e expect 2 < S only for
'.

will strictly dominated > 4, for \-Thich 15=3, so that V R under ourc
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