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ABSTRACT

A study is made of the terms in an expansion of the direct cor-
relation function at the critical point. If homogeneity of long-range
correlations is assumed, we find that the terms involving m-point cor-
relation functions, m > 2, do not domirate the terms that depend conly
on pair-correlation effects. For a system with a short-range pair poten-
tial, we have previously shown that this result yields, in the usual no-
tation, 2-n = min[2, d(6-1)/(8+1)], d=dimensionality. It is argued that
for a pair pctential V(r)~ —r-d—o, for » > =, we should expect no
change in this relation for o > min[2,s], where S 1is an exponent ap-
pearing in our analysis; S = 7/4 for d=2 and s®2 for d=3. For
smaller o the problem is more complex and our analysis is only suggestive;
it indicated that when 0 < S one should be prepared to find a marked
difference in the behavior of critical exponents between the o < 4/2 and

6 > d/2 cases. For the latter we again find 2-n = min[2, d(8-D/(&+1)].

We find 2-n=¢ in both cases.



1. INTRODUCTION

In a previous workl herein referred to as I, we derived a re-

lationship between the critical exponent § that describes the shapes of

the critical isotherm and the exponent n that describes the decay of the
pair correlation fﬁnction h(12) at the critical point as Pyp The
derivation was based upon the use of a functional expansion fer <¢(12), the
direct correlation function. In additign to V(12), the pair potential,
the expansion involves h(12) aﬁd c(12) itself [more precisely, h(12) =
h(12)-n(1)8(12) and ¢(12) = c(i?)—n(l)é(l?), where n is the singlet
distribution function and & the delta function, Dirac for a fluid and Kro-
necker for a lattice system] as well aé the functional derivatives of ¢

with respect to n. FHere and below we use the notation of I except as

otherwise indicated. As in I we write a function of cometimes as

1Y
f(12) and sometimes as f(rlg) as convenience dictates, and often we

write r,-r, simply as r vrather than »r

EAL N | with »= LI;l 3
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The fundamental postulate used in analysing the expansion of ¢
was the following: near the critical point the correlations between points

Py> Pps eee 5 are homogeneous in n_l (the correlation length) and

r (the distances between any pair of the points) for sufficiently large

ij
rij' Specifically it was postulated that on the critical isotherm for small «,
the long-range parts of h and & are homogeneoué{ as well as the long-range
parts of the functions &m= Gmmzfé(l?)—éc(lQ)]/dn(3)...Gn(m), m > 2, where

the subscript ¢ here and throughout refers to the critical point. From

this assumption the relation

c,(r) MAA;(’) . ;-'____._;GO % (l.l)



was obtained for a fluid or lattice gas. In I, our derivaticn of (1.1)
rested upon our conclusion that for r -+ « the terms in the expansion of
Ec(g) contsining the Em’ m > 2, (i.e. directly manifesting m-point cor-
relation effects for m > 2) do not dominate the contributions of the terms
that involve only c¢ itself and h. Because of space limitations we gave
only a heuristic argument suggested by the work of Per-cus3 in support of
our neglect of the former terms, based upon the slowly vérying nature of
h, for large r. We also dealt only with systems for which V(r) is neg-
ligibly small{for large r) compared to ﬁc(ﬁ)ﬁ.

This paper has two sections beyond the introductory material of

sections )1 and 2. In sec. 3 we are concerned with a system in which V(r)

e

is short ranged. For such a system we give a detailed argument, based on
the homogeneity of the long-ranged part of Em, in éupport of our conclu-
sion that the terms containing Em, m > 2, do not dominate the terms that
depend only on the behavior of the 2-point functions on the expansion of
..

In section 4 we investigate the effect of a long-ranged V(r)

of the form _r—d—a

for large r (d=dimensionality, o > 0). Ve conclude
that there will be no change in the relationship between 6 and n for

o > min[2,5] where s is an exponent appearing in our analysis éhat is 7/4
for d=2 and approximately 2 for d=3. For smaller ¢ the problem is

much more complex, and our analysié is only ;uggestive, requiring .as it

does several strong additional assumptions. It indicates that when o < 2
one should be prepared to find a marked difference in certain critical be-
ﬁavior between the o < ¢/2 and o > d/2 cases of the sort that one al-

. T .
ready finds in the simpler spherical model , for which € -V/kT for

large r [k = Boltzmann's const. and T = temperaturel].



Since the appearance of I, Ferer et. al.5 have concluded that when d=3,
ﬁ(_!:) may not satisfy the strong form of homogeneity postulated in I, We
discuss elsewhere6 the modification in our results to be expected from
weakening the homogeneity assumption in a way suggested by their work;
here we retaig the homogeneity assumption of I but point out some as-
pects of our work that will be unchanged if it turns out that the as-

sumption of I must be weakened for d=3. For d=2, there is no evidence

of the breakdown of homogensity,

i
i
'
3
3
i




2. GENERAL RELATIONS AND ASSUMPTIONS

Our starting point in I was the assumption that when T=Tc,
Iﬁgr) is a homogeneous function of degree. t-d in r and = for r
and g both large compared to the particle diameter or distance between
lattice sites, which we shall denote as a. Thus we postulate h=h"+h :

where for r >> a, ﬁ=ﬁE with %L given by

"o
ik -
Sitas foeryr Z = w7 ecnr), (2.12)

A 5
%CA” eomst 724 ‘ (2.1b)

The precise functional form of f(x) and e(x) will not concern us. In -

the same spirit2 we write o = ES + EL vhere for v >> a, 6=EL, with EL
given by
A . gl
chm F(X)T7T xe e:}("“‘eE(/(fr) 3 (2.2a)
2o g P ﬂf #4ﬂ£
C. T consl 77 7, (2.2b)

We use t here to denote what is usually written as 2-n, and the inverse

correlation length ¥ in (2.1) and (2.2) can be defined by the equation

N
H* =/f‘?%(j)z/fj' //2{;{")44" s (2.3)

From (2.1a) and the suppostion that IES(E)QE is bounded, we conclude

Shendy ~ KF, | (2.4)



Eq. (2.4) can in fact be used instead of (2.3) to define x when-
fr2h(£)d£ does not exist, as in the case of very long-range potentials?.
The functions EQE) and c(r) are related to one another in a way easily

expressed in terms of their d-dimensional Fourier transforms H{k) and

c(k):
A il

ﬁﬁ(fﬁ-(‘(é) . | (55

-t

where p is number density and F(k) ='If(r)el?'¥dr. Here and throughout
the article the integral /dr stands for a sum over lattice sites in the

lattice-gas case. We note that

p(du/dp) = -pC(0) = -pfe(rlar

where p 1is the chemical potential. For a lattice gas with a volume per
site of v and an occupation variable 1t taking the values 0 or 1, the

function h is given in the notation often used for lattice correlations by
v ) 2h(r.) = Cr.t) -t (1) .
o ij 33 i 3

Several distinct cases appear in our analysis depending upon the
magnitude of t/2. To see the way in which they arise we note that at the

critical point (2.1b) and (2.2b) imply that there is a p such that
A .
Al
c.~%ﬂ¢@r-¢>>“ - (2.6)

where

A‘“/N‘/";‘L)"e . (2.7)

Also consistent with (2.1b) and (2.2b) are the expressions



Ao (k)= eot £ foso) (2.6)

and

Fal - L A
(:c(:%) ot ¢;x453.4£§ -+ ézmﬁﬁgz /% o /é’ﬁ?éjj

(2.9)

where the term of order ko in (2.9) is zero because 6c(k) = 0 at k=0,
Using (2.5) to compare (2.8) and (2.9) we conclude that in general s > t,
and if const.Q# U, that T = minl2.8]. 86 if sx 2, (2.7) vields £'% 5 &

d(p-1)/(p+l). Thus we can write, if const, 70 »

" ‘,f B mu;:z[,gj /(k(yﬁ/)/yd-{- 1)] . (2.10)

On the other hand, if const,=0 we would have t =s = d(p-1)/(ptl) for
s > 2, as long as s were smaller than the smallest unexhibited power of

k in (2.9). 1In general, we find no reason to assume const,=0, and would

2
expeét in fact a whole series of even-power terms in (2.9) with non-zéro
coefficients that define the spatial moments of 605.

The relations (2.3) through (2.10) hold even under the weakened
form of homogeneity postulated in ref. [5] since they do not rest upon
(2.1a) or (2.2a), but depend only on the (b) parts of (2.1) and (2.2), which
are not brought into question by the work of Ferer et..al.

In the special case of s=2, (2.2b) implies that at the critical

point

ECQEJ = const k2lnk + const3k2 +owew g 2T

and as a result, (2.1), (2.2) and (2.5) are no longer compatible. However,
the asymptotic forms
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. - (- L) 2d _
€‘:f.")2 FOusr)r "~ (gﬂff") y T =<0, (2.11)

4 : E
il (-2 X
//;(fr)i’ f(’/}(.r)?" 6//«4¢ d 5 7 —> 00, (2:12)
are compatible with the critical-point transforms
LA ) [C/f’-—,ﬁ}/»&ﬁ{y
C. (L)= eonst (k)" 57 ko
A (2.13)

\(._2 L)/ /2 X
‘Fc é = ol /1 (/ / 7“""*‘, /’\’“*'70}
and hence with (2.5). Eq. (2.6) is satisfied as well with

R = (rz)/(L~2) . (2.14)

We introduced (2.6) here solely as a consequence of (2.1b) and
(2.2b). In the next section however, it will be shown an independent set
of considerations lead us to (2.6),with p = 6§ [i.e. to Eq. (1.1)] and that
for a special value of ‘6§ this is true even if (2.1) and (2.2) are not as-
sumed, as long as it is assumed that the chemical potential u behaves in
the simple way near the critical point given by (2.19). The somewhat less

restrictive assumption (3.16) leads to a generalization of (2.6)
s ~ :
= w.% (51%) (2.15)
If s=2, then (2.15), (2.5), and (2.14) aré satisfied when Q<1 if (2.11)
and (2.12) are generalized to

, / (d-z)-d-e T/ 24 (5983
2(3:) = Fl#r) warﬁ,é:f ?“‘) i 7 — o0

» 2 v



(i)l 2-£)/2L
/g(ﬁ Flar) 777 jwff f") FOT @37

The case s=2, q & -1 requires further analysis reminiscent of the case
> (d+2)/(a-2) ‘in (2.6) For s#2, different powers of Anr in ¢ and
h would have to be used to maintain consistency between (2.15) and {2,.5),
but only in the special case of s=2 does there appear gﬁy compelling
reason for investigating (2;15) in the first place. Similarly for s#2,
one can modify (2.1) and (2;2) by including, for example, factors of Anp
to certain powers that will be consistent with (2.5) and (2.6), but only for
s=2 1is one gggged to go beyond the simple homogeneity assumptions of (2.1)
and (2.2) in order to maintain consistency between (2.5) and (2.6)
In addition to (2.55 we shall use a second‘relation that involves
h and ¢. It is given by the expressions
Cr) = -~ v/ + R(/z),
RO2) = ~ [, "‘/7/(/‘2)(((/5{/9]//”/7* Z Sy, (2.18)

f);rr>/

~ e iR : = .
Sm{(!’f?)* (‘/Oa”/ﬂ’l{ M'M-H(JJBJ . -nHZ)O// //;((,81 ,4(,[3&/4{”({}

In (2.18), the subscript zero denotes that the quantity labeled is to be
evaluated at the number density pg(l2) rather than at p, It was noted

in I that if we assume

3
}(l:‘/cfc-{ v !ﬁ~ﬂcf (2.19)
then —[uo—uwph(12) du/dp1/kT ~ h(lQ)G at the critical point, so that if
neither V nor &, dominates h(l?)5 as ry, > e at the critical point,

then we shall have (1.1).The reldtive sizes of Sm, h, and V are the sub-

ject of the next two sections.
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3. THE GENERAL TERM IN THE EXPANSION OF C

In-our analysis, all of which takes place at T=T_., we shall
make repeated use of the expressions in this paragraph to express various
results as powers of h(r) after getting them as powers of ko and

5 > 2 T

to simplify the expfessions for the powers of h. If « Adfp—pcfg at

T=Tc, then at TtTc, leq/aplAJ th&/q{ so that at T:Tc’ p:pc, we have

q-(i/e) (d-t)e
0 and Kofu r12 ~

(d-t)e > 2 (from the Gunten-Buckingham inequalitygand te = §~-1) and

airoq/BpO = K ﬁc(lQ)e. Furthermore
de > tet2 = 6+1. (We also conjecture that (d-s)e = 2, even when s > t,
but we do not use this conjectﬁre here). Here and belgw we use g to stand
for whatever-power of h eappears in a ﬁarticular discussion; it does not
have a fixed meaning throughout the artiﬁle.

Ve consider next the properties of 6; and E;, m > 2, that we

shall postulate, where Ei for E either S8 or L is defined by

Gm_zfég(lQ)uéi(l?)]/an(3) .o Snm) = &

~E ~F ~B
for m > 2. We extend this definition te m=2 by setting cg = c (12)~c2(12).

Since 68(12) ~0 if ri, >> a and since 6;(1, sve oy M) I8

completely symmetrical in the variables »r, 1€3i <3 €m, we believe it

g
is reasonable to further postulate that

A

C‘,,i ~ O %{/ >>C¢»%’?’ ﬁfg"/ 7'::{, /~<f’</.‘<’”f‘ (3.1)

Because we know f{é(l?)—ac(lQ)]d(Q)‘w Kt [from (2.4) and (2.5)] as well

as

A ; A
' /[8"*(/2)-66’“02)]&&2) e (3.2)
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[from (2.2a)] we conclude

j[C (,cz)~ /A)]oé’(z) ~ H Fax//ﬁfz‘ﬁ (3.3)

Because i
é\ ER.(? 0}{%2)/("€)”'(&?)(’¢£) s )
ﬂ:”f‘l‘ - I'
2™/ I " flE =) - &, (/2]/(1)
_ (3.3) in turn yields .
- fon-1)/€]
85 €4, W{f,)“(ﬂ(,z), r;((?;rf/)ffr— }({ al 7=7c, g > L( {3.5)

In keeping with (2.2a), and more generally with the whole notion of homo-
geneity in r:“.l and rii of long-range correlations near the critical

s 2
point, we postulate

A 2
L P o = e 7 = A
C,MH X /(/E('ﬁ’e/,)l (OAE x/-/(f;r:’-h/sw.,/, (3.8)
We can immediately find p, since from (3.1), f&{r;_l_ld@) d(m+l).‘ummed
while from (3.2) and (3.4)
- 23t~/
S EL Az ey raers)n 3T TH YT (3.7)
a5 {.4 .—[(f.w—l)/(—j
F
so
= A _[hu—f)/é] -f/r?z‘tg 3 (3.8)
: . q &
and [f(c +l)0d(l) T ([ e hc(r) , q > 6-m.

Instead of calling the vectors over which we do not intégrate(in

it will prove a bit more convenient here to call them r

Sm)}:l g Ty .y

and g (and to write r for g7, rather than for r,- ‘01} We shall

study each Sm by setting gm = ’E}ﬂ' + Eli and considering separately the in-

tegrals f&mfl(a,l, iis ,m) M {[11(18) b (aﬁ)}d(l)} with E first taken
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as L and then 8. Fach such integral can itself be written as a sum of

terms of the form

R 7 s .
ég)M/'\”f*{o(’{"’m)"/ﬁ’:{%‘ (f}:;]cf(z).‘.aépfwz) » (3.9)

where £ & m. For convenience let us use abbreviated notation to denote the

integral of (38.9) as Jf(c +l)0ﬁ2h dlm]. Since

ﬁgif,) //,(‘/c T I8 -7'{"’(1/5::,)075?4;?[!’_7, (2.10)

we need only evaluate
/ f¢+1)0"£h ae)

which will prove to be asymptotically proportional to a power of hc(r}

under our assumptions. Then, because
- L e e /:; . )
/ o %f 7 99,” ) = A f), ¥ (3.11)

we can immediately use our evaluation to find (3.9), and hence S,

For r -+ =, we argue that
5 . A ol G
f(c,(i;)a /‘ff”gf /[’{] - C:‘,i(c{’,é ""’{)o 7‘21; /‘/?cb(“l"!)!(f)] . (3.12)

This follows from the observation that as r + » for q < (d-t)e, the in-

terval »d < rye® becomes equivalent to the interval 0 < K S This

interval defines the domain of integration of the left-hand side of (3.12);

so if we choose gq < (d-t)e we can write

]Q’H 'zﬁcﬁp[f]/( );;"Qx»gccf[f], (3.13)

where @ 1is the domain such that Pui > Pq; lg<ig ., But as long as

q > 1 (and we can so chosse it) then the right-hand side of (3.13) approaches

the right-hand side of (3.12) as r » «, Using (3.6), (3.8), and (2.1b), we

s -[(2-1)/e]+2(d-t)

estimate the right hand side of (3.12) to be ~Kq

~ hga)q,

q=38+2 if s=t and q > &+ if s > t. Thus from (3.10) and (3.11) we have
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m-f..~ L q
hc(j_‘) f(cm+l)0ﬁ2hcd[m] ~ hc(g) , @ > 8+%.

We must finally consider the contributions from expressions of

;'8 . SRR Sy - :
the form I(C£+l)oﬂ£hcd[2}’ which are A&hcgg) I(c£+l)0d(2) wos. AL ).

From (3.5), this expression is O(hg). Thus, using (3.10) and (3.11) for

E=S we find that hcgg)m_gf(ﬁ s )

8
B Oﬁi’,hcd[m] e O(hc), r + », as well,

Putting our results together, we see that the dominant contribu-

" y . A S
tion to Sm comes from interaction of the h's and €y rather than
n
ot . - . 5
Cot1" There is no contribution to Sm of order lower than hc(r} . Thus

according to (2.18), if V(r) is negligibly small, cc(r) itself will be
of order !hc(g)ﬁ for r > « when homogeneity of the long-range corvela-
tions is assumed, and the p in (2.6) and (2.10) must be &.

There remains to be treated the special but important case of

2 = LS-1) ATt} | (3.14)

This is not covered by our previous arguments since in this case we would

be led to s=2 by (2.1b), (2.2b), (2.5), and (1.1), except that when s=2,
then (Z.1b), (2.2b) and (2.5) are no longer compatible, as pointed out in
section II. Thus we are forced to modify at least one of our assumptions.
The most gentle modification that can be contemplated appears to be the re-
tention of (2.19) and the replacement of (2.1) and (2.2) by (2.11) and (2.12).
It is easily checked that (1.l) is still consistent with (2.5), for (2.13),
and (2.14) and that in (2.10) u0~u~bdu/dp still contributes a term of order
h, to c_. The remaining question is therefore whether the (Sm)c still
fail to dominate hz . When the preceding arguments of this section are ap-
plied, the 2&n terms in (2.11) - (2.14) will introduce powers of 2nk_  as

0

well as powers of Ko in the analysis of (3.9), and it is necessary to

know what &n terms appear in the relation between k and p. Assuming
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(2.19), ve find at T=Tc

HE (A 1) e //o—pc/ gt (3.15)

This comes from comparing ,}f{z/a{io “ //O 75;_— / sl with the result
2 A5 7 4

tfﬂ/a{ﬂ”/‘f ({éfg}:’/ » which follows from the use of (2.12) in [}0/..@@‘*)4»"}5

dulf :
fc_/é?égﬁIt follows that the most dominant terms in (S ) are all of order

e

hi. For example hcfﬁLdr ﬂWEKﬁ(KO)l/D, which from (2.15) is of order hg.
The analysis of the general term is more tedicus but no more difficult; it
is basically because IO—DC'dK/dD is not of lower order in p-0 than «
itself that all terms involving Em, m > 2, cannot be of lower order than

the simple terms involving only c The situation remains similar if

X
J s
//J(’_/l({[ ) XK-«/J.:/ Aif /ﬂ—-ﬂc / (3.15}
is assumed instead of (2.19) with (2.15), (2.16) and (2.17) restoring con-

sistency instead of (1.1), (2.13) and (2.14)., Here the dominant term in

(S ) would be of order ha(inh ya,
m . c c
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L, LONG-RANGE POTENTIALS

Ve furn now to a discussion of the case of a long-range (LR) po-
tential Vo -r" %% gop p o @, In Eq. (2.18) there is now a competition
between -BV and R, to consider. We first ask if it is reasonable to
assune that Rc stiil looks like hz as r >« with p equal or very
close to 6. We believe so, and using our knowledge of both the Ornstein-
Zernike (0Z) case® [Rc = 0 for large r as in the spherical modelu] and
the short-range (SR) case [V=0 for large r] to guide us, we argue as fol-
lows: Assuming (2.i9) it immediately follows that [uo—u~phdu/dp]c still
locks 1like hi s SO we can pass on to an analysis of the Sm'- It still
appears.reasdnable to postulate that hC mfrt_d. (In the 0Z case this is so

with t = min[0,2]; in the Ising case the simplest possibility consistent

with known results appears to be

where a tilda here and below refers to the SR case). We must take care in
defining «k in the case of an LR potential -- for small o, x defined
by (2.3) no longer exists. However we can use (2.4) as a definition of 'k
for such caseST. It is then still és reasonable as in the SR case to as-
sume that for »r >> a, E—EC is homogeneous in A = Kpl and r of degreec
-d-s. The rationale also remains for making the same assumptions on the

Ei and 6; that wé used in the SR caselo vwhere we found Rccv hi, with
p=6 when homcgeneify of the E; was assumed. Even in three dimensions,
where homogeneity of the correlations can be questioned, p departs only
very slightly from &, on the basis of Eq. (2.10) and the currently ac-

cepted value of t[&2 49/25]. Thus we conclude that in the LR case as well

as the SR case,
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C. =N lir + OCET) 3o (4.2)

where p=6 if strict homogeneity of the Ei is assumed and p¥8 other-

wise. From (4.2), (2.1b), (2.2b), and (2.5) we have the useful relation

s 4{+,<L = dfm:ﬁz [(;{-’Lé)fz) p(-fcr] ., (4.3)

Consequences of the above argument are most directly obtained --
and the argument itself is at its most cénvincing -- for the case o > §
since o > s implies that as r - w; V  can be neglected compared to the
Rc that one would have had if V were negligible in the first place.

Hence we are led to ng. (For d=2, s=7/4, while for d=3, s appears
to be 2 or a bit less.) Thus where o > s, we expect no difference be-
tween k and x, and assuming p=8, no difference from the SR result:

t = min[2, d(6-1)/(8+1)].

If o < s the situation is more complex. If we continue to as-
sume that V can be neglected compared to Rc so that exponents have the
same values as in the SR case with d+o > (d+t)p, we arrive at a contradic-
tion, since (d-t)p = d+s. Hence if o > s, it is no longer plausible to
postulate that V can be neglected compared to R.s ji.e. that a+o > (d-t)p.
This suggests that when o < s we start instead with the trial assumption
that Rc can be neglected compared tp. V, 1i.e. that the presence of RC
in (4.2) will not shift the values of the critical exponents away from their
0Z values. On the basis of this starting point we can compare hf and Rc
as r -+ «, Letting a dot denote an 0Z value, we have é=0, and Eq. (4.2)

now tells us that (d-t)p > d+o, so that th cannot dominate V. Thus

our trial assumption is at least self consistent. If we further assume that
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p=6, we have p=5'Jwith §=(d+0)/(d-0) when d/2 < o < d, o c-2, and

8=3 when 0 < o < d/2, o < 2. From these expressions follow co-domi-
nznce of V and RC for d4/2 < o< d, 1if ¢<2, and strict dominance of
V for 0 <o <d/2, if o0 <2, When o > 2 we expect 2 < § only for

d > 4, for which '5=3, so that V will strictly dominate Rc under our
trial assumption as long as o < 3d-6. But for d > 4, we expect precisely
S = 3d-6 from d+s = (d—{)g, so we conclude that V will strictly dominate
R, forall 2<o< §. In summary: i% o < s, the hypothesis that V
leaves s unchanged at s is sz1f-contradictery, whereas the plausible
assumption that Rc will not shift s away from s satisféctorily leads
us back to the consistent conclusion tﬁat RC will not dominate V. The
additional postulate that the EE, m » 2, are homogeneous further sug-
gests the result t = o = d(8-1)/(8+1) for 4/2 < o < min[d,2] and

t =g, 6 =3 for 0 <o <minl[d/2,2]. For the values o = da/2, 0 = d we
would expect log terms to appear in u-p ., as p-p and in hgg), as they
do in the spherical model. For the value o = g, similar complexity

could also appear because of the possible confluence of the V and Rc

terms at this value.
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